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Abstract

Neural networks with tree-based sentence en-
coders have shown better results on many
downstream tasks. Most of existing tree-based
encoders adopt syntactic parsing trees as the
explicit structure prior. To study the effec-
tiveness of different tree structures, we re-
place the parsing trees with trivial trees (i.e.,
binary balanced tree, left-branching tree and
right-branching tree) in the encoders. Though
trivial trees contain no syntactic information,
those encoders get competitive or even better
results on all of the ten downstream tasks we
investigated. This surprising result indicates
that explicit syntax guidance may not be the
main contributor to the superior performances
of tree-based neural sentence modeling. Fur-
ther analysis show that tree modeling gives
better results when crucial words are closer
to the final representation. Additional experi-
ments give more clues on how to design an ef-
fective tree-based encoder. Our code is open-
source and available at https://github.
com/ExplorerFreda/TreeEnc.

1 Introduction

Sentence modeling is a crucial problem in natural
language processing (NLP). Recurrent neural net-
works with long short term memory (Hochreiter
and Schmidhuber, 1997) or gated recurrent units
(Cho et al., 2014) are commonly used sentence
modeling approaches. These models embed sen-
tences into a vector space and the resulting vectors
can be used for classification or sequence genera-
tion in the downstream tasks.

In addition to the plain sequence of hidden
units, recent work on sequence modeling proposes
to impose tree structure in the encoder (Socher
et al., 2013; Tai et al., 2015; Zhu et al., 2015).
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These tree-based LSTMs introduce syntax tree as
an intuitive structure prior for sentence modeling.
They have already obtained promising results in
many NLP tasks, such as natural language infer-
ence (Bowman et al., 2016; Chen et al., 2017c) and
machine translation (Eriguchi et al., 2016; Chen
et al., 2017a,b; Zhou et al., 2017). Li et al. (2015)
empirically concludes that syntax tree-based sen-
tence modeling are effective for tasks requiring
relative long-term context features.

On the other hand, some works propose to
abandon the syntax tree but to adopt the latent
tree for sentence modeling (Choi et al., 2018;
Yogatama et al., 2017; Maillard et al., 2017;
Williams et al., 2018). Such latent trees are di-
rectly learned from the downstream task with re-
inforcement learning (Williams, 1992) or Gum-
bel Softmax (Jang et al., 2017; Maddison et al.,
2017). However, Williams et al. (2018) empiri-
cally show that, Gumbel softmax produces unsta-
ble latent trees with the same hyper-parameters
but different initializations, while reinforcement
learning (Williams et al., 2018) even tends to gen-
erate left-branching trees. Neither gives meaning-
ful latent trees in syntax, but each method still ob-
tains considerable improvements in performance.
This indicates that syntax may not be the main
contributor to the performance gains.

With the above observation, we bring up the fol-
lowing questions: What does matter in tree-based
sentence modeling? If tree structures are neces-
sary in encoding the sentences, what mostly con-
tributes to the improvement in downstream tasks?
We attempt to investigate the driving force of the
improvement by latent trees without syntax.

In this paper, we empirically study the effec-
tiveness of tree structures in sentence modeling.
We compare the performance of bi-LSTM and five
tree LSTM encoders with different tree layouts,
including the syntax tree, latent tree (from Gum-
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bel softmax) and three kinds of designed trivial
trees (binary balance tree, left-branching tree and
right-branching tree). Experiments are conducted
on 10 different tasks, which are grouped into three
categories, namely the single sentence classifica-
tion (5 tasks), sentence relation classification (2
tasks), and sentence generation (3 tasks). These
tasks depend on different granularities of features,
and the comparison among them can help us learn
more about the results. We repeat all the exper-
iments 5 times and take the average to avoid the
instability caused by random initialization of deep
learning models.

We get the following conclusions:
• Tree structures are helpful to sentence mod-

eling on classification tasks, especially for
tasks which need global (long-term) context
features, which is consistent with previous
findings (Li et al., 2015).
• Trivial trees outperform syntactic trees, indi-

cating that syntax may not be the main con-
tributor to the gains of tree encoding, at least
on the ten tasks we investigate.
• Further experiments shows that, given strong

priors, tree based methods give better results
when crucial words are closer to the final rep-
resentation. If structure priors are unavail-
able, balanced tree is a good choice, as it
makes the path distances between word and
sentence encoding to be roughly equal, and
in such case, tree encoding can learn the cru-
cial words itself more easily.

