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Abstract

Automatically constructing taxonomy finds many applications
in e-commerce and web search. One critical challenge is as
data and business scope grow in real applications, new con-
cepts are emerging and needed to be added to the existing
taxonomy. Previous approaches focus on the taxonomy ex-
pansion, i.e. finding an appropriate hypernym concept from
the taxonomy for a new query concept. In this paper, we for-
mulate a new task, “taxonomy completion”, by discovering
both the hypernym and hyponym concepts for a query. We
propose Triplet Matching Network (TMN), to find the appro-
priate (hypernym, hyponym) pairs for a given query concept.
TMN consists of one primal scorer and multiple auxiliary
scorers. These auxiliary scorers capture various fine-grained
signals (e.g., query to hypernym or query to hyponym se-
mantics), and the primal scorer makes a holistic prediction
on (query, hypernym, hyponym) triplet based on the internal
feature representations of all auxiliary scorers. Also, an innova-
tive channel-wise gating mechanism that retains task-specific
information in concept representations is introduced to further
boost model performance. Experiments on four real-world
large-scale datasets show that TMN achieves the best perfor-
mance on both taxonomy completion task and the previous
taxonomy expansion task, outperforming existing methods.

Introduction

Taxonomies, formulated as directed acyclic graphs or trees,
have been widely used to organize knowledge in various do-
mains, such as news domain (Vrandecic 2012; Mao et al.
2019), scientific domain (Lipscomb 2000; Sinha et al. 2015;
Shen et al. 2018c) and online commerce (Karamanolakis,
Ma, and Dong 2020; Mao et al. 2020). Equipped with these
curated taxonomies, researchers are able to boost the per-
formance of numerous downstream applications such as
query understanding (Hua et al. 2017; Yang, Zhang, and
Han 2020), content browsing (Yang 2012), personalized rec-
ommendation (Zhang et al. 2014; Huang et al. 2019), and
web search (Wu et al. 2012; Liu et al. 2019).

As human knowledge is constantly growing and new con-
cepts emerge everyday, it is needed to dynamically complete
an existing taxonomy. Figure 1 shows an illustrative example
where a taxonomy of “Electronic Device” is completed to
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Smart Phone < Electronic Device, CPU > Positive
Smart Phone < Electronic Device, HDD > Partially-correct Negative
Smart Phone < Desktop, CPU> Partially-correct Negative
Smart Phone < Desktop, Keyboard> Negative

Figure 1: An example of completing one “Electronic Device”
taxonomy. The table illustrates different types of candidate
positions for a given query “Smart Phone”.

include new devices (e.g., “Smart Phone”) and hardware (e.g.,
“SSD’). Most existing taxonomies are curated by domain ex-
perts. However, such manual curations are labor-intensive,
time-consuming and rarely-complete, and therefore infeasi-
ble to handle the influx of new contents in online streaming
setting. To this end, many recent studies (Shen et al. 2020;
Manzoor et al. 2020; Yu et al. 2020) investigate the problem
of taxonomy expansion which aims to automatically expand
an existing taxonomy. Specifically, given a query concept,
these methods first rank each concept in the existing taxon-
omy based on how likely it is the hypernym of the query
concept measured by an one-to-one matching score between
the two concepts. Then, the query concept is added into the
existing taxonomy as the hyponym of the top-ranked con-
cepts. Notice that such a formulation is built upon one strong
assumption: all new concepts can only be added into ex-
isting taxonomy as hyponyms (i.e., leaf nodes'). However,
we argue that such a “hyponym-only” assumption is inap-
propriate in real applications. For example, in Fig 1, the
term “Smart Phone” is invented much later than term “CPU”,
which means that when “Smart Phone” emerges, “CPU” al-
ready exists in taxonomy. In this case, it is inappropriate
to add “Smart Phone” into taxonomy as leaf node because
“CPU” is a hyponym of “Smart Phone”.

In this paper, instead, we define and investigate a new fax-
onomy completion task without the strong “hyponym-only”
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assumption. Formally, given an existing taxonomy and a set
of new concepts, we aim to automatically complete the tax-
onomy to incorporate these new concepts by discovering the
most likely (hypernym, hyponym) pairs of each new concept.
For instance, in Fig 1, one of the most likely candidate pairs
for “Smart Phone” is (“Electronic Device”, “CPU”). This
formulation leads to a novel one-to-pair matching problem
different from the previous one-to-one setting in taxonomy
expansion task that only seeks for a new concept’s most
likely hypernyms while ignores its possible hyponyms. Note
that the hypernym/hyponym concept within the candidate
(hypernym, hyponym) pair could be a “pseudo concept” in
case there is no appropriate one for a given query concept. We
can easily see that the taxonomy expansion task is a special
case of taxonomy completion when the hyponym concepts
are always “pseudo concept”.

Tackling the new taxonomy completion task is challeng-
ing because the induced one-to-pair matching problem re-
sults in the existence of a special type of negative candidate
(hypernym, hyponym) pairs we called partially-correct nega-
tive candidates. Before introducing partially-correct negative
candidates, we first clarify that for a given query concept ng,
a candidate pair of existing concepts (n,, n.) is positive if
np(n.) is the true hypernym (hyponym) of n, and negtiave
otherwise. Then, a candidate pair (n,, n.) is partially-correct
negative if either n, is true hypernym but 7, is not true
hyponym or vice versa. We illustrate the different types of
candidate pairs in the table of Fig 1. Due to the high correla-
tion of positive and partially-correct negative candidates, the
model might struggle to distinguish one from another.

