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ABSTRACT

Multilingual machine translation aims to develop a single model for multiple
language directions. However, existing multilingual models based on Transformer
are limited in terms of both translation performance and inference speed. In
this paper, we propose switch-GLAT, a non-autoregressive multilingual machine
translation model with a code-switch decoder. It can generate contextual code-
switched translations for a given source sentence, and perform code-switch back-
translation, greatly boosting multilingual translation performance. In addition, its
inference is highly efficient thanks to its parallel decoder. Experiments show that
our proposed switch-GLAT outperform the multilingual Transformer with as much
as 1.16 BLEU improvement and 6.6x faster decoding speed in inference.

1 INTRODUCTION

Neural machine translation (NMT) is the current state-of-the-art approach (Bahdanau et al., 2014;
Sutskever et al., 2014) for machine translation in both academia (Bojar et al., 2017) and industry (Has-
san et al., 2018). Recent works (Firat et al., 2016; Johnson et al., 2017; Aharoni et al., 2019; Lin et al.,
2020) extend the approach to support multilingual translation, i.e. training a single model that can
translate across multiple language directions. Multilingual models are appealing for several reasons.
First, they can reduce the online translation service number, enabling simpler deployment (Arivazha-
gan et al., 2019) when plenty of translation directions are required. Additionally, multilingual training
makes it possible to transfer knowledge from high-resource languages to low-resource ones, thus
improving the translation quality of low-resource directions (Zoph et al., 2016; Johnson et al., 2017;
Wang & Neubig, 2019).

However, most multilingual NMT systems are built upon the autoregressive architecture, which
translates from left to right and thus is not efficient enough in terms of translation speed. Such
efficiency problem is more serious in multilingual setting because all translation directions suffer
from this slow inference speed.

A straightforward solution to improve the multilingual translation efficiency is to develop multi-
lingual non-autoregressive translation (NAT). NAT generates translation outputs in parallel (Gu
et al., 2018), which leads to significantly faster translation speed. Thanks to the recent progress of
NAT (Ghazvininejad et al., 2019; Gu et al., 2019; Deng & Rush, 2020), current state-of-the-art NAT
models have achieved comparable BLEU scores (Li et al., 2018; Wei et al., 2019; Qian et al., 2020)
with their auto-regressive counterparts. Among them, the glancing transformer (GLAT) proposed
by Qian et al. (2020) is a representative work, which even outperforms many strong autoregressive
translation systems in BLEU score on German-English translation task of WMT21 (Qian et al., 2021).

In this paper, we argue that multilingual NAT models is not only superior in efficiency, but also can
achieve better multilingual translation accuracy, due to its capability of generating high quality code-
switched translations (Lin et al., 2020; Yang et al., 2020; Jose et al., 2020). In particular, we propose
switch-GLAT, a carefully designed multilingual version of GLAT, which can outperform multilingual
Transformer in both speed and translation quality. Generally, the main idea of switch-GLAT is to
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Figure 1: The overall architecture of GLAT. The left half shows the training process of GLAT while
the right half details the glancing sampling strategy.

employ a code-switch decoder, which can generate contextual code-switched translations (instead
of using dictionary for replacement) for a given source sentence, and then perform code-switch
back-translation to boost the multilingual translation performance. In more details, the glancing
sampling module in GLAT enables switch-GLAT to generate partial translation based on others. Then
combined with its multilingual and non-autoregressive characteristics, switch-GLAT could output
code-switched translations with the employment of token-level language tags instead of sentence-
level ones in auto-regressive models. Ultimately, switch-GLAT can generate contextual translated
words at arbitrary positions of the target sentence in arbitrary languages. This greatly improves the
multilingual translation performance when we reverse the pairs of source to contextual code-switched
target sentences, for training in a back-translation fashion (so called code-switch back-translation).

We conduct extensive experiments on 3 merged translation datasets: WMT with four language pairs
(both close languages and distant ones) and WMT with 10 language pairs. switch-GLAT shows
consistent improvements over autoregressive multilingual baselines on all datasets, validating that
switch-GLAT can achieve better multilingual translation performance simultaneously with a faster
decoding speed. We further evaluated the cross-lingual representations through word induction and
sentence retrieval tasks. The results demonstrated the proposed code-switch back-translation benefits
better-aligned cross-lingual representations.

2 BACKGROUND

Multilingual Neural Machine Translation (MNMT) Given a source sentence X =
{x1, x2, ..., xM} with length M and its target sentence Y = {y1, y2, ..., yN} with length N , MNMT
leverages the standard bilingual neural machine translation models and extends the source and
target inputs respectively with a source and target language token src and tgt. This results in
X ′ = {src, x1, x2, ..., xM} and Y ′ = {tgt, y1, y2, ..., yN}.