2 Experimental Framework

We show the applied encoder-classifier/decoder
framework for each group of tasks in Figure 1.
Our framework has two main components: the en-
coder part and the classifier/decoder part. In gen-
eral, models encode a sentence to a length-fixed
vector, and then applies the vector as the feature
for classification and generation.

We fix the structure of the classifier/decoder,
and propose to use five different types of tree
structures for the encoder part including:
• Parsing tree. We apply binary constituency

tree as the representative, which is widely
used in natural language inference (Bow-
man et al., 2016) and machine translation
(Eriguchi et al., 2016; Chen et al., 2017a).
Dependency parsing trees (Zhou et al., 2015,
2016a) are not considered in this paper.

LSTM/Tree LSTM

I  love my pet cat  .

<S>  I  love cats .

I  love cats .  </S>

(a) Encoder-decoder
framework for sentence
generation.

LSTM/Tree LSTM

I  love my pet cat   .

Softmax

Multi-Layer
Perceptron

(b) Encoder-classifier
framework for sentence
classification.

LSTM/Tree LSTM

I love my pet cat  .

LSTM/Tree LSTM

I love my pet dog  .

Multi-Layer
Perceptron

Softmax

(c) Siamese encoder-classifier framework for
sentence relation classification.

Figure 1: The encoder-classifier/decoder frame-
work for three different groups of tasks. We ap-
ply multi-layer perceptron (MLP) for classifica-
tion, and left-to-right decoders for generation in
all experiments.

• Binary balanced tree. To construct a binary
balanced tree, we recursively divide a group
of n leafs into two contiguous groups with
the size of dn2 e and bn2 c, until each group has
only one leaf node left.
• Gumbel trees, which are produced by

straight-forward Gumbel softmax models
(Choi et al., 2018). Note that Gumbel trees
are not stable to sentences (Williams et al.,
2018), and we only draw a sample among all
of them.
• Left-branching trees. We combine two

nodes from left to right, to construct a left-
branching tree, which is similar to those
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(b) Balanced tree.

I  love  my  pet  cat  .

(c) Gumbel tree.

I  love  my  pet  cat  .

(d) Left-branching tree.

I  love  my  pet  cat  .

(e) Right-branching tree.

Figure 2: Examples of different tree structures for the encoder part.

generated by the reinforce based RL-SPINN
model (Williams et al., 2018).
• Right-branching trees. In contrast to left-

branching ones, nodes are combined from
right to left to form a right-branching tree.

We show an intuitive view of the five types of tree
structures in Figure 2. In addition, existing works
(Choi et al., 2018; Williams et al., 2018) show
that using hidden states of bidirectional RNNs as
leaf node representations (bi-leaf-RNN) instead of
word embeddings may improve the performance
of tree LSTMs, as leaf RNNs help encode context
information more completely. Our framework also
support leaf RNNs for tree LSTMs.

3 Description of Investigated Tasks

We conduct experiments on 10 different tasks,
which are grouped into 3 categories, namely the
single sentence classification (5 tasks), sentence
relation classification (2 tasks), and sentence gen-
eration (3 tasks). Each of the tasks is compat-
ible to the encoder-classifier/decoder framework
shown in Figure 1. These tasks cover a wide range
of NLP applications, and depend on different gran-
ularities of features.

Note that the datasets may use articles or para-
graphs as instances, some of which consist of only
one sentence. For each dataset, we only pick the
subset of single-sentence instances for our experi-
ments, and the detailed meta-data is in Table 1.

3.1 Sentence Classification

First, we introduce four text classification datasets
from Zhang et al. (2015), including AG’s News,
Amazon Review Polarity , Amazon Review Full
and DBpedia. Additionally, noticing that parsing
tree was shown to be effective (Li et al., 2015) on
the task of word-level semantic relation classifi-
cation (Hendrickx et al., 2009), we also add this
dataset to our selections.

AG’s News (AGN). Each sample in this dataset
is an article, associated with a label indicating its
topic: world, sports, business or sci/tech.