To solve the aforementioned challenge, we propose a novel
Triplet Matching Network (TMN), which learns a scoring
function to output the matching score of a (query, hypernym,
hyponym) triplet and leverages auxiliary signals to help dis-
tinguish positive pairs from partially-correct negative ones.
Specifically, auxiliary signals are binary signals indicating
whether one component within the pair is positive or not,
in contrast to binary primal signals that reveal holistically
whether a candidate position is positive or not. To make best
use of the auxiliary signals to handle the existence of partially-
correct negative, TMN consists of multiple auxiliary scorers
that learn different auxiliary signals via corresponding aux-
iliary loss and one primal scorer that aggregates internal
feature representations of auxiliary scorers to output the fi-
nal matching score. The auxiliary and primal scorers are
jointly trained in an auxiliary learning framework. In this
way, we encourage the model to learn meaningful internal
feature representations for the primal scorer to discriminate
between positive, negative, and partially-correct negative can-
didates. In addition, we propose an innovative technique
called channel-wise gating mechanism to regulate the rep-
resentations of concepts. It produces a channel-wise gating
vector based on the (query, hypernym, hyponym) triplet, and
then modifies the embeddings using this channel-wise gating
vector to reduce the effect of irrelevant information stored in
embeddings while retain the most task-specific information
when calculating matching scores.

In the experiments, we benchmark the taxonomy comple-
tion task on four real-world taxonomies from different do-

mains using modified version of multiple one-to-one match-
ing models and state-of-the-art taxonomy expansion methods.
Our experimental results show that TMN outperforms the
baselines by a large margin on both taxonomy completion
task and taxonomy expansion task. Finally, ablation study
demonstrates the effectiveness of each component of TMN,
and efficiency analysis shows the efficiency of TMN at infer-
ence stage.

Contributions. To summarize, our major contributions in-
clude: (1) a more realistic task called taxonomy completion
which simultaneously finds hypernym and hyponym concepts
of new concepts; (2) a novel and effective Triple Matching
Network (TMN) to solve the one-to-pair matching problem
induced from the taxonomy completion task by leveraging
auxiliary signals and an innovative channel-wise gating mech-
anism; and (3) extensive experiments that verify both the
effectiveness and efficiency of TMN framework on four real-
world large-scale taxonomies from different domains.

Problem Formulation

The input of the taxonomy completion task includes two
parts: (1) an existing taxonomy 79 = (N9, £°) and (2) a set
of new concepts C. We assume each concept n; € N'YUC has
an initial embedding vector x; € R? as in previous studies
(Jurgens and Pilehvar 2016; Vedula et al. 2018; Aly et al.
2019). The overall goal is to complete the existing taxonomy
TV into alarger one 7 = (NYUC, &) by adding the new con-
cept n, € C between any pair of existing concepts (n,, n.)
to form two new taxonomic relations (n,, ny) and (ng, ne).
Following previous studies (Shen et al. 2020; Manzoor et al.
2020), we assume the new concepts in C are independent to
each other and thus reduce the more generic taxonomy com-
pletion task into |C'| independent simplified problems. Note
that we use the term “hypernym” and “parent”, “hyponym”
and “child” interchangeably throughout the paper.

Taxonomy. Follow (Shen et al. 2020), we define a taxonomy
T = (N, &) as a directed acyclic graph where each node
n € N represents a concept (i.e., a word or a phrase) and each
directed edge (n,,n.) € £ indicates a relation expressing
that concept n,, is the most specific concept that is more
general than concept n.. Here, the relation types of edges are
implicitly defined by existing taxonomy.

Candidate Position. A valid candidate position is a pair of
concepts (n,, n.) where n. is one of the descendants of n,,
in the existing taxonomy. This definition reduces the search
space of candidate positions. Note that n,, or n. could be a
“pseudo concept” acting as a placeholder.

Positive Position. For a query concept n,, positive position
(np, nc) is a candidate position wherein n,, and n. is the true
parent and child of n4, respectively.

Negative Position. For a query concept 1,4, negative position
(np, ne) is a candidate position wherein n,, or n. is not the
true parent or child of n,, respectively.

Partially-correct Negative Position. For a query concept
ng, partially-correct negative position (n,, n.) is a negative
position but n,, or n,, is the true parent or child of n,.



The TMN Framework

In this section, we first introduce our one-to-pair matching
model which leverages auxiliary signals to augment primal
matching task. Then, we present a novel channel-wise gating
mechanism designed for regulating concept embedding to
boost the model performance. Finally, we discuss how to
generate self-supervision data from the existing taxonomy
and use them to train the TMN model. The overall model
architecture is presented in Fig 2.

Modeling One-To-Pair Matching

In this work, we seek to learn amodel s : N'x (M xN) — R
with parameter © that can measure the relatedness of a query
concept 1, and a candidate position, i.e., a pair of concepts
t = (ny,n.), in existing taxonomy 7°. A straightforward
instantiation of s is as follows:

s(nqanlhnﬂ) = f(XQ7 [XPaXCD = f(XQ7Xt) (1)

Where f is a parameterized scoring function of choice that
outputs the relatedness score of n, and (n,, n.), and [-] rep-
resents the concatenation operation. This formulation simply
degenerates one-to-pair matching into one-to-one matching
by using concatenation of x,, and x, as representation of can-
didate position. Here, we choose the neural tensor network
(Socher et al. 2013) as our base model:

$(ng, Np,nc) = uTJ(h(xq,xt)) )
h(xq,x:) = qu[lzk]xt +V {Xq:| +b 3)
Xt
Where o = tanh(-) is a standard nonlinearity applied

element-wise, WLkl ¢ Rd*2dxk j¢ 5 tensor and the bi-
linear tensor product x, W**Ix, results in a vector r € R¥,
where each entry is computed by one slice 7 = 1,...,k of
the tensor: h; = quixt. The other parameters are the stan-
dard form of a neural network: V € R**2¢ 3pd u € R,
b € R*. We call the vector h output by A(-, -) the internal
feature representation of neural tensor network.

