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Abstract
State-of-the-art machine translation models are still
not on a par with human translators. Previous work
takes human interactions into the neural machine
translation process to obtain improved results in tar-
get languages. However, not all model-translation
errors are equal – some are critical while others are
minor. In the meanwhile, same translation mistakes
occur repeatedly in similar context. To solve both
issues, we propose CAMIT, a novel method for
translating in an interactive environment. Our pro-
posed method works with critical revision instruc-
tions, therefore allows human to correct arbitrary
words in model-translated sentences. In addition,
CAMIT learns from and softly memorizes revision
actions based on the context, alleviating the issue
of repeating mistakes. Experiments in both ideal
and real interactive translation settings demonstrate
that our proposed CAMIT enhances machine trans-
lation results significantly while requires fewer re-
vision instructions from human compared to previ-
ous methods.

1 Introduction
Recently, sequence-to-sequence models [Sutskever et al.,
2014; Cho et al., 2014] have gain superior performance in
machine translation [Bahdanau et al., 2014; Vaswani et al.,
2017]. Yet these state-of-the-art neural machine transla-
tion (NMT) models still fail to generation target sentences
with comparable quality as human translators.

To obtain high-quality translation, there are a few re-
cent works attempt to incorporate human revision instruc-
tions into the algorithmic translation process. For exam-
ple, previous interactive NMT [Sanchis-Trilles et al., 2014;
Álvaro Peris et al., 2016; Knowles and Koehn, 2016] pro-
poses to ask human to revise the translation output from the
beginning of a sentence to the end (i.e. from the left to right),
and regenerates the partial translation on the right side of the
revised token. We refer to these models as uni-directional
interactive models. The interactive steps can repeat multi-
ple times until a satisfactory sentence is obtained. In this
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(a) The previous uni-directional interactive NMT method could
fix the mistake of “trade”→ “free trade” automatically after re-
vising “to discuss”→ “ discuss”.
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(b) Our proposed CAMIT takes the most critical revision
“UNK” → “non-proliferation” and automatically fixes the rest
mistakes across the whole sentence.

Figure 1: Illustration of the previous and our proposed interactive
NMT methods. Words with bold and orange fonts are revised by hu-
man. Those with underlines and blue fonts are automatically fixed
by models. Note our proposed CAMIT only needs one revision
while the previous method requires two.

case, given human revisions for model-translation mistakes,
the process could potentially fix some minor mistakes auto-
matically, exploiting the base translation models’ ability to
save human efforts (See Figure 1a).

In this paper, we make a few observations about neural ma-
chine translation and note two issues in previous interactive
NMT approaches. First, the previous uni-directional interac-
tive NMT method could only possibly fix those errors to the
right of human-revised words. Cheng et al. [2016] show
that revising critical mistakes first could significantly reduces
the number of revisions. However, their intuition could not
be directly applied to current uni-directional NMT models,
because after revising critical mistakes, uni-directional inter-
active model cannot correct minor mistakes to the left of the



revision, even with advanced decoding algorithm [Hokamp
and Liu, 2017; Post and Vilar, 2018; Hasler et al., 2018].
Since the uni-directional interactive model only regenerates
the partial sentence to the right of revisions, instead of up-
dating the whole sentence. This leads to the constraint that
each human revision should be proposed at the left most er-
rors. Thus, human annotators have to revise these remaining
mistakes manually, which is not efficient enough.

Second, neural machine translation models often keep
making same mistakes with similar discourse and domain
context. Previous interactive NMT models rarely exploit the
revision history to avoid similar mistakes. Our basic intu-
ition is that previous sentences which have been corrected by
human may be of greatly help to the translation of follow-
ing sentences. Learning from past revisions could preventing
NMT models from making similar mistakes.

To address the above issues, we propose a correct-
and-memorize framework for interactive machine transla-
tion (CAMIT), a novel framework to perform efficient cor-
rections and then softly memorize those corrections for en-
hancing translation results 1.

First of all, CAMIT contains a improved decoder given
a sentence and one revised word. CAMIT performs the in-
teractive NMT from both ends of the sentence, updating the
whole sentence after getting a revision. Different from pre-
vious work about bi-directional decoder [Liu et al., 2016;
Mou et al., 2016; Liu et al., 2018], our method is designed
to take human revisions for interactive NMT. In such case,
human can revise the most critical mistake first in arbitrary
position of the sentence; and after that the model will up-
date the whole sentence, fixing minor mistakes automatically.
Thus the efficiency of interaction could be significantly im-
proved (Figure 1b).