Amazon Review Polarity (ARP). The Ama-
zon Review dataset is obtained from the Stanford
Network Analysis Project (SNAP; McAuley and
Leskovec, 2013). It collects a large amount of
product reviews as paragraphs, associated with a
star rate from 1 (most negative) to 5 (most posi-
tive). In this dataset, 3-star reviews are dropped,
while others are classified into two groups: posi-
tive (4 or 5 stars) and negative (1 or 2 stars).

Amazon Review Full (ARF). Similar to the
ARP dataset, the ARF dataset is also collected
from Amazon product reviews. Labels in this
dataset are integers from 1 to 5.

DBpedia. DBpedia is a crowd-sourced commu-
nity effort to extract structured information from
Wikipedia (Lehmann et al., 2015). Zhang et al.
(2015) select 14 non-overlapping classes from
DBpedia 2014 to construct this dataset. Each
sample is given by the title and abstract of the
Wikipedia article, associated with the class label.

Word-Level Semantic Relation (WSR)
SemEval-2010 Task 8 (Hendrickx et al., 2009) is
to find semantic relationships between pairs of
nominals. Each sample is given by a sentence,
of which two nominals are explicitly indicated,
associated with manually labeled semantic rela-
tion between the two nominals. For example, the
sentence “My [apartment]e1 has a pretty large
[kitchen]e2 .” has the label component-whole(e2,
e1). Different from retrieving the path between
two labels (Li et al., 2015; Socher et al., 2013), we
feed the entire sentence together with the nominal
indicators (i.e., tags of e1 and e2) as words to the
framework. We also ignore the order of e1 and e2
in the labels given by the dataset. Thus, this task
turns to be a 10-way classification one.

3.2 Sentence Relation Classification

To evaluate how well a model can capture seman-
tic relation between sentences, we introduce the
second group of tasks: sentence relation classifi-
cation.



Natural Language Inference (NLI). The Stan-
ford Natural Language Inference (SNLI) Corpus
(Bowman et al., 2015) is a challenging dataset
for sentence-level textual entailment. It has 550K
training sentence pairs, as well as 10K for devel-
opment and 10K for test. Each pair consists of two
relative sentences, associated with a label which is
one of entailment, contradiction and neutral.

Conjunction Prediction (Conj). Information
about the coherence relation between two sen-
tences is sometimes apparent in the text explicitly
(Miltsakaki et al., 2004): this is the case when-
ever the second sentence starts with a conjunction
phrase. Jernite et al. (2017) propose a method to
create conjunction prediction dataset from unla-
beled corpus. They create a list of phrases, which
can be classified into nine types, as conjunction in-
dicators. The object of this task is to recover the
conjunction type of given two sentences, which
can be used to evaluate how well a model captures
the semantic meaning of sentences. We apply the
method proposed by Jernite et al. (2017) on the
Wikipedia corpus to create our conj dataset.

3.3 Sentence Generation

We also include the sentence generation tasks in
our experiments, to investigate the representation
ability of different encoders over global (long-
term) context features. Note that our framework is
based on encoding, which is different from those
attention based approaches.

Paraphrasing (Para). Quora Question Pair
Dataset is a widely applied dataset to evaluate
paraphrasing models (Wang et al., 2017; Li et al.,
2017b). 1 In this work, we treat the paraphrasing
task as a sequence-to-sequence one, and evaluate
on it with our sentence generation framework.

Machine Translation (MT). Machine transla-
tion, especially cross-language-family machine
translation, is a complex task, which requires
models to capture the semantic meanings of sen-
tences well. We apply a large challenging English-
Chinese sentence translation task for this inves-
tigation, which is adopted by a variety of neural
translation work (Tu et al., 2016; Li et al., 2017a;
Chen et al., 2017a). We extract the parallel data

1https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

Dataset #Sentence #Cls Avg.
Train Dev Test Len

Sentence Classification

News 60K 6.7K 4.3K 4 31.5
ARP 128K 14K 16K 2 33.7
ARF 110K 12K 27K 5 33.8
DBpedia 106K 11K 15K 14 20.1
WSR 7.1K 891 2.7K 10 23.1

Sentence Relation

SNLI 550K 10K 10K 3 11.2
Conj 552K 10K 10K 9 23.3

Sentence Generation

Para 98K 2K 3K N/A 10.2
MT 1.2M 20K 80K N/A 34.1
AE 1.2M 20K 80K N/A 34.1

Table 1: Meta-data of the downstream tasks we
investigated. For each task, we list the quantity of
instances in train/dev/test set, the average length
(by words) of sentences (source sentence only for
generation task), as well as the number of classes
if applicable.

from the LDC corpora,2 selecting 1.2M from them
as our training set, 20K and 80K of them as our
development set and test set, respectively.