However, such a naive instantiation only measures the
coarse-grained relatedness of query n, and the whole candi-
date pair (n,,n.) but fails to capture the fine-grained re-
latedness of (n4,n,) and (ng4,n.), preventing the model
from learning to clearly distinguish positive candidates from
partially-correct negatives candidates.

To address the limitation of the naive approach, we pro-
pose a novel expressive Triplet Matching Network (TMN).
Specifically, we develop multiple auxiliary scorers to cap-
ture both coarse- and fine-grained relatedness in one-to-pair
matching, and one primal scorer that inputs the internal fea-
ture representations of all auxiliary scorers and outputs final
matching scores. For each auxiliary scorer, we adopt neural
tensor network as in Eq. 2 as instantiation due to its expres-
siveness, and the corresponding k-dimension internal feature
representation h is as in Eq. 3. Assume we have [ auxiliary
scorers, each with k-dimension internal feature representation
h; and j = 1,...,[. Then, the primal scorer is a single-layer
projection with non-linear activation function:

sprimal(nq7np7n6) = UZ:U([hlw . -7hl]) 4)

Where, again, o = tanh(-) and u, € R*!. Now we elaborate
the three auxiliary scorers that capture both coarse- and fine-
grained relatedness:

s1(ng,np) = u?a(hl (%Xq,Xp)) ©)
s2(ng,ne) = uga(hg(xq7 Xc)) 6)
53(ng, Np, Ne) = u§a(h3(xq> [xp,xc])) )

Where the auxiliary scorer s; and so capture the fine-grained
relatedness of (ng, n,) and (ng, n.) respectively, while s3 is
for coarse-grained relatedness between n, and (n,, n.).

Given above formulations, primal scorer sp,;mq; can be
trained using primal signals indicating whether (n,, n.) is
positive candidate of n, or not, and auxiliary scorers can
be trained via corresponding auxiliary signals. Particularly,
s1 will be trained to learn whether n,, is positive parent of
ng, 52 is to learn whether n. is positive child of n,, and s3
captures coarse-grained relatedness between n, and (n,, n.)
so its auxiliary signal is exactly the same as primal signal.
Although s3 and sy,,4mq; share the same supervision signals
and both aim to capture relatedness between n, and (n,, n.),
Sprimal OUtputs matching score based on the internal feature
representations of all auxiliary scorers including s3, which
enables S,,imqi to Tely on s1 or so when s3 struggle to differ-
entiate positive candidates from partially-correct candidates
negatives.

Channel-wise Gating Mechanism

As the nature of taxonomy, concepts under the same ances-
tor are semantically related to each other, which makes it
challenging for model to learn the true taxonomic relations
based on concept embeddings, especially in bottom-level
of a taxonomy. For instance, in Fig 1, the model needs to
learn that “Disk” is the true parent of “SSD” but “Memory”
is not. However, “Disk” and “Memory” are siblings in taxon-
omy, which makes them highly-related, and therefore hard to
distinguish based on their embeddings learned from a more
general corpus.

To mitigate this problem, instead of directly using initial
embedding vectors of concepts, we propose a novel channel-
wise gating mechanism to regulate the information stored
in initial embedding vectors, reducing the negative effects
of irrelevant or spurious information on learning taxonomic
relations. Specially, to distinguish “Disk” and “Memory” that
both belong to “Desktop”, we would like to filter out the
shared information stored in their embeddings related to
“Desktop” in order to push the model to focus on the re-
maining more specific information. Formally, we give the
formulation of channel-wise gating mechanism as follows:

gp = H(Wl[xq,xp,xc]) 3
Xp =8p OXp )
8 = 0(Wa[xq, xp, Xc]) (10)
Xe = g © Xc 1

Where 6(-) is a sigmoid function and W, W5 € R4¥34 @
is element-wise multiplication. g is the channel-wise gating
vector dependent on embeddings of both query and candidate
positions. We treat each dimension of concept embedding
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Figure 2: Overview of TMN framework.

as a channel to store information, and the output value of
sigmoid lies in the interval [0, 1], which enables the channel-
wise gating vector g to downscale irrelevant information in
certain channels while retain task-specific ones.

With the gated embedding %X, and %, in hand, we now re-
place the initial embedding vectors in Eq. 3 with it to facilitate
TMN. Notably, this simple channel-wise gating mechanism
is ready to be plugged in any matching models.

Jointly Learning Primal and Auxiliary Scorers

In this section, we first introduce how to generate self-
supervision data as well as primal and auxiliary signals from
the existing taxonomy, and then propose to jointly learn the
primal and auxiliary scorers.