MNMT is generally modeled from X ′ to Y ′ with Transformer (Vaswani et al., 2017). Transformer
consists of stacked encoder and decoder layers, which are jointly trained to maximize the conditional
probability of Y ′ given X ′:

P (Y ′|X ′) =
N∑
i=1

logP (yi|y<i, X
′, tgt; θ) (1)

where θ are the trainable model parameters.

Glancing Transformer prposed by Qian et al. (2020) is a NAT architecture which achieves top
results in machine translation with 8x ∼ 15x speedup. It performs two-pass decoding in training but
is still fully non-autoregressive in inference. In the first decoding pass, given the encoder Fe and
decoder Fd, H0

d = {h0
1, h

0
2, ..., h

0
N} is the decoder input either gathered from the encoder output

using soft copy (Wei et al., 2019) or full mask (Ghazvininejad et al., 2019), and then Y is predicted as:

Ŷ = Fd(H
0
d , Fe(X; θ); θ) (2)

where θ are the trainable model parameters. Then glancing transformer (GLAT) adopts glancing
sampling strategy to sample a subset of Y according to its distance with Ŷ , thus resulting in GS(Y, Ŷ ).
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Figure 2: The overall architecture of switch-GLAT. The left module shows that GLAT is extended
to a multilingual version with the token-level language tag, the middle one describes how the code-
switched sentence is produced through the code-switch decoder, and the right module introduces
the code-switch back-translation process, in which the generated code-switched target and its paired
source is swapped to enhance training.

Finally, GLAT predicts the target sequence Y based on this subset and source sentence X in the
second decoding pass as follows:

LGLAT = −
∑

yt∈GS(Y,Ŷ )

logP (yt|GS(Y, Ŷ ), X; θ) (3)

where H0
d is updated accordingly and GS(Y, Ŷ ) denotes the remaining subset of Y after removing

the sampled tokens. The overall architecture of GLAT is shown in Figure 1.

The twice decoding in training makes GLAT capable of predicting some partial translations based
on others. Then combined with multilingual and non-autoregressive characteristics, GLAT has the
potential to generate contextual code-switched outputs. In the next section, we will show how to
modify the GLAT architecture to achieve this.

3 PROPOSED METHOD: switch-GLAT

This section will detail the proposed switch-GLAT. The training objective can be factorized into two
parts. One aims to make the model have multilingual translation ability, and the other to achieve
better-aligned cross-lingual representations to boost translation performance, respectively denoted as
Lmulti and Lcsbt. The overall objective can be formulated as follows:

L = Lmulti + λ · Lcsbt (4)

where λ plays the role of a “temperature” to schedule the importance of code-switch back-translation.
As the training progresses, λ is gradually increased, which allows for more complex data instances to
be involved, i.e. code-switched translations incorporating more languages and higher switching ratios.
This process encourages model to align similar words from different languages into the same vector
space, thus boosting machine translation performance. The overall architecture is shown in Figure 2.

3.1 CODE-SWITCH DECODER

switch-GLAT leverages the general parallel decoder of GLAT and extends it into a code-switch
decoder by employing the token-level language tag. The code-switch decoder first gains multilingual
translation ability through multilingual training, and then it can generate code-switched translations
in arbitrary languages with the help of token-level language tag.

Specifically, given a multilingual corpora D = {Dl}Ll=1 consisting of L language pairs, the loss
Lmulti is then defined as:

Lmulti =
∑
Dl∈D

∑
(Xl

j ,Y
l
j )∈Dl

{Ltag(Y
l
j |Xl

j ; θM ) + Ll
len(j)}

Ll
len(j) = −P (Ll

j) log P̂ (Ll
j |[Fe(X

l
j ; θM );Esrc;Etgt]; θM )

(5)
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where Dl = {(X l
j , Y

l
j )}

Nl
j=1 is a parallel corpus with size Nl and Ll

len(j) is the length prediction loss
of the j-th pair. P (Ll

j) is the real length distribution of target sentence, and P̂ (Ll
j) is the predicted

one based on the concatenation of encoder output as well as source and target language embeddings.
θM are trainable model parameters. Ltag is the accordingly updated GLAT training loss (Equation 3)
incorporating the source and target language tags:

Ltag(Y
l
j |Xl

j ; θM ) = −
∑

yt∈GS(Y l
j ,Ŷ l

j )

logP (yt|GS(Y l
j , Ŷ

l
j ), X

l
j , src, tgt; θM )

Ŷ l
j = Fd(H̃

0
d , Fe(X

l
j , src; θ), tgt; θM )

(6)

To involve the indicative language tag, we add it to the first layer input and final layer output at each
position of both encoder and decoder as follows:

f̃0
i = f0

i + Esrc; f̃
K
i = fK

i + Esrc

h̃0
j = h0

j + Etgt; h̃
K
j = hK

j + Etgt

(7)

where f0
i denotes the first encoder layer input at position i and h0

j denotes the first decoder layer input
at position j. Correspondingly, fK

i and hK
j denote the last layer output. src and tgt are respectively

the source and target individual tags, while Esrc and Etgt are their corresponding representations.
The overall prediction process of pair (X l

j , Y
l
j ) is illustrated in the left module of Figure 2.