Auto-Encoding (AE). We extract the English
part of the machine translation dataset to form a
auto-encoding task, which is also compatible with
our encoder-decoder framework.

4 Experiments

In this section, we present our experimental re-
sults and analysis. Section 4.1 introduces our set-
up for all the experiments. Section 4.2 shows
the main results and analysis on ten downstream
tasks grouped into three classes, which can cover
a wide range of NLP applications. Regarding that
trivial tree based LSTMs perform the best among
all models, we draw two hypotheses, which are
i) right-branching tree benefits a lot from strong
structural priors; ii) balanced tree wins because
it fairly treats all words so that crucial informa-
tion could be more easily learned by the LSTM
gates automatically. We test the hypotheses in

2The corpora includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06
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Sentence Classification Sentence Relation Sentence Generation

Model AGN ARP ARF DBpedia WSR NLI Conj Para MT AE

Latent Trees

Gumbel 91.8 87.1 48.4 98.6 66.7 80.4 51.2 20.4 17.4 39.5
+bi-leaf-RNN 91.8 88.1 49.7 98.7 69.2 82.9 53.7 20.5 22.3 75.3

(Constituency) Parsing Trees

Parsing 91.9 87.5 49.4 98.8 66.6 81.3 52.4 19.9 19.1 44.3
+bi-leaf-RNN 92.0 88.0 49.6 98.8 68.6 82.8 53.4 20.4 22.2 72.9

Trivial Trees

Balanced 92.0 87.7 49.1 98.7 66.2 81.1 52.1 19.7 19.0 49.4
+bi-leaf-RNN 92.1 87.8 49.7 98.8 69.6 82.6 54.0 20.5 22.3 76.0

Left-branching 91.9 87.6 48.5 98.7 67.8 81.3 50.9 19.9 19.2 48.0
+bi-leaf-RNN 91.2 87.6 48.9 98.6 67.7 82.8 53.3 20.6 21.6 72.9

Right-branching 91.9 87.7 49.0 98.8 68.6 81.0 51.3 20.4 19.7 54.7
+bi-leaf-RNN 91.9 87.9 49.4 98.7 68.7 82.8 53.5 20.9 23.1 80.4

Linear Structures

LSTM 91.7 87.8 48.8 98.6 66.1 82.6 52.8 20.3 19.1 46.9
+bidirectional 91.7 87.8 49.2 98.7 67.4 82.8 53.3 20.2 21.3 67.0

Avg. Length 31.5 33.7 33.8 20.1 23.1 11.2 23.3 10.2 34.1 34.1

Table 2: Test results for different encoder architectures trained by a unified encoder-classifier/decoder
framework. We report accuracy (×100) for classification tasks, and BLEU score (Papineni et al., 2002;
word-level for English targets and char-level for Chinese targets) for generation tasks. Large is better for
both of the metrics. The best number(s) for each task are in bold. In addition, average sentence length
(in words) of each dataset is attached in the last row with underline.

Section 4.3. Finally, we compare the performance
of linear and tree LSTMs with three widely ap-
plied pooling mechanisms in Section 4.4.

4.1 Set-up

In experiments, we fix the structure of the clas-
sifier as a two-layer MLP with ReLU activation,
and the structure of decoder as GRU-based recur-
rent neural networks (Cho et al., 2014). 3 The
hidden-layer size of MLP is fixed to 1024, while
that of GRU is adapted from the size of sentence
encoding. We initialize the word embeddings with
300-dimensional GloVe (Pennington et al., 2014)
vectors.4 We apply 300-dimensional bidirectional
(600-dimensional in total) LSTM as leaf RNN
when necessary. We use Adam (Kingma and Ba,
2015) optimizer to train all the models, with the
learning rate of 1e-3 and batch size of 64. In the

3We observe that ReLU can significantly boost the perfor-
mance of Bi-LSTM on SNLI.