Self-supervision Generation. Given one node n, in the ex-
isting taxonomy 70 = (N, £9) as “query”, we first con-
struct a positive (n,,n.) pair by using one of its parents
n, and one of its children n.. Then, we sample N negative
pairs from valid candidates positions that are not positive
positions. Notably, it is allowed that one end of the nega-
tive pair is true parent/child of n,. Given a candidate pair
(np, ne), the primal signal, i.e. y, indicates whether the whole
pair is positive or not, while the auxiliary signals, i.e. y,, and
Ye, represent whether n,, (n.) is the true parent (child) of
query n, respectively regardless of the primal signal. The
generated positive and negative pairs as well as correspond-
ing primal and auxiliary signals collectively consist of one
training instance (X, y). By repeating the above process for
each node in 70, we obtain the full self-supervision dataset

D = {(X1,y1),---» (Xjno0) ¥iao)) }-
Learning Objective. We learn our model on D) using the
following objective:

l:(@) = ,Cp + XML+ AL+ A3L3 (12)

where L, represents the loss for primal scorer and L1, Lo,
L3 are auxiliary losses for auxiliary scorers si, s and s3
respectively. The hyperparameters A1, Ao and A3 are weights
to adjust relative effects of each auxiliary loss. The above
objective function is similar to multi-task learning at the first
glance, but it is an auxiliary learning strategy that only cares

Table 1: Dataset Statistics. |N| and |£| are the number of
nodes and edges in the existing taxonomy. |D| indicates the
taxonomy depth.

Dataset [NV €] |D|
MAG-CS 24,754 42,329 6
MAG-Psychology 23,187 30,041 6
WordNet-Verb 13,936 13,408 13
‘WordNet-Noun 83,073 76,812 20

the performance of primal task, i.e. primal scorer in our case,
and the auxiliary loss are meant to augment the learning of
primal task.

Here, £; is loss function of choice. We choose binary
cross entropy loss for simplicity. Take the primal loss as an
example, it is formulated as:

1
/Jp:—@ D> wilog(sp(Xa)) + (1 —ys) log(1 — 5,(X.))
(X;,y:)ED

(13)

Experiments
Experimental Setup

Dataset. We study the performance of TMN on four large-
scale real-world taxonomies.

e Microsoft Academic Graph (MAG). We evaluate TMN
on the public Field-of-Study (FoS) Taxonomy in Mi-
crosoft Academic Graph (MAG) (Sinha et al. 2015). It
contains over 660 thousand scientific concepts and more
than 700 thousand taxonomic relations. Following (Shen
et al. 2020), we construct two datasets which we refer to as
MAG-Psychology and MAG-CS based on the subgraph
related to the “Psychology” and “Computer Science” do-
main, respectively. We compute a 250-dimension word
word2vec embedding on a related paper abstracts corpus.

o WordNet. Based on WordNet 3.0, we collect verbs and
nouns along with the relations among them to form
two datasets which we refer to as WordNet-Verb and
WordNet-Noun, respectively. The reason for limiting our



Table 2: Overall results on four datasets. We run all methods five times and report the averaged result with standard deviation.
Note that smaller MR indicates better model performance. For all other metrics, larger values indicate better performance. We
highlight the best two models in terms of the average performance under each metric.

Method ‘ MAG-CS
\ MR MRR Recall@1 Recall@5 Recall@10 Prec@1 Prec@5 Prec@10
Closest-Position 9466.670 0.093 0.012 0.034 0.051 0.054 0.029 0.022

Single Layer Model 1025.245 +22.827 0.153 £0.002 0.030 + 0.001  0.074 £0.001  0.105 4+ 0.002  0.130 £ 0.004 0.064 & 0.001  0.046 £ 0.001
Multiple Layer Model | 1110.340 £+ 64.987 0.156 4+ 0.002  0.032 £ 0.001  0.080 & 0.001  0.108 £ 0.002  0.140 + 0.004  0.069 + 0.000 0.047 % 0.001
Bilinear Model 3373.772 £ 7.473  0.026 £ 0.000  0.000 + 0.000 0.003 £ 0.000  0.006 £ 0.000 0.001 £ 0.000  0.002 £ 0.000 0.003 £ 0.000
Neural Tensor Network | 769.830 +2.416  0.171 +0.003 0.023 £ 0.001  0.073 £ 0.001  0.112 £ 0.002 0.099 £ 0.004 0.063 £ 0.001  0.049 £ 0.001

TaxoExpan 1523.904 4+ 52.982 0.099 +0.002 0.004 + 0.001 0.027 £ 0.002 0.049 4+ 0.001 0.017 +£0.003 0.023 + 0.001  0.021 + 0.000
ARBORIST 1142.335 +19.249  0.133 £0.004 0.008 4 0.001  0.044 + 0.003 0.075 4+ 0.003 0.037 +0.004 0.038 + 0.003 0.033 £ 0.001
TMN | 639.126 +35.849  0.204 £0.005 0.036 = 0.003  0.099 +0.006 0.139 £0.006 0.156 = 0.011  0.086 + 0.005  0.060 = 0.003
Method | MAG-Psychology
‘ MR MRR Recall@1 Recall@5 Recall@10 Prec@1 Prec@5 Prec@10
Closest-Position 5201.604 0.168 0.030 0.072 0.107 0.062 0.029 0.022
Single Layer Model 435.548 +4.057  0.350 +0.002 0.090 £+ 0.003  0.209 + 0.002 0.274 +0.003 0.183 £0.006 0.085 £ 0.001 0.056 + 0.001

Multiple Layer Model | 297.644 +8.097  0.413 +0.002 0.110 &= 0.001  0.265 + 0.004  0.334 - 0.002 0.224 +0.003 0.108 & 0.001  0.068 -+ 0.000
Bilinear Model 2113.024 £9.231  0.032 +0.000  0.000 £ 0.000  0.001 £ 0.000 0.003 & 0.000  0.000 £ 0.000  0.000 & 0.000  0.001 = 0.000
Neural Tensor Network | 299.004 & 6.294  0.380 & 0.004  0.066 £ 0.004 0.207 4 0.002  0.291 £0.004 0.134 4= 0.008 0.084 £ 0.001  0.059 & 0.001