Through the multilingual training process, switch-GLAT can translate between different languages
using the indicative language tags, of which the decoder is called code-switch decoder. It has
the ability to generate contextual translated words in arbitrary languages due to its token-level
characteristics.

3.2 CODE-SWITCH BACK-TRANSLATION

Thanks to the code-switch decoder, we can perform code-switch back-translation (CSBT), which
is critical because it encourages model to align the produced words and the original ones into
the same vector space according to their similar context information. Better-aligned cross-lingual
representations benefit better translation performance.

Specifically, a subset DS = {(Xi, Yi, l
src
i , ltgti )}Si=1 of size S is first sampled, where lsrci and ltgti

are respectively source and target languages of i-th pair. Then, Yi is masked with a given rate PM ,
leading to Ỹi. Subsequently, the masked positions of Ỹi can be decoded into a third randomly sampled
language by leveraging the token-level language tag. Thus, the final decoded sequence Ŷi consists of
contextual tokens from mixed languages, which will in turn be taken as the source side input and the
original source sentence as the target side input. This process results in a code-switch back-translation
corpus DC = {(Ŷi, Xi)}Si=1, which is illustrated in the middle module of Figure 2.

The dynamically generated code-switch translations can augment data instance distribution to enhance
model training as illustrated in the right module of Figure 2. Loss Lcsbt is defined as:

Lcsbt =
∑

(Ŷi,Xi)∈DC

Ltag(Xi|Ŷi; θM ) (8)

As the training continues, the masked rate PM and number of mixed languages are gradually increased.
Specifically, the value of PM is iterated from 0.1 to 0.5 with step size 0.1 every 10 epochs. In the
first iteration of PM , the number of mixed languages is set to 1. Afterwards, it will be increased to
one-third of the total. Through this process, abundant code-switched sentences can be generated,
which helps to learn better-aligned cross-lingual representations.

3.3 SCHEDULED CODE-SWITCH TRAINING

The influence of multilingual training and code-switch back-translation is balanced by λ. As the
training progresses, λ is increased and more complicated data instances are involved, which means
that code-switch back-translation becomes more important. We use the step function to evolve the
value of λ:

λ(t) = f(t) + λ(0), f(t) =

{
0, t < E,

1, t ≥ E
(9)
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where λ(t) is the importance value at step t and E is a pre-defined changing point to incorporate
code-switched translations. λ(0) is the starting value and we set it to 0. As the training goes on, the
code-switch back-translation and model training are iterated, leading to well-aligned cross-lingual
representations and improved machine translation performance.

4 EXPERIMENTS

4.1 DATASETS

To better measure the effects of multilingualism at different levels, we test our proposed switch-GLAT
on the following three merged datasets: (1) WMT-EDF: We collect 4 language pairs from WMT-14
English (En) ↔ German (De) and English (En) ↔ French (Fr). All three languages belong to
Indo-European language family and are relatively close on linguistics. (2) WMT-EFZ: We also collect
4 language pairs from WMT-14 English (En) ↔ French (Fr) and WMT-17 English (En) ↔ Chinese
(Zh), which are distant languages on linguistics and their relationships are more difficult to learn. (3)
WMT-many: We also gather 10 language pairs from WMT-14 English (En) ↔ German (De), English
(En) ↔ French (Fr), WMT-16 English (En) ↔ Russian (Ru), English (En) ↔ Romanian (Ro) and
WMT-17 English (En) ↔ Chinese (Zh) to test switch-GLAT on more diverse language pairs.

4.2 BASELINE MODELS

We compare switch-GLAT against the following representative multilingual baselines: (1) M-
Transformer: We set a multilingual transformer baseline, which also uses token-level language tags
on both source and target sides. (2) CLSR: Zhang et al. (2021) present CLSR that learns to route
between language-specific or shared pathways from the data itself to obtain the sharing structure.
(3) Adapter: Bapna et al. (2019) propose to inject a lightweight adapter layer for each language in
MNMT to extract some language-specific features. We reimplement Adapter since its code is not
available currently. (4) MNAT: We also set a multilingual NAT baseline (Gu et al., 2018) modeled by
adding token-level language tags to the vanilla NAT. All model settings are the same as switch-GLAT.