4http://nlp.stanford.edu/data/glove.
840B.300d.zip

training stage, we drop the samples with the length
of either source sentence or target sentence larger
than 64. We do not apply any regularization or
dropout term in all experiments except the task of
WSR, on which we tune dropout term with respect
to the development set. We generate the binary
parsing tree for the datasets without parsing trees
using ZPar (Zhang and Clark, 2011).5 More de-
tails are summarized in supplementary materials.

4.2 Main Results

In this subsection, we aim to compare the results
from different encoders. We do not include any
attention (Wang et al., 2016; Lin et al., 2017)
or pooling (Collobert and Weston, 2008; Socher
et al., 2011; Zhou et al., 2016b) mechanism here,
in order to avoid distractions and make the encoder
structure affects the most. We will further analyze
pooling mechanisms in Section 4.4.

Table 2 presents the performances of different
5https://www.sutd.edu.sg/cmsresource/

faculty/yuezhang/zpar.html
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encoders on a variety of downstream tasks, which
lead to the following observations:

Tree encoders are useful on some tasks. We
get the same conclusion with Li et al. (2015)
that tree-based encoders perform better on tasks
requiring long-term context features. Despit-
ing the linear structured left-branching and right-
branching tree encoders, we find that, tree-based
encoders generally perform better than Bi-LSTMs
on tasks of sentence relation and sentence genera-
tion, which may require relatively more long term
context features for obtaining better performances.
However, the improvements of tree encoders on
NLI and Para are relatively small, which may
be caused by that sentences of the two tasks are
shorter than others, and the tree encoder does not
get enough advantages to capture long-term con-
text in short sentences.

Trivial tree encoders outperform other en-
coders. Surprisingly, binary balanced tree en-
coder gets the best results on most tasks of clas-
sification and right-branching tree encoder tends
to be the best on sentence generation. Note that
binary balanced tree and right-branching tree are
only trivial tree structures, but outperform syntac-
tic tree and latent tree encoders. The latent tree
is really competitive on some tasks, as its struc-
ture is directly tuned by the corresponding tasks.
However, it only beats the binary balanced tree by
very small margins on NLI and ARP. We will give
analysis about this in Section 4.3.

Larger quantity of parameters is not the only
reason of the improvements. Table 2 shows
that tree encoders benefit a lot from adding leaf-
LSTM, which brings not only sentence level in-
formation to leaf nodes, but also more parame-
ters than the bi-LSTM encoder. However, left-
branching tree LSTM has a quite similar struc-
ture with linear LSTM, and it can be viewed as
a linear LSTM-on-LSTM structure. It has the
same amounts of parameters as other tree-based
encoders, but still falls behind the balance tree en-
coder on most of the tasks. This indicates that
larger quantity of parameters is at least not the
only reason for binary balance tree LSTM en-
coders to gain improvements against bi-LSTMs.

4.3 Why Trivial Trees Work Better?

Binary balanced tree and right-branching are triv-
ial ones, hardly containing syntax information. In

this section, we analyze why these trees achieve
high scores in deep.

4.3.1 Right Branching Tree Benefits from
Strong Structural Prior

We argue that right-branching trees benefit from
its strong structural prior. In sentence generation
tasks, models generate sentences from left to right,
which makes words in the left of the source sen-
tence more important (Sutskever et al., 2014). If
the encoder fails to memorize the left words, the
information about right words would not help due
to the error propagation. In right-branching trees,
left words of the sentence are closer to the final
representation, which makes the left words are
more easy to be memorized, and we call this struc-
ture prior. Oppositely, in the case of left-branching
trees, right words of the sentence are closer to the
representation.

To validate our hypothesis, we propose to vi-
sualize the Jacobian as word-level saliency (Shi
et al., 2018), which can be viewed as the contri-
bution of each word to the sentence encoding:

J(s,w) = ‖∇s(w)‖1 =
∑
i,j

| ∂si
∂wj
|

where s = (s1, s2, · · · , sp)T denotes the embed-
ding of a sentence, and w = (w1, w2, · · · , wq)T
denotes embedding of a word. We can compute
the saliency score using backward propagation.
For a word in a sentence, higher saliency score
means more contribution to sentence encoding.

We present the visualization in Figure 3 using
the visualization tool from Lin et al. (2017). It
shows that right-branching tree LSTM encoders
tend to look at the left part of the sentence, which
is very helpful to the final generation performance,
as left words are more crucial. Balanced trees also
have this feature and we think it is because balance
tree treats these words fairly, and crucial informa-
tion could be more easily learned by the LSTM
gates automatically.