Secondly, we propose to learn from and memorize inter-
active revisions to enhance the translation results. The revi-
sion history could be learned in the word level and the sen-
tence level, respectively. At the word level, we propose a
key-value memory mechanism [Weston et al., 2014] called
revision memory, to remember prior revisions in the interac-
tive process. At the sentence level, we use the online learn-
ing approach to fine-tune our base translation model on prior
revised sentences, adapting our model parameters to the spe-
cific discourse or domain. When translating a new sentence,
our model avoids generating similar mistakes in the past by
looking up the revision memory, which is especially helpful
to the translation of rare words.

Experiments show that our proposed CAMIT outperforms
the previous interactive methods in both ideal and real ma-
chine translation settings. Our method’s decoder obtains the
improvement of 17 BLEU points with merely two revisions
in the ideal and 8 BLEU points with 1.81 revisions in the real
environments, respectively. Using interaction history further
helps improve the interactive efficiency and translation qual-
ity.

1The code is at https://github.com/anonymity1111111/imt.
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Figure 2: The procedure of our proposed interactive model.

2 Background
Neural machine translation (NMT) is based on a standard
Seq2Seq model, which adopts an encoder-decoder architec-
ture for sentence modeling and generation [Sutskever et al.,
2014; Cho et al., 2014; Bahdanau et al., 2014; Vaswani et
al., 2017]. The encoder summarizes the source sentence into
an intermediate representation, and the decoder generates the
target sentence from left to right.

Formally, let x = {x1, · · · , xi, · · · } be a given input sen-
tence and y = {y1, · · · , yj , · · · } be the output sentence. The
encoder transforms the sentence to a sequence of annotations
H, with each hi being the annotation of input word xi.

Based on the source annotations, the decoder generates the
translation by predicting a target word yj at each time step j:

P (yj |y<j ,x) = softmax(g(sj)), (1)
where g is a non-linear activation function, and sj is the de-
coding state for time step j, computed by

sj =
−→
f (y<j , cj). (2)

Here
−→
f is a recurrent unit [Cho et al., 2014] or self-attention

network [Vaswani et al., 2017]. cj is a vector summarizing
relevant source information. It is computed by the attention
mechanism [Luong et al., 2015b; Vaswani et al., 2017].

cj = ATT(r,H), (3)

where the r is a state from last time step or previous layer
when the

−→
f is a recurrent unit or a self-attention network,

respectively.
In the training stage, y is the gold sentence provided by

training set. NMT models optimize the networks by maxi-
mizing the likelihood denoted by LL.

LL =
1

|y|

|y|∑
j=1

logP (yj |y<j , x). (4)

where |y| is the length of y and P (yj |y<j , x) is defined in
Equation 1.

3 The Proposed CAMIT
Practically, there may be multiple mistakes in the transla-
tion output. Prior work propose to incorporate human ef-
forts to boost the translation performance from left to right,



both in the statistical machine translation (SMT) [Barrachina
et al., 2009; González-Rubio et al., 2013] and the neu-
ral machine translation (NMT) [Knowles and Koehn, 2016;
Álvaro Peris et al., 2016; Wuebker et al., 2016]. However,
current interactive model is not efficient enough in both de-
coding and learning, as previously discussed.

In this section, we propose CAMIT, to improve the inter-
active efficiency in these two aspects. As shown in Figure
2, after each interaction from human, we propose a sequen-
tial bi-directional decoder for updating the whole sentence.
All revisions are written into a revision memory, and the base
Seq2Seq model will read from it latter for avoiding making
same mistakes. Additionally, previously revised sentence will
be learned by an online learning approach.

3.1 Preliminary
The interactive process always contains many sentences; and
each sentence may need to be revised for many times. One re-
vision is the process that human translator manually corrects
one mistake in a sentence.

Commonly, the revision can include several operations:
replacement, insertion and deletion. Following previous
work [Álvaro Peris et al., 2016; Knowles and Koehn, 2016;
Cheng et al., 2016], we focus on the replacement and oth-
ers can be implemented with several replacement operation.
For example, deletion could be converted to replace incorrect
words with spacing, and the insertion could be converted to
replace spacing with inserted words. Furthermore, we only
apply the word level revision in this paper, other types of re-
vision, such as phrase, subword, etc., can also be used in our
interactive model.