TaxoExpan 728.725 £2.096  0.253 +£0.001 0.015£0.001 0.092 4+ 0.001 0.163 £0.001 0.031 4+ 0.001 0.038 £ 0.000 0.033 & 0.000
ARBORIST 547.723 £20.165 0.344 £0.012 0.062 +0.009 0.185 £0.011 0.256 +0.013  0.126 £ 0.018  0.076 + 0.004 0.052 £ 0.003
TMN | 212298 £3.051 0.471+£0.001 0.141£0.001 0.305 +0.004 0.377 £0.002 0.287 = 0.001  0.124 + 0.001  0.077 £ 0.000
Method | WordNet-Verb
\ MR MRR Recall@1 Recall@5 Recall@10 Prec@1 Prec@5 Prec@10
Closest-Position 34778.772 0.144 0.011 0.045 0.075 0.020 0.016 0.013

Single Layer Model 2798.243 +61.384  0.140 & 0.009  0.029 £0.005 0.065 & 0.006 0.093 £0.008 0.044 & 0.007 0.019 £0.002 0.014 & 0.001
Multiple Layer Model | 2039.213 +240.577 0.227 £0.020  0.050 +0.006  0.120 = 0.009 0.160 £ 0.015 0.075 4 0.009  0.036 £ 0.003  0.024 4 0.002
Bilinear Model 1863.915 £5.685  0.17540.001  0.012£0.001 0.054 +0.000 0.096 = 0.001 0.017 £0.001  0.016 & 0.000 0.015 £ 0.000
Neural Tensor Network | 1599.196 + 18.409  0.255 +0.003  0.051 & 0.002  0.125 £0.006 0.176 & 0.005  0.076 = 0.003  0.038 + 0.002  0.027 £ 0.001

TaxoExpan 1799.939 +4.511 0.227 £0.002  0.024 £0.001  0.095 £ 0.001  0.140 £ 0.002  0.036 + 0.002  0.029 £ 0.000  0.021 = 0.000
ARBORIST 1637.025 £4.950  0.206 £ 0.011  0.016 £0.004 0.073 £0.011 0.116 £0.011  0.024 £ 0.006  0.022 £ 0.003  0.018 = 0.002
TMN | 1445.801 +£27.209 0.304 +0.005 0.072+£0.003 0.163 = 0.005 0.215+0.001 0.108 +£0.005 0.049 = 0.002  0.032 + 0.000
Method | WordNet-Noun
\ MR MRR Recall@1 Recall@5 Recall@10 Prec@1 Prec@5 Prec@10
Closest-Position 5601.033 0.136 0.017 0.044 0.074 0.025 0.013 0.011
Single Layer Model 3260.415 +£79.776  0.177 £0.010  0.025 £0.003  0.072 £ 0.006 0.103 £0.006 0.043 4 0.005 0.025 £0.002 0.018 & 0.001

Multiple Layer Model | 2801.500 + 143.579 0.175 £ 0.005  0.029 £ 0.001  0.077 £ 0.002  0.106 £ 0.003  0.051 4 0.002  0.027 £ 0.001  0.018 £ 0.000
Bilinear Model 3498.184 £3.586  0.176 £0.001  0.012 £ 0.000 0.052 +0.001  0.095 £ 0.001  0.020 + 0.000  0.018 £ 0.000  0.017 % 0.000
Neural Tensor Network | 2808.900 £+ 79.415  0.215 £0.007  0.034 + 0.002  0.093 £ 0.003  0.133 + 0.004  0.060 £ 0.004  0.033 = 0.001  0.023 £ 0.001

TaxoExpan 3188.935 + 17.461  0.209 4+ 0.000 0.017 £0.000 0.074 &+ 0.000 0.125 £0.001  0.030 & 0.001  0.026 £ 0.000  0.022 £ 0.000
ARBORIST 2993.341 4+ 114.749  0.217 £ 0.005 0.021 +£0.001  0.073 £0.002 0.125 4+ 0.002 0.036 £ 0.001  0.025 4+ 0.001  0.022 =+ 0.000
TMN | 1647.665 £ 15370  0.270 +0.006 0.039 £0.002 0.111 £ 0.006 0.167 + 0.005 0.068 = 0.004  0.039 & 0.002  0.029 + 0.001

choice to only verbs and nouns is that only these parts
of speech have fully-developed taxonomies in WordNet
(Jurgens and Pilehvar 2016). We obtain the 300-dimension
fasttext embeddings? as initial feature vectors.

For each dataset, we randomly sample 1,000 nodes for vali-
dation and another 1,000 for test. Then we build the initial tax-
onomy using remaining nodes and associated edges. Notice
that new edges will be added into initial taxonomy to avoid
the taxonomy from breaking into multiple directed acyclic
graphs. Table 1 lists the statistics of these four datasets.

Evaluation Metrics. As our model returns a rank list of
candidate positions for each query concept, we evaluate its
performance using the following ranking-based metrics.

e Mean Rank (MR) measures the average rank position of
a query concept’s true positions among all candidates. For
queries with multiple positive edges, we first calculate the
rank position of each individual edge and then take the

2We use the wiki-news-300d-1M-subword.vec.zip version on official website.

average of all rank positions.

e Mean Reciprocal Rank (MRR) calculates the reciprocal
rank of a query concept’s true positions. We follow (Ying
et al. 2018) and scale the original MRR by a factor 10 to
amplify the performance gap between different methods.

e Recall@F£ is the number of query concepts’ true positions
ranked in the top k, divided by the total number of true
positions of all query concepts.

e Precision@F is the number of query concepts’ true posi-
tions ranked in the top k, divided by the total number of
queries times k.

