
BFiT: From Possible-World Semantics to
Random-Evaluation Semantics in Open Universe

Yi Wu ∗
Computer Science Division

UC Berkeley

Lei Li †
Baidu Research

Stuart Russell∗
Computer Science Division

UC Berkeley

Abstract

In recent years, several probabilistic programming languages (PPLs) have
emerged, such as Bayesian Logic (BLOG), Church, and Figaro. These languages
can be classified into two categories: PPLs interpreted using possible-world se-
mantics and ones using random-evaluation semantics. In this paper, we explic-
itly analyze the equivalence between these two semantics in the context of open-
universe probability models (OUPMs). We propose a novel dynamic memoization
technique to construct OUPMs using procedural instructions in random-evaluation
based PPLs. We implemented a translator named BFiT, which converts code in
BLOG (possible-world based) to Figaro (random-evaluation based). The trans-
lated program in Figaro exhibits a merely constant blowup factor in program size
while yielding the same inference results as the original model in BLOG.

1 Introduction

In possible-world semantics, a probabilistic program defines a probability measure over sets of pos-
sible worlds. Syntactic symbols in the program are interpreted as random variables which have
concrete values in each possible world. Languages such as Bayesian Logic (BLOG) [4] and Markov
Logic Network (MLN)[6] fall into this category. In this paper, we are interested in PPLs for gener-
ative models. Therefore we will illustrate our ideas using BLOG.

In contrast, a program in probabilistic programming languages such as Church [2] and Figaro [5]
defines a probability measure over execution traces or partial traces. The semantics of this category
is called random-evaluation semantics or random-execution semantics.

A related perspective is from the view of the taxonomy of domain specific languages (DSLs).

Independent versus embedded: PPLs adopting possible-world semantics are often implemented as
independent DSLs with their own syntax. While those with random-evaluation semantics are often
embedded in general-purpose programming languages: Church is embedded in Scheme; Figaro is
embedded in Scala.

Declarative versus procedural: Possible-world based PPLs are declarative. While random-
evaluation based PPLs are often procedural (corresponding to the execution traces).

In regard to expressiveness, PPLs have different capabilities of describing probabilistic models.
Open-universe probability model (OUPM) is one of the most powerful models, and proves to be
very useful for practical applications, such as Seismic monitoring [1]. OUPMs model uncertainties
not only in values of random variables, but also in the existence and identity of objects as well as the
relations between them. Two fundamental capabilities of OUPMs are the expressive power of (a)
context-specific dependency and (b) (possibly recursive) random number of objects. Syntactically,
∗{jxwuyi,russell}@cs.berkeley.edu
†lilei22@baidu.com

1



random Boolean X ~ BooleanDistr(0.5);
random Boolean Y ~
if X then BooleanDistr(0.9);
else BooleanDistr(0.1);

Figure 1: a simple example in BLOG

def X():Element[Boolean] = Flip(0.5);
def Y():Element[Boolean] =

If(X,Flip(0.9),Flip(0.1));

Figure 2: a simple example in Figaro

type Ball;
#Ball ~ Poisson(5);

Figure 3: an open-universe example in BLOG

class Ball;
val all_balls:Element[List[Ball]] =
MakeList(Poisson(5),()=>Select(1.0->new Ball));

Figure 4: an open-universe example in Figaro

the number of random variables in an OUPM is unbounded, and dependencies between them can be
even cyclic1.

So far, BLOG is the only PPL that can leverage the full expressive power of OUPMs. In this work,
we explore possible ways to translate a program describing OUPMs from BLOG to PPLs based on
random-evaluation semantics. As described above, random-evaluation based PPLs are inherently
procedural and embedded in general-purpose programming languages, referred as host languages.
Our translation task is essentially to preserve possible-world semantics through procedural instruc-
tions. Prior work has proposed memoization as a general technique to maintain possible-world
semantics in a procedural language [3]. However, straightforward memoization is inadequate for
translating programs modeling OUPMs, as embedded DSLs (e.g, Church, Figaro) are limited in
their internal handling of the number of random variables or objects in OUPMs. Translation typ-
ically must rely on a host language (e.g., Scala) to construct data structures for possible worlds,
maintain them, and map them to equivalent evaluation traces in the target PPL (e.g., Figaro).