Because human may need to give multiple revisions to one
sentence, we refer to the multiple revisions for one sentence
as one round of interaction. Commonly, adjacent sentences
in the interactive process are related, and are usually in the
same discourse or domain. We model the interactive process
of many related sentences as one session. One session may
contain many rounds, which could be accomplished by one
or more human translators.

3.2 Sequential Bi-Directional Decoding
In the interactive process, let y = {y1, · · · , yj , · · · } be the
initial sequence of words, output by the base Seq2Seq model.
If human translator revises the word yj , the output is divided
into 2 parts:

{· · · , yj−2, yj−1︸ ︷︷ ︸
left

, yj , yj , yj+1, · · ·︸ ︷︷ ︸
right

}.

Uni-directional interactive model only updates the right part
[Álvaro Peris et al., 2016; Knowles and Koehn, 2016], ig-
noring potential mistakes in the left part, which means the
revised word should always be the left most error, otherwise
the errors in the left part will never be corrected.

We purpose a sequential bi-directional decoder for interac-
tive NMT, which can update both parts of the sentence. The
proposed model includes two decoders: a forward decoder
−→
f and a backward decoder

←−
f .
−→
f and

←−
f share the same

encoder, but working sequentially.

Formally, in the interactive process, the forward decoder
−→
f

first acts as the basic model to generate the basic translation:
y = {y1, · · · , yj , · · · }. Given a revision {yj → yrj}, i.e.

revising yj to yrj ,
−→
f then generates the new right part for the

translation, the same as in the uni-directional model. The new
decoding state s′j+1 for

−→
f at the position j + 1 is computed

as: −→s ′j+1 =
−→
f (yrj , c

′
j+1), (5)

and the new sentence is

{· · · , yj−2, yj−1, yrj , y′j+1, y
′
j+2, · · ·︸ ︷︷ ︸

new right

}.

Here words before yrj are kept the same, the probabilities of
words in the new right part is computed the same as in Equa-
tion 1.

Different from previous approaches, we then feed the in-
verted new right part {· · · , y′j+2, y

′
j+1, y

r
j} into

←−
f , obtaining

a new decoding state at the current revising position:

←−s ′j−1 =
←−
f (yrj , c

′
j−1). (6)

Then starting from s′j−1,
←−
f generates the new left part

{y′j−1, y′j−2, · · · } according to a reversed decoding probabil-
ity:

P (y′j−1|y′>j , y
r
j , x) = softmax(g(s′j−1). (7)

Finally, the output is

{· · · , y′j−2, y′j−1︸ ︷︷ ︸
new left

, yrj , y
′
j+1, y

′
j+2, · · ·︸ ︷︷ ︸

new right

}.

Note that, the length of the new left part may be not equal to
the original left part.

In this way, the whole sentence is updated jointly by the
two decoders. With the human revision, the new right part is
expected to be better than the right part. Based on this better
right part, the new left part is expected to become better as
well.

The training stage is similar with multi-task models [Dong
et al., 2015; Luong et al., 2015a], both decoders could be
trained using cross-entropy as the objective:

L = LL + LR, (8)

where LR is computed by:

LR =
1

|y|

|y|∑
j=1

logP (yj |y>j , x). (9)

The P (yj |y>j , x) andLL are defined in Equation 1 and Equa-
tion 4, respectively. |y| is the length of y.

We have shown how to update the sentence after a single
revision. However, another challenge for interactive NMT
happens when human translator performs several revisions in
one round, because the interactive process should regenerate
the translation with all the revisions considered.

To solve the problem, we propose to combine the grid
beam search [Hokamp and Liu, 2017] with our bi-directional
decoder. Intuitively, the grid beam search adopts a grid to



store the partial translations that containing the previous re-
visions. After the gird search, all previous revisions will be
included in the final translation output. We propose to per-
form the grid beam search twice in our bi-directional decod-
ing framework.
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Figure 3: The restricted bi-directional grid beam search.

Specifically, given a current revision yrk+1 and several pre-
vious revisions {yr1, yr2, yr3, yr4}, in which {yr1, yr3} are in the
right part of the current revision and {yr2, yr4} are in the left
part of the current revision, respectively. We will first per-
form the gird beam search starting from yrk+1 with the for-

ward decoder
−→
f , obtaining the new right part containing

previous revisions ({yr1, yr3}) right to yrk+1. Then given the
new right part, we will perform the grid beam search the
second time from right to left using the backward decoder
←−
f , obtaining the new right part containing previous revi-
sions ({yr2, yr4}) left to yrk+1. In such case, all previous revi-
sions ({yr2, yr4, yr1, yr3}) are included in the final output, keep-
ing their sequential order. Figure 3 gives an illustration of the
bi-directional grid search process.