Compared Methods. To the best of our knowledge, we are
the first to study taxonomy completion task and there is
no directly comparable previous method. Thus, we adapt
the following related methods to our problem setting and
compare TMN with them:

1. Closest-Position: A rule-based method which ranks can-



didate positions based on the cosine similarity:

cosine(X,, Xq) + cosine(X¢, Xq)

2

s(ng, np, ne) =

2. Single Layer Model: A model that scores tuple by a stan-
dard single layer neural network which inputs the concate-
nation of the concept embeddings.

3. Multiple Layer Model: An extension of Single Layer
Model that replaces the single layer neural network with
multiple layer neural network.

4. Bilinear Model (Sutskever, Salakhutdinov, and Tenen-
baum 2009; Jenatton et al. 2012): It incorporates the inter-
action of two concept embeddings through a simple and
efficient bilinear form.

5. Nerual Tensor Network (Socher et al. 2013): It incor-
porates Single Layer Model with a bilinear tensor layer
that directly relates the two concept embeddings across
multiple dimensions and a bias vector.

6. TaxoExpan (Shen et al. 2020): One state-of-the-art tax-
onomy expansion framework which leverages position-
enhanced graph neural network to capture local informa-
tion and InfoNCE loss(Oord, Li, and Vinyals 2018) for
robust training.

7. ARBORIST (Manzoor et al. 2020): One state-of-the-art
taxonomy expansion model which aims for taxonomies
with heterogeneous edge semantics and optimizes a large-
margin ranking loss with a dynamic margin function.

Notably, except for the rule-based method Closest-Position,
other baselines are learning-based method and designed for
one-to-one matching. Thus we concatenate the embeddings
of candidate’s constituting concepts as candidate embedding
to fit our one-to-pair setting. For fair comparison, we replace
the GNN encoder of TaxoExpan with initial feature vector to
align with other compared methods. There are other recently-
proposed taxonomy expansion methods, e.g., HiExpan (Shen
et al. 2018b) and STEAM (Yu et al. 2020). We do not include
them as baselines because they leverage external sources, e.g.,
text corpus, to extract complicated features, while TMN and
other baselines only take initial feature vectors as input.

Parameter Settings. For learning-based methods, we use
Adam optimizer with initial learning rate 0.001 and ReduceL-
ROnPlateau scheduler® with ten patience epochs. During
model training, the batch size and negative sample size is set
to 128 and 31, respectively. We set k, i.e., the dimension of
internal feature representation, to be 5. For TMN, we sim-
ply set A\ = As = A3 = 1 to avoid heavy hyperparameter
tuning.

Experimental Results

Overall Performance. Table 2 presents the results of all
compared methods on the four datasets. First, we find
that learning-based methods clearly outperform rule-based
Closest-Position method. Second, there is no baseline that
could consistently outperform others in all taxonomies, which

3 https://pytorch.org/docs/stable/optim.html\ #torch.optim.Ir\ _scheduler.
ReduceLROnPlateau

indicates the diversity of taxonomies of different domains
and the difficulty of taxonomy completion task. Third, AR-
BORIST and TaxoExpan do not work well in taxonomy com-
pletion, which indicates that methods carefully designed for
taxonomy expansion task will struggle in taxonomy comple-
tion task. Finally, our proposed TMN has the overall best
performance across all the metrics and defeats the second
best method by a large margin.

Table 3: Results on taxonomy expansion task.

| MAG-Psychology

Method
| MR MRR Recall@10 Prec@1
TaxoExpan | 175.730 0.594 0.477 0.153
ARBORIST | 119.935 0.722 0.629 0.258
TMN 69.293  0.740 0.646 0.329
Method | WordNet-Verb
| MR MRR Recall@10 Prec@1
TaxoExpan | 642.694 0.410 0.319 0.098
ARBORIST | 608.668 0.380 0.277 0.067
TMN 464.970 0.479 0.379 0.132

Performance on Taxonomy Expansion. As taxonomy ex-
pansion being a special case of our novel taxonomy com-
pletion task, we are curious about how TMN performs on
previous task. Thus, we compare TMN with ARBORIST and
TaxoExpan on taxonomy expansion task*. The results are
presented in Table 3. Notice that ARBORIST and TaxoEx-
pan is trained directly on taxonomy expansion task, while
TMN is trained solely on taxonomy completion task. From
the results, we can see TMN outperforms the others in both
dataset with a large margin, which indicates that TMN is
able to solve taxonomy expansion task better than previous
state-of-the-arts.

Table 4: Ablation analysis on MAG-Psychology and
WordNet-Verb datasets.

| MAG-Psychology

Method
MR MRR Recall@10 Prec@10
TMN w/o CG 265.729  0.385 0.298 0.061
TMN w/o s1&so | 258.382 0.458 0.368 0.075
TMN w/o s 269.058 0.471 0.382 0.123
TMN w/o so 229.306 0.474 0.381 0.078
TMN w/o s3 342.021 0.326 0.213 0.043
TMN 212.298 0.471 0.377 0.077
Method | WordNet-Verb
| MR MRR Recall@10 Prec@10
TMN w/o CG 1578.120  0.260 0.178 0.027
TMN w/o s1&so | 1497.843  0.278 0.200 0.030
TMN w/o s; 1530.192 0.293 0.219 0.033
TMN w/o s 1586.740  0.290 0.207 0.031
TMN w/o s3 1604.802  0.248 0.159 0.024
TMN 1445.801  0.304 0.215 0.032

Ablation Study. We conduct the ablation studies on two rep-
resentative datasets MAG-Psychology and WordNet-Verb,
and the results are presented in Table 4. The results show that
without any of the key components of TMN, i.e., auxiliary

4 o .
We sample validation/test set from leaf nodes for taxonomy expansion task.



scorers (s1, s and s3) and channel-wise gating mechanism
(CG), the overall performance will degrade by different ex-
tends, which indicates the effectiveness of the components.