Besides, we also report the performance of two typical bilingual models: (1) Transformer: We
use the code released by Vaswani et al. (2017) to implement Transformer. (2) GLAT: GLAT is the
backbone of our switch-GLAT and it achieves comparable results to Transformer.

To better analyze the influence of different components in our switch-GLAT, we also conduct
ablation tests as follows: (1) switch-GLAT-w/o-glancing: switch-GLAT removes glancing sampling
strategy in training. (2) switch-GLAT-w/o-CSBT: switch-GLAT is trained without code-switch
back-translation, which means the model is only trained on the golden parallel corpora. (3) switch-
GLAT-w/o-CCS: switch-GLAT constructs the code-switched data by simply replacing aligned words
using a bilingual dictionary instead of contextualized code-switching.

Models WMT-EDF WMT-EFZ

En-De De-En En-Fr Fr-En Avg Speed En-Fr Fr-En En-Zh Zh-En Avg

Bilingual models

Transformer 27.77 31.55 38.80 37.35 33.86 1.4× 38.80 37.35 23.60 24.05 30.95
GLAT 26.09 30.53 38.62 34.44 32.42 6.1× 38.62 34.44 21.05 22.89 29.25

Multilingual models

M-Transformer 26.21 31.61 38.45 35.77 33.01 1.0× 38.45 35.84 20.75 22.49 29.38
CLSR 23.83 31.83 39.10 35.29 32.48 0.9× 38.06 36.12 20.31 21.51 29.00
Adapter 22.40 29.94 41.18 36.11 32.41 0.9× 40.69 35.64 19.61 21.84 29.45
MNAT 14.27 22.73 24.99 26.12 22.02 6.4× 20.18 20.94 7.67 7.64 14.11
switch-GLAT 25.28 31.51 41.00 36.12 33.47 6.6× 41.79 37.33 19.35 23.69 30.54
– w/o glancing 18.20 24.13 26.67 30.23 24.81 6.3× 21.87 22.89 7.99 8.48 15.31
– w/o CSBT 24.71 29.84 37.14 34.61 31.75 6.4× 35.78 34.22 18.37 21.01 27.34
– w/o CCS 25.00 30.42 37.89 34.99 32.07 6.3× 36.66 34.46 18.47 21.56 27.79

Table 1: Translation performance (BLEU) on WMT-EDF/EFZ. Avg means the average BLEU score.
The models above dash line are autoregressive ones, while those below are non-autoregressive ones.
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Models WMT-many

En-De De-En En-Fr Fr-En En-Ro Ro-En En-Ru Ru-En En-Zh Zh-En Avg

Bilingual models

Transformer 27.77 31.55 38.80 37.35 33.01 33.59 28.22 29.89 23.60 24.05 30.78
GLAT 26.09 30.53 38.62 34.44 31.83 32.59 25.42 28.13 21.05 22.89 29.20

Multilingual models

M-Transformer 23.22 29.67 35.51 34.11 34.40 35.82 24.68 29.25 16.59 20.61 28.39
CLSR 21.89 30.23 34.67 33.38 30.95 35.80 19.05 30.96 16.32 20.60 27.39
Adapter 23.59 30.01 38.75 40.20 30.91 32.32 22.91 26.68 18.16 20.97 28.45
MNAT 8.52 14.59 12.68 20.11 13.12 21.77 7.67 16.00 4.72 6.04 12.52
switch-GLAT 24.22 31.04 39.11 36.10 32.18 32.85 24.03 28.21 16.70 21.52 28.60
– w/o glancing 7.29 16.91 11.54 21.16 14.03 23.95 7.62 18.86 7.07 6.89 13.53
– w/o CSBT 22.89 28.78 32.22 34.31 30.31 33.06 22.46 27.13 15.27 19.06 26.54
– w/o CCS 22.69 28.91 34.73 34.23 30.63 33.50 21.69 26.97 14.93 19.84 26.81

Table 2: Translation performance (BLEU) on WMT-many. Avg means the average score. The models
above dash line are autoregressive ones, while those below dash line are non-autoregressive ones.
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Figure 3: Inference speed evaluated on throughputs.

4.3 TRAINING AND INFERENCE DETAILS

We use 6 layers for encoder and parallel decoder. The model hidden size dmodel and feed-forward
hidden size dff are set to 512 and 2048 respectively. The number of attention head is set to 8. All
the datasets are tokenized and segmented into subword units using BPE encodings (Sennrich et al.,
2016). The vocabulary size is set to 85k for WMT-EDF and 95k for WMT-EFZ/many.