3.3 Learning from Interaction History
The interaction history is very helpful to improve the effi-
ciency of interactive models. In this section, we propose
methods to learn from the interactive history by online learn-
ing and adopting revision memory.
Revision Memory. We first propose to exploit the interac-
tion history in the word level, using a key-value memory [We-
ston et al., 2014], referred to as the revision memory, to mem-
orize previously performed revisions of the session. This
makes sense because some specific rare words, e.g. mostly
out-of-vocabulary words (OOV), occur multiple times in a
discourse. The proposed mechanism can help avoid making
the same mistakes by memorizing and copying past revisions
of the current session.

Specifically, as shown in Figure 4, the revision memory
M = {(< s′1, c

′
1 >, y

r
1), · · · , (< s′T , c

′
T >, yrT )}

consists of many items, each of which has a key (revision con-
text) and a value (revised word). The revised word is used to
denote the revision itself. The revision context is used to de-
termine whether the memorized revision should be performed
again at the current decoding step. We define the revision
context to include two parts: the decoding state s′ (Equation
2) and the context vector c′ (Equation 3) of the past revi-
sion, which represent the revision context in aspects of the
language model and the translation model, respectively.

Every revision of the current session will be written into
the memory. When generating a word in decoding, the model
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··· ··· ···

yrt-1(downer)
yrt ( redford)

··· ··· ···

robert UNK
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s1  
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cj
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…
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Figure 4: Using revision memory in the decoding stage.

will read the revision memory, trying to automatically fix
mistakes with a copy mechanism [Gu et al., 2016]. The final
output distribution of word w is computed by distributions
from the decoder and from the revision memory:

Pj(w) = (1− θj) ∗ Pj(w) + θj ∗ rj(w), (10)

rj,t = softmax(W1|sj · s′t|+W2|cj · c′t|), (11)

where rj,t is the probability of copying word yrt in current
position j. It is calculated by the revision context < sj , cj >
of current decoding state and revision contexts of items in the
memory. θj is a weight computed at each decoding step:

θj = sigmoid(Wssj +Wccj), (12)

If the output word w is an unknown word (UNK), but has
been corrected by human, our method could successfully gen-
erate w in future translation by copying it from the revision
memory, which partially alleviate the problem of UNK. To
keep the translation process going, the embedding of UNK is
fed into the decoder, as the input for the next time step.
Online Learning. Adjacent sentences processed in one ses-
sion are highly related, because they are always in the same
discourse or domain. In this sense, former revised sentences
may greatly help the translation for the following sentences.
We use an online learning approach [Peris et al., 2017;
Peris and Casacuberta, 2018] to learn from previously cor-
rected sentences in the same session.

The process starts with the basic model trained on the par-
allel training data. At the beginning of each session, the basic
model is used for translation. The parameters of the basic
model is fine-tuned after each round to maximize the genera-
tion probability of the revised sentence at current round. For-
mally, every time we obtain a correct translation pair {x,y′}
after interaction, we update the whole translation model for
one step, according to Equation 4. By learning from the sen-
tence level interaction history, our Seq2Seq model better fits
sentences of current session. Especially for sessions contain-
ing large amounts of sentences, this continuous learning ap-
proach may significantly improve the interactive efficiency.

4 Experiment
4.1 Setup
Data-Set. We conduct experiments on standard Chinese-
English (ZH-EN) and English-Chinese (EN-ZH) translation
tasks. For both ZH-EN and EN-ZH, the training data con-
sists of about 1.6 million sentence pairs.2 We use NIST03

2includes LDC2002E18, LDC2003E14, LDC2004T08,
LDC2005T06



Model RN 03 04 05 Ave. ∆
RNNSearch − 37.27 37.25 33.64 35.45 −

UniDiR 1 39.35 39.01 37.22 38.12 +2.67
2 42.09 42.46 40.64 41.55 +6.10

UniDiRG
1 48.88 47.36 44.25 45.81 +10.36
2 52.58 51.95 47.47 49.71 +14.26

BiDiR 1 49.05 49.22 45.32 47.27 +11.82
2 53.19 53.70 49.71 51.71 +16.26

Table 1: The comparison of translation qualities between uni-
directional and CAMIT’s BiDiR decoder. Here RN is the revision
number.