Table 5: Efficiency Analysis.

Dataset | # of candidate pairs | Avg. running time per query (s)
MAG-CS 153,726 0.131
MAG-Psychology 101,077 0.067
‘WordNet-Verb 51,159 0.055
‘WordNet-Noun 799,735 0.870

Efficiency Analysis. At the training stage, our model uses
|NV(O)] training instances every epoch and thus scales lin-
early to the number of concepts in the existing taxonomy. At
inference stage, because the cardinality of candidate pairs
is |N(©|2 without any restriction, for each query concept,
we need to calculate |A(*)|2 matching scores, one for every
candidate pair. However, in practical, as we restrict the valid
candidate pairs to be (ancestor, descendant) concept pairs
in existing taxonomy, the number of candidates need to be
considered is substantially reduced and therefore the infer-
ence efficiency is largely improved. Also, the inference stage
can be further accelerated using GPU. We list the number of
valid candidate pairs and the average running time per query
during inference stage of all datasets in Table 5. From the
table, we can see the number of valid candidate pairs is no
more than ten times of |A/(*)| and thus the inference stage is
quite efficient.

TMN L \WNoun Arborist () Noun
;~/€@7\B\/fstigator‘ Shrub Al71vesi‘igai‘or‘ég.?hrub
Q&iecﬁve QExamine OD ectie O O
(2) Sleuth Toyon

@ Private Detective

Examiner Toyon
QSIeuthQ Private Detective,

O Detective O Toyon J

Figure 3: Case Study. The grey concepts are existing concepts
while the red ones are queries needed to be inserted. The dash
lines mean an omitting of some internal nodes and the solid
lines indicate real edges in taxonomy. The numbers inside
nodes are the ranking position output by the model. We can
see TMN recovers the true positions for both internal and leaf
concepts.

( Query Set

Case Study. We illustrate the power of TMN via two real
query concepts “Detective” and “Toyon” of WordNet-Noun
in Fig.3. For internal concept “Detective”, TMN ranks the
true positions (“Investigator”, “Private Detective”) at top 1
and (“Investigator”, “Sleuth”) at top 2, while Arborist can
only rank the true parent “Investigator” at top 23. For leaf
concept “Toyon”, TMN recovers its true parent “Shrub” but
Arborist ranks “Shrub” at top 5. We can see that TMN works
better than baseline in terms of recovering true positions.

Related Work

Taxonomy Construction and Expansion. Automatic tax-
onomy construction is a long-standing task in the literature.

Existing taxonomy construction methods leverage lexical
features from the resource corpus such as lexical-patterns
(Nakashole, Weikum, and Suchanek 2012; Jiang et al. 2017;
Hearst 1992; Agichtein and Gravano 2000) or distributional
representations (Mao et al. 2018; Zhang et al. 2018; Jin,
Barzilay, and Jaakkola 2018; Luu et al. 2016; Roller, Erk,
and Boleda 2014; Weeds, Weir, and McCarthy 2004) to con-
struct a taxonomy from scratch. However, in many real-world
applications, some existing taxonomies may have already
been laboriously curated and are deployed in online systems,
which calls for solutions to the taxonomy expansion prob-
lem. To this end, multitudinous methods have been proposed
recently to solve the taxonomy expansion problem (Vedula
et al. 2018; Shen et al. 2018b; Manzoor et al. 2020; Shen
et al. 2020; Yu et al. 2020; Mao et al. 2020). For example,
Arborist (Manzoor et al. 2020) studies expanding taxonomies
by jointly learning latent representations for edge semantics
and taxonomy concepts; TaxoExpan (Shen et al. 2020) pro-
poses position-enhanced graph neural networks to encode the
relative position of terms and a robust InfoNCE loss; STEAM
(Yu et al. 2020) re-formulates the taxonomy expansion task
as a mini-path-based prediction task and proposes to solve
it through a multi-view co-training objective. However, all
the existing taxonomy expansion methods aim for solving
the one-to-one matching problem, i.e. to find the true par-
ent/hypernym, which is incompatible to our novel one-to-pair
matching problem induced by taxonomy completion task.

Auxiliary Learning. Auxiliary learning refers to a learning
strategy that facilitates training of a primal task with auxiliary
tasks (Ruder 2017; Shen et al. 2018a). Different from multi-
task learning, auxiliary learning only cares the performance
of the primal task. The benefits of auxiliary learning have
been proved in various applications (Standley et al. 2020;
Tang et al. 2020; Trinh et al. 2018; Toshniwal et al. 2017;
Hwang et al. 2020; Jaderberg et al. 2017; Odena, Olah, and
Shlens 2017; Liu, Davison, and Johns 2019; Lin et al. 2019;
Xiao et al. 2019). In most of these contexts, joint training
with auxiliary tasks adds an inductive bias, encouraging the
model to learn meaningful representations and avoid overfit-
ting spurious correlations. Despite the numerous applications
of auxiliary learning, its benefits on taxonomy construction
remains less investigated. To our best knowledge, we are
the first to leverage auxiliary learning to enhance taxonomy
construction.