Following the previous works (Gu et al., 2018; Li et al., 2020; Ma et al., 2019), the sequence-level
knowledge distillation is used for all datasets, and the Transformer-base architecture (Vaswani et al.,
2017) is employed as the teacher model.

The changing point E is set to 300, 000 steps and sampling number S is set to 300, 000 for each
pair. The mini-batch size is set to 64k tokens and the maximum training step is 1, 200, 000. The
model is trained with 8 NVIDIA Tesla V100 GPU cards. We follow the default parameters of Adam
optimizer (Kingma & Ba, 2014) and learning rate schedule in Vaswani et al. (2017). Dropout
annealing strategy (Rennie et al., 2015) is applied to stable training and the initialized dropout rate
is set to 0.3. In training, data from different language pairs are sampled according to a multinomial
distribution rebalanced by a temperature of 0.3 (Conneau et al., 2019).

In inference, following Qian et al. (2020), switch-GLAT performs one-iteration parallel decoding.
Moreover, we also leverage the common practice of noise parallel decoding (Gu et al., 2018; Ma
et al., 2019) and the number of length reranking candidate is set to 5.

4.4 MAIN RESULTS

4.4.1 RESULTS ON WMT-EDF/EFZ

The left and right halves of Table 1 respectively show the results of WMT-EDF and WMT-EFZ.
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switch-GLAT outperforms all multilingual competitors on the average score in both settings.
Specifically, in WMT-EDF scenario, our model achieves the best average BLEU score of 33.47 among
all multilingual competitors, especially exceeding multilingual Transformer with a fairly significant
margin of 0.46 point. Moreover, it performs better than CLSR and Adapter with an improvements
of 0.99 and 1.06 points respectively. The same phenomena can be observed in WMT-EFZ scenario
where the language pairs are more distant on linguistics. Our interpretation is that switch-GLAT has
the ability to produce context-dependent code-switched translations with the code-switch decoder.
The augmented code-switched translations can help model align the generated tokens and the original
ones into the same vector space due to their similar context information, thus boosting machine
translation performance (Mikolov et al., 2013).

switch-GLAT can largely speed up decoding. In WMT-EDF scenario, the decoding speed tested
on Fr-En pair is reported in Table 1, which is evaluated in the throughput of each model (full speed
values are illustrated in Figure 3 (a) and Figure 3 (b)). Table 1 shows that the decoding speed of
switch-GLAT is 6.6 times faster than multilingual transformer. Additionally, Figure 3 (a) and (b) also
illustrate that the throughput of our model is significantly larger than multilingual transformer on all
directions. These validate that the switch-GLAT can greatly improve decoding efficiency thanks to
its parallel decoder. Note that the length predictor is jointly trained incorporating source and target
language embeddings, thus leading to different length preference in different models.

switch-GLAT performs better than GLAT on average. In both scenarios, switch-GLAT achieves
higher accuracy in 3 out of 4 directions than GLAT, especially X-to-En directions. These indicate
that multilingual training makes it possible to transfer knowledge so that performance of X-to-En
direction is enhanced due to the augmented data in English on the target side.

4.4.2 RESULTS ON WMT-MANY

Table 2 shows the results on the gathered WMT dataset from 10 language pairs.

switch-GLAT performs better than multilingual baselines in most cases. It is primarily because
switch-GLAT is able to produce diverse contextual code-switched translations, which encourage the
model to automatically align the generated word vectors and the original ones due to their similar
context information. Well-aligned representations are beneficial for improving machine translation
performance. Notably, Adapter performs much worse than multilingual Transformer on En-Ro and
En-Ru directions as the original paper interprets that Adapter do not perform well in low-resource
settings (the reverse directions are enhanced by the English data from other language pairs).

switch-GLAT performs slightly worse than GLAT. In this scenario, the failure of switch-GLAT
may be owing to the limitation of model capacity. However, switch-GLAT outperforms GLAT when
the model translates from a foreign language to English. One interpretation is that all the parallel
corpora including English on either source or target side can lead to a better parameter estimation of
the English decoder (Firat et al., 2016).

switch-GLAT can enlarge the power of efficient decoding. The decoding speed in this setting are
illustrated in Figure 3 (c), showing that the throughput of our model is much larger than multilingual
transformer on 10 directions. It demonstrates that switch-GLAT can enlarge the power of decoding
efficiency since all translation directions can be accelerated within a single model.

4.5 ABLATION STUDY

The last three lines in Table 1 and Table 2 show the results of ablation study.

Glancing sampling strategy plays an important role in switch-GLAT. After removing the glancing
sampling strategy, the performance drops the most. It validates that glancing sampling is critical
in training an advanced parallel multilingual translation model, which makes it suitable to generate
high-quality code-switched translations.