RN 1 2 3 4
RNNSearch 35.45
BiDiR 47.27 51.71 55.84 59.91
Transformer 43.65
BiDiR 50.58 53.66 55.73 57.21

Table 2: Average BLEU score of our CAMIT’s bi-directional de-
coder after multiple interactions. RN: revision number.

as our validation set, and NIST04 and NIST05 as our test
sets. These sets have 919, 1597 and 1082 source sentences,
respectively, with 4 references for each sentence. In EN-ZH,
we use ref0 of each data set as source sentences. We extract
about 0.2 million sentence pairs3 in our training set, which re-
tains the discourse information for training parameters of the
revision memory. We also sample 100 sentences randomly
from test sets for the human evaluation.

Implementation Details. We test our proposed approach
on both of the RNNSearch [Bahdanau et al., 2014] and Trans-
former [Vaswani et al., 2017] baselines. We train the bi-
directional NMT model with the sentences of length up to
50 words. For the RNNSearch, vocabularies of both Chinese
and English includes the most frequent 30K words for both
Chinese and English. We map all out-of-vocabulary words to
the special token UNK. The dimension of word embedding is
512, and the size of hidden layers is 1024. We use the gradient
descent approach to update the parameters, with a batch size
of 80. The learning rate is controlled by Adam [Kingma and
Ba, 2014]. For the Transformer, we apply byte pair encoding
(BPE) [Sennrich et al., 2016] to all languages and limit the
vocabulary size to 32K. We set the dimension of input and
output of all layers as 512, and that of feed-forward layer to
2048. We employ 8 parallel attention heads. The number
of layers for the encoder and decoder are 6. Other settings
is same as Vaswani et al. [2017] . We use beam search for
heuristic decoding, and the beam size is set as 4.

We measure the translation quality with the IBM-BLEU
score [Papineni et al., 2002]. We implement our interactive
NMT model upon our in-house NMT system. The forward
and backward decoders of the bi-directional model are trained
together with a shared encoder. The learning rate of online
learning is 10−5. Following previous work [Tu et al., 2017],
we train the revision memory by randomly sampling words
and contexts in the same discourse. The size of revision mem-

3LDC2003E14

Model NIST04 NIST05 AVE. ∆
RNNSearch 37.25 33.64 35.45 −
+OL 40.62 37.38 39.00 +3.56
+RM 37.66 34.42 36.04 +0.59
CAMIT 41.13 37.95 39.54 +4.10
BiDiR 53.70 49.71 51.71 −
+OL 54.75 49.50 52.13 +0.42
+RM 53.96 49.97 51.97 +0.26
CAMIT 54.86 50.46 52.66 +0.95

Table 3: The performance gain from online learning (OL) and revi-
sion memory (RM). BiDiR is CAMIT without OL and RM.

Model BLEU #Revisions Costs

ZH-EN

RNNSeach 38.23 − −
UniDiRG 43.68 2.76 62.92
CAMIT-OL-RM 45.82 2.19 62.34
CAMIT 46.26 1.81 51.48

EN-ZH

RNNSearch 24.52 − −
UniDiRG 29.55 2.82 36.60
CAMIT-OL-RM 30.36 2.06 30.90
CAMIT 30.01 1.92 26.88

Table 4: Results on the real environment. #Revisions: the average
revision number. Costs: revising times, seconds per sentence. Note
our proposed CAMIT achieves the best results.

ory is 100 and it will be used when revision number is more
than 20. When the revision number is more than 100, the first
part will be discarded until revision number is less than 100.
Ideal and Real Interactive Environments. Following pre-
vious work [Cheng et al., 2016; Álvaro Peris et al., 2016;
Hokamp and Liu, 2017], we experiment on both the ideal and
real environments. Because real-world human interactions
are expensive and time-consuming to obtain, we first report
results on the ideal environment, which generates simulated
human interactions by identifying critical mistakes. The sim-
ulated critical mistake is those lead to the most significant
BLEU score improvement after being corrected.

We also validate the interactive efficiency on the real envi-
ronment, in which three human annotators are asked to revise
the translation, until obtaining correct translations. The three
human annotators are asked to work with all different interac-
tive systems with no idea of which system they are working
with.