However, bi-LSTM and left-branching tree
LSTM also pay much attention to words in the
right (especially the last two words), which maybe
caused by the short path from the right words to
the root representation, in the two corresponding
tree structures.

Additionally, Table 3 shows that models trained
with the same hyper-parameters but different ini-
tializations have strong agreement with each other.
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Figure 3: Saliency visualization of words in learned MT and AE models. Darker means more important
to the sentence encoding.

Model MT AE

Balanced (BiLRNN) 93.1 96.9
Left-Branching (BiLRNN) 94.2 95.4
Right-Branching (BiLRNN) 92.3 95.1
Bi-LSTM 96.4 96.1

Table 3: Mean average Pearson correlation
(×100) across five models trained with same
hyper-parameters. For each testing sentence, we
compute the saliency scores of words. Cross-
model Pearson correlation can show the agreement
of two models on one sentence, and average Pear-
son correlation is computed through all sentences.
We report mean average Pearson correlation of the
5× 4 model pairs.

Thus, “looking at the first words” is a stable be-
havior of balanced and right-branching tree LSTM
encoders in sentence generation tasks. So is “look-
ing at the first and the last words” for Bi-LSTMs
and left-branching tree LSTMs.

4.3.2 Binary Balanced Tree Benefits from
Shallowness

Compared to syntactic and latent trees, the only
advantage of balanced tree we can hypothesize is
that, it is shallower and more balanced than others.
Shallowness may lead to shorter path for informa-
tion propagation from leafs to the root representa-
tion, and makes the representation learning more
easy due to the reduction of errors in the propaga-
tion process. Balance makes the tree fairly treats
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Figure 4: ρ-depth and ρ-performance lines for
three tasks. There is a trend that the depth drops
and the performance raises with the growth of ρ.

all leaf nodes, which makes it more easily to au-
tomatically select the crucial information over all
words in a sentence.

To test our hypothesis, we conduct the follow-
ing experiments. We select three tasks, on which
binary balanced tree encoder wins Bi-LSTMs with
a large margin (WSR, MT and AE). We gener-
ate random binary trees for sentences, while con-
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Figure 5: Length-performance lines for the further investigated tasks. We divide test instances into
several groups by length, and report the performance on each group respectively. Sentences with length
in [1, 8] are put to the first group, and the group i(i ≥ 2) covers the range of [4i+ 1, 4i+ 4] in length. ]

trolling the depth using a hyper-parameter ρ. We
start by a group with all words (nodes) in the sen-
tence. At each time, we separate n nodes to two
continuous groups sized (dn2 e, b

n
2 c) with proba-

bility ρ, while those sized (n − 1, 1) with prob-
ability 1 − ρ. Trees generated with ρ = 0 are
exactly left-branching trees, and those generated
with ρ = 1 are binary balanced trees. The ex-
pected node depth of the tree turns smaller with ρ
varies from 0 to 1.

Figure 4 shows that, in general, trees with shal-
lower node depth have better performance on all
of the three tasks (for binary tree, shallower also
means more balanced), which validates our above
hypothesis that binary balanced tree gains the re-
ward from its shallow and balanced structures.

Additionally, Figure 5 demonstrates that bi-
nary balanced trees work especially better with
relative long sentences. As desired, on short-
sentence groups, the performance gap between
Bi-LSTM and binary balanced tree LSTM is not
obvious, while it grows with the test sentences
turning longer. This explains why tree-based en-
coder gives small improvements on NLI and Para,
because sentences on these two tasks are much
shorter than others.

4.4 Can Pooling Replace Tree Encoder?

Max pooling (Collobert and Weston, 2008; Zhao
et al., 2015), mean pooling (Conneau et al., 2017)
and self-attentive pooling (also known as self-
attention; Santos et al., 2016; Liu et al., 2016; Lin
et al., 2017) are three popular and efficient choices
to improve sentence encoding. In this part, we will
compare the performance of tree LSTMs and bi-
LSTM on the tasks of WSR, MT and AE, with
each pooling mechanism respectively, aiming to
demonstrate the role that pooling plays in sentence

I          love        cats            .
leaf states

hidden states

final encoding
𝑎1
𝑎2

𝑎3 𝑎6
𝑎5𝑎4

𝑎7

(a) Balanced tree.
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Figure 6: An illustration of the investigated self-
attentive pooling mechanism.

modeling, and validate whether tree encoders can
be replaced by pooling.