Code-switch back-translation promotes multilingual translation. Excluding code-switch back-
translation or employing code-switched data constructed by dictionary substitution both harms
translation performance, of which the former hurts more. It validates that applying code-switched
data can significantly increase multilingual translation performance, especially those generated by
incorporating context information instead of dictionary replacing.
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(a) Transformer (b) GLAT (c) M-Transformer (d) switch-GLAT

Figure 4: Representations learned by (a) Transformer (Vaswani et al., 2017), (b) GLAT (Qian et al.,
2020), (c) M-Transformer and (d) switch-GLAT, projected to 2D.

Models Word Induction Sentence Retrieval

En-De De-En En-Fr Fr-En Avg En-De De-En En-Fr Fr-En Avg

M-Transformer 30.5 31.4 33.9 37.6 33.4 19.0 22.7 21.1 24.0 21.7
CLSR 25.3 25.7 36.3 36.1 30.8 19.3 18.7 25.6 28.5 23.0
Adapter 32.5 34.3 39.7 41.3 36.9 33.5 29.8 27.5 35.0 31.4
MNAT 24.4 24.1 33.2 33.9 28.9 14.7 18.5 17.3 16.5 16.7
switch-GLAT 34.5 35.8 41.5 45.4 39.3 34.5 37.7 38.2 36.8 36.8
– w/o glancing 23.7 23.8 31.2 31.9 27.6 17.7 22.8 18.3 19.1 19.4
– w/o CSBT 28.2 29.3 32.3 36.1 31.5 18.3 21.4 19.3 20.8 19.9
– w/o CCS 28.4 29.3 32.4 36.3 31.6 17.4 22.9 20.0 20.2 20.1

Table 3: Results of quality analyses. Avg means the average accuracy.

5 ANALYSIS

In this section, we will make a rigorous analysis to reveal the reasons why our switch-GLAT can
achieve better translation performance than multilingual transformer. All tasks are tested in WMT-
EDF scenario.

5.1 VISUALIZATION

There is much smaller gap in the cross-lingual representations learned by our switch-GLAT. To
intuitively illustrate how well the cross-lingual representations are aligned, we plot a two-dimensional
projection of representations learned by four models in Figure 4. Here multilingual models are trained
on the merged WMT-EDF dataset, while bilingual ones on the English → German part. We use
the t-SNE algorithm (van der Maaten Laurens & Hinton, 2008) to perform the projection. English
and German words are gold word pairs from Open Multilingual WordNet (OMW) datasets (Bond &
Foster, 2013). English words are displayed in blue color and German words in red. We find there is
much more overlapping between blue and red areas in Figure 4 (d), validating that switch-GLAT can
produce better-aligned cross-lingual representations than other models.

5.2 CROSS-LINGUAL WORD INDUCTION

The cross-lingual representations are aligned well at word level. We assess the cross-lingual
word induction performance to see how well the similar words from different languages are close
to each other in the learned vector space (Gouws et al., 2015). Specifically, golden word pairs are
extracted from the OMW datasets (Bond & Foster, 2013), resulting in 10, 585 En-De and 12, 511 En-
Fr pairs. Top-1 accuracy is shown in the left half of Table 3. It shows that switch-GLAT significantly
outperforms all autoregressive multilingual competitors on average, indicating that cross-lingual
representations in our model are aligned well at word level.
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5.3 PARALLEL SENTENCE RETRIEVAL

The cross-lingual representations are aligned well at sentence level. To further assess the quality
of the cross-lingual representations at sentence level, we employ parallel sentence retrieval (PSR) task.
PSR aims to extract parallel sentences from a comparable corpus between two languages. Following
the settings of XTREME (Hu et al., 2020), we use the Tatoeba dataset (Artetxe & Schwenk, 2019).
Cosine similarity is leveraged to search the nearest neighbour and the search accuracy of each model
is reported in the right half of Table 3. It can be seen that switch-GLAT achieves the highest accuracy
among all competitors, validating that better contextualized embeddings are obtained in switch-GLAT
as the sentence embeddings are calculated with regarding all tokens in it.