4.2 Results on the Ideal Environment
We first evaluate CAMIT for ZH-EN on the ideal interactive
environment. Tan et al. [2017] demonstrate that two revi-
sions already can lead to very good translation outputs, which
is also verified in our experiments on the real interactive en-
vironment. We also report the results of our model after mul-
tiple interactions as a complement.
Sequential Bi-directional Decoding. First, we valid our
proposed bi-directional interactive model (BiDiR) in CAMIT
on the RNN based NMT model (RNNSearch). As
shown in Table 1, BiDiR significantly outperforms the uni-
directional (UniDiR) counterpart, obtaining more than 10 ab-
solute BLEU score improvements.



Model Number ∆
RNNSearch 2052 −
+RM 1723 -16.1 %

Table 5: UNK number after using the revision memory.

For fair comparison, we also report results of Hokamp
and Liu [2017] (UniDiRG), which works in a uni-directional
fashion, but using a grid beam search. This enables the uni-
directional decoder to revise the critical mistake first as in our
bi-directional decoder, but the generation process is also uni-
direction. The results for their model still fall behind ours in
performance, and the gap may increase on the real environ-
ment. Because mistakes left to the revision still exist, and
could not be fixed automatically. This harms their interactive
efficiency.

We also apply BiDiR decoder on Transformer with the
same setting of RNNSearch. By revision once, BiDiR
achieves an absolute BLEU improvement of 6.93, upon a
strong Transformer baseline (43.65 to 50.58), significantly
outperforming UniDiR (+2.04) and UniDiRG (+4.57). We
also compare RNNSearch and Transformer with our pro-
posed bidirectional decoder in Table 2. Results show that
although the baseline of Transformer is significantly bet-
ter than RNNSearch, both of them give pretty high BLEU
scores (around 60) after 4 revisions. RNNSearch even ob-
tains higher BLEU scores. For convenience, we will only
report results based on RNNSearch in followed experiments.

Learning from Interaction History. Table 3 shows that
our baseline RNNSearch model obtains a significant BLEU
score improvement of 4.1 on the ideal environment by learn-
ing from interaction history with both online learning (+OL)
and revision memory (+RM). Additionally, we find that incor-
porating history learning into BiDiR can still give about 1 ab-
solute BLEU score improvement (+0.95), which is achieved
on a very strong baseline with over 50 BLEU score points.
This experiment shows that learning from the interaction his-
tory is helpful to boost the translation performance. In such
case, human will take less revision number for obtaining sat-
isfactory translations.

4.3 Results on the Real Environment
We conduct experiments on the real environment for both
EN-ZH and ZH-EN on the RNNSearch based system. We
report the average results of 3 volunteers, who could revise
arbitrary times until they feel satisfied for the translation. For
better comparison, we include the results of Hokamp and
Liu [2017] in Table 4. Our proposed model CAMIT gives
8.03 and 5.49 BLEU score improvements on ZH-EN and EN-
ZH, respectively, with significantly4 lower revision numbers
than the uni-directional one, and taking less times.

We also compare the number of UNK in final translation
outputs, between adopting revision memory or not. Table
5 shows that, the revision memory helps relatively decrease
the UNK rates by 16.1%, reducing the number of UNK from
2052 to 1723. This indicates that the revision memory en-

4P-values are below 0.01 using pairwise t-test.

ables our model to remember the past revisions, which helps
avoid making same mistakes, e.g., UNK.

4.4 Case study
We list two real cases of the interactive translation from
UniDiRG [Hokamp and Liu, 2017] and our propsed model
in Table 6. The two cases are related, and the second case is
the next sentence of the first one in a discourse. For the first
one, the baseline NMT system makes several mistakes. Our
proposed bi-directional interactive model corrects these er-
rors by two revisions, while the uni-directional method takes
three revisions. After correcting the word “filmmakers”, our
bi-directional model automatically fixes the mistake of “inde-
pendent” left to the revision position while the uni-directional
model cannot do this.

The second case shows the translation output after using
online learning and revision memory, which could reduce the
revision number in practice. After using the first revised sen-
tence to tune the model by online training, and remember-
ing past revisions by the revision memory, our model have
more prior knowledge that the session is related to the topic
of movie. So the revised word “redford” and “filmmakers”
can be fixed automatically.

5 Conclusion
In this paper, we propose CAMIT, to improve the interactive
efficiency of NMT models in both decoding and learning as-
pects. For decoding, we propose an sequential bi-directional
decoder, updating the whole sentence after each revision. For
learning, we exploit the interaction history for the sentence
level and word level. Experiments show that our model sig-
nificantly improve the efficiency of interactive NMT.
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