This paper advances the field of PPL research with the following contributions. We propose a general
technique called dynamic memoization to construct programs mimicking possible-world semantics
in procedural PPLs based on random-evaluation semantics. We apply our technique to Figaro, and
develop a Blog-to-Figaro-Translator (BFiT) to automatically translate a model written in BLOG
to a Figaro program. The transformed program yields the same inference results while keeping a
provable constant blowup factor in program size.

This work shows some insights of the essential differences between PPLs adopting different seman-
tics and brings the theoretical idea [3] into practice. Furthermore, BFiT illustrates the possibility for
a PPL having very concise syntax to fully take the computational power of another PPL embedded
in a particular general-purpose programming language.

2 Overview of BLOG and Figaro

In this section, we present a brief tutorial on BLOG and Figaro.

In Figure 1 and 2, we demonstrate the programs modeling the same Bayesian network written in
BLOG and Figaro respectively. In this Bayesian network, there are two Boolean random variables
X and Y, where the probability of Y becoming true is depending on the value of X.

The syntax of BLOG dependency statement is consistent with ordinary mathematical notations —
references to the syntactically same symbol always correspond to the same random variable, there-
fore they have the same value in a concrete possible world. In Figaro, for each random variable, one
defines a Scala function using the key word def 2 with a special return type of Element[Boolean].
Element[] is a special template class in Scala provided by Figaro to represent a random variable
in the underlying Bayesian network. When an object of type Element[] is generated, a random
variable will be introduced to the underlying Bayesian network. Hence, whenever the function X or
Y in Figure 2 is evaluated, a new random variable will be generated correspondingly. Consequently
if we make a query of Y∨¬Y in the BLOG model in Figure 1, the answer is always true. By contrast,
if we evaluate the same formula using the program in Figure 2, the answer varies.

1 For concrete examples, please download BLOG and refer to the Hurricane model and PCFG model.
2One familiar with Figaro might point out that a more straightforward approach to define random variables

is to use the key word val. However, using val is not general enough to handle models with cyclic dependency
or unknown number of random variables. For concrete examples, please download BLOG and refer to the
Hurricane model and the SybilAttack model.

2

http://bayesianlogic.github.io/pages/download.html
http://bayesianlogic.github.io/pages/download.html


type Person, Login; #Person ~ Poisson(5);
random Boolean Honest(Person x) ~ BooleanDistrib(0.9);
origin Person Owner(Login);
#Login(Owner = x) ~ if Honest(x) then 1 else Geometric(0.8);
random Login sample ~ UniformChoice({l for Login l});
query Honest(Owner(sample));

Figure 5: Person-Login model in BLOG

We also demonstrate programs describing a simple open-universe probabilistic model written in
BLOG (Figure 3) and Figaro (Figure 4) respectively. In this model, there is a type Ball, and the
total number of balls obeys a Poisson distribution. In BLOG, the total number of balls, denoted by
#Ball, is treated as a random variable. We call this special way of defining a number variable a
Number Statement. The generation of all objects of type Ball will be handled automatically by the
back-end system of BLOG. However, in Figaro, we need to define a Scala class Ball to represent
the type and invoke a special Figaro function MakeList to generate a list, whose length obeys a
Poisson distribution, containing all the generated objects of Scala class Ball.

3 Case Study

In this section, we demonstrate a concrete model written in BLOG, namely the Person-Login
model3. Based on this model, we introduce the key idea of dynamic memoization in our Blog-
to-Figaro-Translator, BFiT.