Conclusion

This paper studies taxonomy completion without manually
labeled supervised data. We propose a novel TMN framework
to solve the one-to-pair matching problem in taxonomy com-
pletion, which can be applied on other applications where
one-to-pair matching problem exists. Extensive experiments
demonstrate the effectiveness of TMN on various taxonomies.
Interesting future work includes leveraging current method
to cleaning the existing taxonomy, and incorporating feed-
back from downstream applications (e.g., searching & recom-
mendation) to generate more diverse (auxiliary) supervision
signals for taxonomy completion.
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Supplementary Materials

Discussion of Simplified Problem

The simplified problem in Section defines |C| independent
optimization problems and each problem aims to rank candi-
date positions of a new concept n,. Therefore, we essentially
reduce the more generic taxonomy completion problem into
|C| independent simplified problems and tackle it by insert-
ing new concepts one-by-one into the existing taxonomy. As
a result of the above reduction, possible interactions among
new concepts are ignored and we leave it to the future work.

Edge Modification of taxonomy completion

It is worth noting that when a new concept n, is inserted
into existing edge (n,,n.) in taxonomy, this edge will be
break into two new edges (n,,n,) and (ng, n.). Therefore,
the initial edge set £ 0 will be modified, while in taxonomy
expansion the final edge set £’ is simply the union set of
initial edge set £Y and newly-discovered edge set R, which
makes the £ a superset of £V.

Optimality of taxonomy completion

In streaming setting where incoming concepts should be
processed one-by-one without interactions among them being
considered, an optimal taxonomy completion model, e.g.,
TMN, could recover the ground truth taxonomy regardless
of the order of incoming concepts. However, an optimal
taxonomy expansion model can only recover the ground truth
taxonomy when the order of incoming concepts is optimized,
which is unrealistic in online streaming setting. We illustrate
this difference using a tony example as shown in Fig.4 and
Fig.5. Notice that in the tony example, the optimal taxonomy
expansion model can always find the best hypernym concepts
in existing taxonomy and the optimal taxonomy completion
model always outputs best (hypernym, hyponym) pairs.

Learning Algorithm

We summarize our self-supervised learning procedure in Al-
gorithm 1.

Discussion on Other Taxonomy Expansion
Methods

Except for ARBORIST (Manzoor et al. 2020), there are sev-
eral other recently-proposed methods on taxonomy expan-
sion: HiExpan (Shen et al. 2018b), STEAM(Yu et al. 2020)
and OCTET (Mao et al. 2020). Here, we explain why we do
not compare with them in detail. In our setting, only concept
embedding is available, because it is easy to obtain in real-
world online streaming setting. For example, one can use
pre-trained language model to obtain contextualized embed-
ding with only a few of sentences in hand. However, most of
aforementioned taxonomy expansion models require external
resources which are difficult to collect in online streaming
setting. First, HiExpan consists of a set expansion module
and a relation extraction module, both of which rely on an
external text corpus to extract skip text patterns and to learn
concept embedding. We argue that such a text corpus rich

Algorithm 1: Self-supervised learning of TMN

Input: A taxonomy 7°; negative size N, batch size B;
model f(-|O).
Output: Learned model parameters ©.
1 Randomly initialize ©;
2 while £(0©) in Eq. (13) not converge do

3 Enumerate nodes in 7° and sample B nodes without
replacement;

4 D = {} # current batch of training instances;

5 for each sampled node nq do

6 Select one of its parents n,, and one of its children

ne to construct positive triple (ng, (np, nc))
Generate N negative triples { (nq, (nk, nL))|[1 };
7 D+ DuU

{{(ng, (np,me)), (ng, (ngyme)), - (ng, (ny),nc ) s

8 Update © based on D.
9 Return ©;

with useful skip text patterns is uneasy, if not infeasible, to
obtain in online streaming setting. The same as STEAM,
where an external corpus is needed to extract contextual fea-
tures and lexical-syntactic features. The contextual features
require two terms to occur in some sentences and lexical-
syntactic features require the frequency of terms in the cor-
pus. For OCTET, it is specifically designed for catalog data
in e-commerce field where user queries and click logs are
ready to be used to build query-item-taxonomy graph, which
is not applicable to other domains.

Hyperparameter Effectiveness Study

We conduct additional experiments to study the effectiveness
of six hyperparameters of TMN. The results can be found
in Fig.6 and Fig.7. In the comparison among different cho-
sen values for A\;, A2, and g, there is no significant change
in terms of evaluation metrics. It can be concluded that our
TMN model is robust to the weight hyperparameter of losses.
We noticed that the increasing “Batch Size” can benefit the
performance but overlarge batch deccreases the performance
in the MAG-Psy dataset. In the study of other hyperparameter
settings, we noticed marginal increase in the performance
with the “k” and “Negative Sampling Size” go up. However,
increasing such hyperparameters introduces additional com-
putation cost.

Extended Case Study

Due to the page limit, we show more case studies in Figure
8. The queries we selected here are more representative and
capture more aspects than the demo cases in the paper.

Hardware

Experiments were run on an Intel(R) Xeon(R) Platinum 8260
CPU at 2.40GHz with 24 cores and 30GB of main memory,
as well as a Tesla V100-SXM2 GPU. Implementations were
in PyTorch 1.4.0 / Python 3.
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Figure 5: Illustration on sequentially applying optimal TMN model to complete an existing taxonomy.
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Figure 6: Hyperparameter Effectiveness Study
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Figure 7: Hyperparameter Effectiveness Study Continue
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Figure 8: Extended Case Study.