6 RELATED WORK

6.1 MULTILINGUAL NEURAL MACHINE TRANSLATION

Early works extend the NMT model proposed by Bahdanau et al. (2014) to a multilingual version
based either on LSTM (Hochreiter & Schmidhuber, 1997) or GRU (Cho et al., 2014). Dong et al.
(2015) propose a one-to-many translation model (from English into 4 languages) by adding a dedicated
decoder per target language, showing improvements over strong single-pair baseline. Zoph & Knight
(2016) present a multi-source NMT which significantly outperforms a single-source model. Firat et al.
(2016) propose a many-to-many model involving 10 language pairs by leveraging separate encoder
and decoder per language as well as a sharing attention mechanism. Further, Ha et al. (2016) and
Johnson et al. (2017) propose to train a multilingual model with a shared encoder-decoder-attention
network across all languages to perform many-to-many translation. Recently, Transformer (Vaswani
et al., 2017) is applied as the backbone of MNMT by many works. The Multi-Distillation (Tan et al.,
2019) is trained to simultaneously fit the training data and match the outputs of individual bilingual
models through knowledge distillation. Bapna et al. (2019) present to inject a language-specific
adaptation layer into a pretrained model to keep the language-specific features. Aharoni et al. (2019)
propose a multilingual NMT model involving up to 102 languages which achieves good zero-shot
performance. All the above MNMT systems are based on autoregressive architectures which follow a
sequential generation process and are limited to slow decoding speed.

6.2 NON-AUTOREGRESSIVE NEURAL MACHINE TRANSLATION

Recently, NAT has attracted much attention due to its ability of parallel decoding. A fully non-
autoregressive model is first proposed by Gu et al. (2018), based on which latent variables are
introduced to deal with dependencies among target words (Ma et al., 2019; Bao et al., 2019; Ran et al.,
2021). Other branches of fully non-autoregressive systems either try to transfer knowledge from
autoregressive models (Li et al., 2018; Wei et al., 2019; Guo et al., 2020; Sun & Yang, 2020), or apply
different training objectives (Libovickỳ & Helcl, 2018; Shao et al., 2020; Ghazvininejad et al., 2020;
Qian et al., 2020). Besides, some works build NAT systems with structured prediction to model inter-
dependencies among output words. Sun et al. (2019) propose to incorporate a structured inference
module into the non-autoregressive models. Deng & Rush (2020) present a Markov transformer to
perform cascaded decoding. Additionally, serveral semi-autoregressive models are also constructed to
refine the outputs with multi-pass iterative decoding (Lee et al., 2018; Gu et al., 2019; Ghazvininejad
et al., 2019; Kasai et al., 2020). All these works are limited to bilingual translation tasks. To our best
knowledge, switch-GLAT is the first one to perform multilingual neural machine translation based on
a non-autoregressive architecture.

7 CONCLUSION

This paper proposes switch-GLAT, a non-autoregressive multilingual neural machine translation
model. It incorporates a switch-decoder, which can produce contextualized code-switched sentences
and perform code-switch back-translation. Through this process, the multilingual translation perfor-
mance and cross-lingual representations can both be improved. Besides, its parallel decoder enables
a highly efficient inference. Experiments on three datasets suggest that switch-GLAT is superior to
multilingual transformer in both effectiveness and efficiency. Further analyses also demonstrate the
effectiveness of the learned contextual cross-lingual representations.
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A APPENDIX

A.1 COMPARING WITH VANILLA BACK-TRANSLATION

We conduct ablation study of using vanilla back-translation (switch-GLAT-with-vanilla BT) in
Table 4. It shows that though the model using vanilla back-translation outperforms the one not
using any augmentation strategy (switch-GLAT-w/o-CSBT), it can be further improved by leveraging
code-switch back-translation, validating that our proposed code-switch back-translation is favorable.

Models WMT-EFZ

En-Fr Fr-En En-Zh Zh-En Avg

switch-GLAT 41.79 37.33 19.35 23.69 30.54
– with vanilla BT 39.39 36.63 19.21 22.37 29.30
– w/o CSBT 35.78 34.22 18.37 21.01 27.34

Table 4: Ablation study of using vanilla back-translation on WMT-EFZ.

A.2 APPLYING CSBT TO AUTOREGRESSIVE MODEL

We also apply our proposed code-switch back-translation (CSBT) to multilingual transformer, and
the results are shown in Table 5. It shows that CSBT also boosts the performance of multilingual
Transformer. Though M-Transformer-with-CSBT performs slightly better than our switch-GLAT, our
model could significantly improve inference efficiency.

Models WMT-many

En-De De-En En-Fr Fr-En En-Ro Ro-En En-Ru Ru-En En-Zh Zh-En Avg

M-Transformer 23.22 29.67 35.51 34.11 34.40 35.82 24.68 29.25 16.59 20.61 28.39
– with CSBT 24.52 29.96 37.34 34.93 34.65 35.72 25.02 29.17 17.82 20.30 28.94

switch-GLAT 24.22 31.04 39.11 36.10 32.18 32.85 24.03 28.21 16.70 21.52 28.60
– w/o CSBT 22.89 28.78 32.22 34.31 30.31 33.06 22.46 27.13 15.27 19.06 26.54

Table 5: Translation performance of applying code-switch back-translation to multilingual Trans-
former.