The program describing the Person-Login model is shown in Figure 5. In this program, there are two
kinds of special statements on line 3 and line 4. The statement on line 3 defines an origin function.
This indicates that the existence of an object of type Login is depending on some particular object
of type Person, which is represented by the origin function Owner(·). The statement on line 4 is a
special variant of number statement. We call it a number statement with origin functions. It defines
the distribution of the total number of objects of type Login whose origin functions, Owner(·), refer
to the same object.

In the Person-Login model, there are two types, Person and Login. The number of different persons
obeys a Poisson distribution. For each person, there is a random variable Honest(·) indicating
whether this person is honest or not. An honest person will exactly have a single login while a
dishonest person might have multiple logins, whose total number obeys a Geometric distribution.
Finally, we would like to query the honesty of the owner of a randomly sampled login.

In the Person-Login model, the total number of different logins is contingent on the objects of type
Person and the associated random variables, Honest(·). Furthermore, the query requires access
to all the different logins to draw a sample from. For BLOG, the back-end system automatically
maintains all the generated objects, which makes it straightforward for a user to get access to some
particular set of generated objects. However, in order to describe this model in Figaro, we have to
explicitly design a data structure that could be used for both efficient object generation and storage.

Note that for each type in BLOG, we need to correspondingly define a Scala class with the same
name in Figaro to represent that type. There are two possible ways to dynamically memoize. One
idea here is that whenever an object of class Person is generated, we correspondingly generate all
the affiliated objects of Login and store them all together inside the class body of Person. When
required to get access to all the logins, we enumerate all the objects of person and then aggregate all
the affiliated logins stored inside the class body.

Another idea comes from the fact that the dependency between Person and Login is acyclic. So we
could firstly generate all the objects of Person and store them in a list. Afterwards, based on this
list, we could generate a new list containing all the objects of Login.

The first idea is more general and straightforward but requires a very expensive aggregation oper-
ation when accessing all the objects of some type. The second idea is more efficient but requires
acyclic dependency between types. For simplicity, BFiT adopts the second idea and does not handle
models with cyclic type dependency in the current version.

3This is a simplified version of SybilAttack model, which can be downloaded from BLOG’s website.

3

http://bayesianlogic.github.io/pages/download.html


Table 1: lines of code for 7 models in BLOG and the target code in Figaro
Model CSI Burglary Hurricane UrnBall Citation SybilAttack TugWar

LoC in BLOG 14 22 37 38 40 14 55
LoC in Figaro 71 87 168 126 178 83 278

4 Proposed Method

BFiT applies the following techniques for dynamic memoization.

Type and random function: For each type declaration or random function in BLOG, we define a
corresponding Scala class or Scala function with the same name in Figaro.

Moreover, for each function we define in Scala, we create a hash map used for memoization. Thus
when a function is re-evaluated with the same input arguments, it always refers to the same object
of type Element[], namely the same random variable defined in the underlying Bayesian network.

Number statement and object storage: For each type in BLOG, we also define a special random
variable in Figaro to represent the number statement, which is memoized as well. This random
variable will be defined before evaluating any random function related to the corresponding type.
Moreover, we use a List data structure in Scala to store all the objects for each type. The object
generation will be done at the same time as the definition of the special random variable representing
number statement.

Origin functions: For each origin function in the form of origin A func(C) in BLOG, we treat
func as a field of type A in the body of class C in Scala since for each object of C, it is associated
with a fixed parent, namely a particular object of type A.

Note that origin function introduces type dependency. A topological sort over the type dependency
will be performed by BFiT. Object generation and storage will be processed following the resulting
topological order.

In the current version of BFiT, we do not support number statement with multiple origin functions.

The target code of the Person-Login model translated by BFiT is shown in appendix.

5 Evaluation and Future work

Despite the fact that BFiT is a prototype solution, it is still general enough to translate many BLOG
models to Figaro correctly. We demonstrate the experiment result for 7 different BLOG models in
Table 1, where the lines of code of both the original model in BLOG and the translated program in
Figaro are presented.

From the empirical result, comparing with the original model in BLOG, the length of the program
produced by BFiT has a bounded growth. This observation can be further converted to the following
theorem.