As shown in Figure 6, for linear LSTMs, we
apply pooling mechanism to all hidden states; as
for tree LSTMs, pooling is applied to all hidden
states and leaf states of tree LSTMs. Implementa-
tion details are summarized in the supplementary
materials.

Table 4 shows that max and attentive pooling
improve all the structures on the task of WSR, but
all the pooling mechanisms fail on MT and AE
that require the encoding to capture complete in-
formation of sentences, while pooling mechanism
may cause the loss of information through the pro-
cedure. The result indicates that, though pooling
mechanism is efficient on some tasks, it cannot
totally gain the advantages brought by tree struc-
tures. Additionally, we think the attention mech-



Model WSR MT AE

Bi-LSTM 67.4 21.3 67.0
+max-pooling 71.8 ↑ 21.6 ↑ 48.0 ↓

+mean-pooling 64.3 ↓ 21.8 ↑ 47.8 ↓
+self-attention 72.5 ↑ 21.2 ↓ 60.4 ↓

Parsing (BiLRNN) 68.6 22.2 72.9
+max-pooling 69.7 ↑ 21.8 ↓ 48.3 ↓

+mean-pooling 58.0 ↓ 21.2 ↓ 50.7 ↓
+self-attention 72.2 ↑ 21.5 ↓ 69.1↓

Balanced (BiLRNN) 69.6 22.3 76.0
+max-pooling 70.6 ↑ 21.6 ↓ 48.5 ↓

+mean-pooling 54.1 ↓ 21.3 ↓ 52.7 ↓
+self-attention 72.5 ↑ 21.6 ↓ 69.5 ↓

Left (BiLRNN) 67.7 21.6 72.9
+max-pooling 71.2 ↑ 20.5 ↓ 47.6 ↓

+mean-pooling 67.3 ↓ 21.4 ↓ 51.8 ↓
+self-attention 72.1 ↑ 21.6 – 70.2 ↓

Right (BiLRNN) 68.7 23.1 80.4
+max-pooling 71.6 ↑ 21.6 ↓ 48.4 ↓

+mean-pooling 67.2 ↓ 22.1 ↓ 53.9 ↓
+self-attention 72.4 ↑ 21.6 ↓ 68.9 ↓

Table 4: Performance of tree and linear-structured
encoders with or without pooling, on the selected
three tasks. We report accuracy (×100), char-level
BLEU for MT and word-level BLEU for AE. All
of the tree models have bidirectional leaf RNNs
(BiLRNN). The best number(s) for each task are
in bold. The top and down arrows indicate the
increment or decrement of each pooling mecha-
nism, against the baseline of pure tree based en-
coder with the same structure.

anism has the benefits of the balanced tree mod-
eling, which also fairly treat all words and learn
the crucial parts automatically. The path from rep-
resentation to words in attention are even shorter
than the balanced tree. Thus the fact that attentive
pooling outperforms balanced trees on WSR is not
surprising to us.

5 Discussions

Balanced tree for sentence modeling has been
explored by Munkhdalai and Yu (2017) and
Williams et al. (2018) in natural language infer-
ence (NLI). However, Munkhdalai and Yu (2017)
focus on designing inter-attention on trees, instead
of comparing balanced tree with other linguistic
trees in the same setting. Williams et al. (2018) do

compare balanced trees with latent trees, but bal-
anced tree does not outperform the latent one in
their experiments, which is consistent with ours.
We analyze it in Section 4.2 that sentences in NLI
are too short for the balanced tree to show the ad-
vantage.

Levy et al. (2018) argue that LSTM works
for the gates ability to compute an element-wise
weighted sum. In such case, tree LSTM can also
be regarded as a special case of attention, espe-
cially for the balanced-tree modeling, which also
automatically select the crucial information from
all word representation. Kim et al. (2017) pro-
pose a tree structured attention networks, which
combine the benefits of tree modeling and atten-
tion, and the tree structures in their model are also
learned instead of the syntax trees.