A.3 TRANSFER ABILITY

To validate that our model can improve the performance of low-resource languages, we train our
switch-GLAT on the subset of TED dataset that is merged from English (En)-Spanish (Es), English-
French (Fr) and English-Portuguese (Pt) pairs. En-Es and En-Fr pairs have about four times as
much data as En-Pt pair. The results are shown in Table 6. It can be seen that our switch-GLAT can
significantly improve the performance of low-resource languages with as much as 20.14 and 1.18
BLEU points respectively compared with GLAT and Transformer.

To further validate the zero-shot ability of our model, we evaluated it (trained on WMT-many) on the
test set of WMT 2019 German-French. Table 7 shows that the zero-shot ability of switch-GLAT and
multilingual Transformer are both poor, but applying self pivot to these two models can achieve good
performance.
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Models TED

En-Es Es-En En-Fr Fr-En En-Pt Pt-En Avg

Transformer 34.62 38.52 37.78 36.34 27.79 30.94 34.33
GLAT 34.87 37.89 36.64 36.58 10.08 11.98 28.00
switch-GLAT-w/o-CSBT 34.61 38.55 35.83 37.28 21.61 31.55 33.23
switch-GLAT 35.02 39.01 36.58 38.12 23.78 32.12 34.10

Table 6: Translation performance of TED subsets.

Models WMT-many

German-French French-German Avg

M-Transformer zero-shot 2.88 3.00 2.94
self pivot 30.74 22.27 26.48

switch-GLAT zero-shot 2.09 2.60 2.34
self pivot 28.03 19.85 23.94

Table 7: Zero-shot performance of our switch-GLAT. Self pivot on German-French denotes first
German to English and then English to French. So does French-German.

A.4 RESULTS WITH A BIG MODEL

As capacity is crucial for multilingual models, we conduct experiments to show how switch-GLAT
performance compares as model size grows. We adopt a standard Transformer-large architec-
ture (Vaswani et al., 2017), which employs 6-layer encoder, 6-layer decoder and 1024 dimension
on 16 heads. The results are shown in Table 8. It shows that in a multi-direction scenario, GLAT
performs better than switch-GLAT when trained on a base model, but increasing model size brings
opposite results, demonstrating that model capacity is quite critical for multilingual models.

A.5 APPENDED VISUALIZATION

We also visualize the representations learned by CLSR since it is also a representative multilingual
baseline. Again, we find there is much more overlapping between blue and red areas in Figure 5
(d), validating that switch-GLAT can produce better-aligned cross-lingual representations than other
models.

A.6 HYPER-PARAMETER SELECTION

We tune the training step of changing lambda (100000 to max steps with step size 100000), sample
number S (100000 to max data size with step size 200000) and initialized dropout rate (0.1 to 0.5

(a) Transformer (b) GLAT (c) CLSR (d) switch-GLAT

Figure 5: Representations learned by (a) Transformer, (b) GLAT, (c) CLSR and (d) switch-GLAT,
projected to 2D.
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Models WMT-many

En-De De-En En-Fr Fr-En En-Ro Ro-En En-Ru Ru-En En-Zh Zh-En Avg

Base models

GLAT 26.09 30.53 38.62 34.44 31.83 32.59 25.42 28.13 21.05 22.89 29.20
switch-GLAT 24.22 31.04 39.11 36.10 32.18 32.85 24.03 28.21 16.70 21.52 28.60

Large models

GLAT 26.55 31.18 39.15 35.53 31.70 31.55 27.01 29.40 19.50 21.61 29.32
switch-GLAT 25.83 31.59 42.62 36.17 33.56 34.57 25.24 29.89 18.55 21.12 29.91

Table 8: Results of different model size on WMT-many.

with step size 0.1)with grid search on the validation set of WMT-EDF, and found that the values
described in the paper performed best.

PM switch-GLAT switch-GLAT-w/o-CCS

0.0 The longest journey begins with the first step. The longest journey begins with the first step.
0.1 The longest voyage begins with the first step. The longest journey begins with the first étape.
0.3 Le plus long viaje begins with the first step. The longest journey empezar with the premier pisar.
0.5 Die längste Reise empieza con the first step. The höchste viajar empezar with das first step.

Table 9: Some examples of generated code-switched sentences respectively by our switch-GLAT
and dictionary replacement. French, Spanish and German are represented in red, purple and yellow
respectively.

A.7 CASE STUDY

To gain an insight on how well our model can generate code-switched sentences, we provide some
examples in Table 9. It shows that constructing code-switched sentences by dictionary replacement
may cause errors. For example, pisar is a verb while the original word step is a noun, and using a
verb here is not appropriate.
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