Theorem 1. BFiT always produces a target code in Figaro from a BLOG model with a constant
blowup factor in program size.

The proof directly follows the details of the translation approach for every kind of statement in
BLOG.

Additionally, note that, in BFiT, we have carefully designed data structures in a general-purpose pro-
gramming language (i.e., Scala) to maintain all the necessary information for an inference algorithm
(i.e., all the objects and the memoized values for each random function). Our dynamic memoization
technique in BFiT can be extended to a general compiler that directly produces a computation-
specific program for fast inference in a canonical general-purpose programming language.

4



References

[1] N. Arora, S. Russell, P. Kidwell, and E. B. Sudderth. Global seismic monitoring as probabilistic
inference. In Advances in Neural Information Processing Systems, pages 73–81, 2010.

[2] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: A
language for generative models. In UAI, pages 220–229, 2008.

[3] D. McAllester, B. Milch, and N. D. Goodman. Random-world semantics and syntactic indepen-
dence for expressive languages. 2008.

[4] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov. Blog: Probabilistic
models with unknown objects. In IJCAI, pages 1352–1359, 2005.

[5] A. Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles River
Analytics Technical Report, page 137, 2009.

[6] M. Richardson and P. Domingos. Markov logic networks. Machine learning, 62(1-2):107–136,
2006.

Appendix

The target code of the Person-Login model translated by BFiT is shown in Figure 6. For conciseness,
we only show the code describing the model and ignore the part related to the inference algorithm.

var _MEMO_Honest = Map[(Person),Element[Boolean]]();
def B_Honest(x:Person):Element[Boolean]={
val _IV_tup = (x);
if (_MEMO_Honest.contains(_IV_tup)) return _MEMO_Honest(_IV_tup);
val _IV_ret = Flip(0.9);
_MEMO_Honest += _IV_tup -> _IV_0;
return _IV_ret;

}; // denote the random function Honest() in BLOG

class Person(__name:Symbol) {val _name=__name;}; // class for type Person
val B_N_Person = Poisson(5); // number variable of Person
val B_AI_Person = // list that store all the objects of Person
MakeList(B_N_Person,()=>Select(1.0->new Person(’Person_#)));

class Login(__name:Symbol,__ORIGIN_Owner:Person){
val _name=__name;
val Owner =__ORIGIN_Owner; // field for origin function

}; // class for type Login

class B_G_AI_Login(_Owner:Person){
val x = _Owner;
val _n = If(B_Honest(x),Constant(1),Geometric(0.8));
val _L = MakeList(_n,Select(1.0->new Login(’Login_#,x)));

};
def _F_group_Login(_L_0:List[Person]):List[B_G_AI_Login]={
var ret = new ListBuffer[B_G_AI_Login];
for(_l_0<-_L_0) ret+=new B_G_AI_Login(_l_0);
ret.toList

};
class B_AI_C_Login{
lazy val _A = Apply(B_AI_Person,_F_group_Login);
lazy val _total = Chain(_A,(_A:List[B_G_AI_Login])=>{
val _B = Inject(_A.map(_._L):_*);
Apply(_B,(_B:List[List[Login]])=>_B.flatten)

});
}; // data structures for object generation

lazy val B_AI_Login = // store all the logins
Chain(Select(1.0->new B_AI_C_Login),(b:B_AI_C_Login)=>b._total);

lazy val B_N_Login = // number variable of Login
Apply(B_AI_Login,(_L:List[Login])=>_L.length);

lazy val B_sample = // a randomly sampled login
Chain(B_AI_Login,(lst:List[Login])=>library.atomic.discrete.Uniform(lst:_*));

lazy val _QUERY_1 = Apply(Chain(B_sample,B_Honest), (x:Login)=>x.Owner); // query

Figure 6: translated target code for the Person-Login model

5


	Introduction
	Overview of BLOG and Figaro
	Case Study
	Proposed Method
	Evaluation and Future work