Although binary parsing trees do not produce
better numbers than trivial trees on many down-
stream tasks, it is still worth noting that we are
not claiming the useless of parsing trees, which
are intuitively reasonable for human language
understanding. A recent work (Blevins et al.,
2018) shows that RNN sentence encodings di-
rectly learned from downstream tasks can capture
implicit syntax information. Their interesting re-
sult may explain why explicit syntactic guidance
does not work for tree LSTMs. In summary, we
still believe in the potential of linguistic features to
improve neural sentence modeling, and we hope
our investigation could give some sense to after-
wards hypothetical exploring of designing more
effective tree-based encoders.

6 Conclusions

In this work, we propose to empirically investigate
what contributes mostly in the tree-based neural
sentence encoding. We find that trivial trees with-
out syntax surprisingly give better results, com-
pared to the syntax tree and the latent tree. Fur-
ther analysis indicates that the balanced tree gains
from its shallow and balance properties compared
to other trees, and right-branching tree benefits
from its strong structural prior under the setting
of left-to-right decoder.
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A Implementation Details

Our codebase is built on PyTorch 0.3.0.6 All the
sentences was tokenized with SpaCy.7

A.1 Sentence Encoding

We use LSTM based sentence encodings as the
extracted features of sentences for downstream
classification or generation tasks. We use typi-
cal long short term memory (LSTM; Hochreiter
and Schmidhuber, 1997) units for linear struc-
tures, which can be summarized as:

ft = σ(Wf · [ht−1,xt] + bf )

it = σ(Wi · [ht−1,xt] + bi)

c̃t = tanh(Wc · [ht−1,xt] + bc)

ot = σ(Wo · [ht−1,xt] + bo)

ct = ftct−1 + itc̃t

ht = ot tanh(ct)

where t indicates the time step of a state; ht is
the hidden state and xt is the input vector. We
apply binary tree LSTM units adapted from Zhu
et al. (2015) for binary tree LSTMs, which can be
summarized as:

fl = σ(Wl · [hl,hr] + bl)

fr = σ(Wr · [hl,hr] + br)

it = σ(Wi · [hl,hr] + bi)

c̃t = tanh(Wc · [hl,hr] + bc)

ot = σ(Wo · [ht−1,xt] + bo)

ct = flcl + frcr + itc̃t

ht = ot tanh(ct)

where the subscript t denotes the current state,
and l, r denote the left and right child states re-
spectively. We also apply LSTM (Hochreiter and
Schmidhuber, 1997) as leaf-node RNN when nec-
essary.

It is worth noting that left-branching tree LSTM
without leaf-node RNN is structurally equivalent
to unidirectional LSTM. The only difference be-
tween them, which may cause the slight difference
on performance, comes from the implementation
of LSTM units.

The candidate set of dropout ratio we explore
for the task of word-level semantic relation (WSR)
is {0, 0.1, 0.15, 0.2, 0.3, 0.5}.

6https://pytorch.org/docs/0.3.0
7https://spacy.io

A.2 Sentence Relation Classification
In the task of sentence relation classification, the
feature vector consists of the concatenation of
two sentence vectors, their difference, and their
element-wise product (Mou et al., 2016):

z =


s1

s2

s1 − s2

s1 � s2


A.3 Pooling Mechanism
Following (Socher et al., 2011), we apply pooling
mechanism to all leaf states (of tree LSTMs) and
hidden states. The detailed pooling methods are
described as follows.

Max Pooling. Max pooling takes the max value
for each dimension

H = (h1,h2, · · · ,hm)

si =
m

max
j=1

hj,i i = 1, 2, · · · , d

s = (s1, s2, · · · , sd)T

where hi denotes a leaf state in tree LSTMs or a
hidden state;m = 2n−1 for tree LSTMs andm =
n for linear LSTMs; s denotes the final sentence
encoding.

Mean Pooling. Mean pooling (average pooling)
takes the average of all hidden states as the sen-
tence representation, which can be summarized as:

H = (h1,h2, · · · ,hm)

s =
1

m

m∑
i=1

hi

Self-Attention. We follow Conneau et al. (2017)
and Lin et al. (2017) to build a self-attentive mech-
anism, which can be summarized as:

H = (h1,h2, · · · ,hm)
a = softmax(wT

β tanh(WαH))

s = HaT

where a denotes attention weights computed by
learned parameters Wα and wβ . In all experi-
ments, wβ is a 128-d vector.

https://pytorch.org/docs/0.3.0

