

CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling

Ning Miao^{1,2}, Hao Zhou¹, Lili Mou³, Rui Yan², Lei Li¹ ¹ByteDance, ²Peking University, ³AdeptMind Research

Outline

- Motivation and Constrained Sentence Generation
- Limitation of Existing Methods
- Overview of CGMH
- Experiments
 - Keyword to sentence
 - Paraphrasing
 - Sentence Error Correction
- Conclusion

Motivation: Design Advertisement Slogans

Keywords from Advertiser

Advertisement Slogan

Rin clothes bright

Problem Definition

- Generating sentence satisfying constraints:
- Hard constrains: Keyword must occur in sentences (e.g. keyword2sentence task)
 - E.g. Juice -> Brand natural juice, specially made for you
- Soft constrains: Semantically similar to a given sentence (e.g. paraphrase task)
 - E.g. The movie is great -> It is one of my favorite movies

Existing Approach: Grid Beam Search or RNN with Separate decoding

• LSTM with Grid beam search

LSTM with Separate Backward forward decoding: limited to one

keyword

- LSTM w/ sep-B/F, which generates independent backward and

forward sequences from the given word.

LSTM with Separate Backward forward decoding: limited to one

keyword

- LSTM w/ asyn-B/F, which **first generates the first half of a sentence and then generates another half** conditioned on the first half.

Formulation in Proposed CGMH

To generation samples (sentences) from the target distribution

$$\pi(x) = \prod_{t} P(x_t | x_{0:t-1}) \cdot \prod_{i} P_C^i(x)$$

language model probability

Indicator(0-1) function for constraints

Challenge

To generation samples (sentences) from the target distribution

$$\pi(x) = \prod_{t} P(x_t | x_{0:t-1}) \cdot \prod_{i} P_C^i(x)$$

language model probability

Indicator(0-1) function for constraints

π(x) is high-dimensional, and no direct sampling method.

Main Idea of CGMH

- Instead of sampling from $\pi(x)$ directly, generate samples iteratively:
 - Starting with initial keywords
 - next sentence based on modification of previous
 - action proposals to modify the sentences
- Metropolis-Hastings Algorithm

Background: Metropolis– Hastings_sampling_____

Metropolis-Hastings(MH) perform sampling by first proposes a transition, and then accepts or rejects the transition.

CGMH

CGMH performs constrained generation by:

- 1. Pretrain Language Model prob;
- 2. Start from a initial sentence x_0 ;
- 3. Propose a new sentence x_t from x_{t-1} , and accept/reject the action. Action proposal include:
 - I. Replacement: change a word to another one
 - II. Insertion: add a word
 - III. Deletion: remove a word

Step	Action	Acc/Rej	Sentences
------	--------	---------	-----------

Step	Action	Acc/Rej	Sentences
0	[Input]		BMW sports

Step	Action	Acc/Rej	Sentences
0	[Input]		BMW sports
1	Insert	Accept	BMW sports <mark>car</mark>

Step	Action	Acc/Rej	Sentences
0	[lnput]		BMW sports
1	Insert	Accept	BMW sports <mark>car</mark>
2	Insert	Accept	BMW the sports car

Step	Action	Acc/Rej	Sentences
0	[Input]		BMW sports
1	Insert	Accept	BMW sports <mark>car</mark>
2	Insert	Accept	BMW the sports car
•••			

Step	Action	Acc/Rej	Sentences
0	[lnput]		BMW sports
1	Insert	Accept	BMW sports <mark>car</mark>
2	Insert	Accept	BMW the sports car
•••			•••
6	Insert	Accept	BMW , the sports car of daily life

Step	Action	Acc/Rej	Sentences
0	[lnput]		BMW sports
1	Insert	Accept	BMW sports <mark>car</mark>
2	Insert	Accept	BMW the sports car
6	Insert	Accept	BMW , the sports car of daily life
7	Replace	Accept	BMW , the sports car of future life

Step	Action	Acc/Rej	Sentences	
0	[lnput]		BMW sports	
1	Insert	Accept	BMW sports <mark>car</mark>	
2	Insert	Accept	BMW the sports car	
			•••	
6	Insert	Accept	BMW , the sports car of daily life	
7	Replace	Accept	BMW , the sports car of future life	
8	Insert	Accept	BMW , the sports car of the future life	

Step	Action	Acc/Rej	Sentences	
0	[lnput]		BMW sports	
1	Insert	Accept	BMW sports <mark>car</mark>	
2	Insert	Accept	BMW the sports car	
	•••		•••	
6	Insert	Accept	BMW , the sports car of daily life	
7	Replace	Accept	BMW , the sports car of future life	
8	Insert	Accept	BMW , the sports car of the future life	
9	Delete	Reject	BMW , the sports car of the future life	

Step	Action	Acc/Rej	Sentences
0	[lnput]		BMW sports
1	Insert	Accept	BMW sports <mark>car</mark>
2	Insert	Accept	BMW the sports car
			•••
6	Insert	Accept	BMW , the sports car of daily life
7	Replace	Accept	BMW , the sports car of future life
8	Insert	Accept	BMW , the sports car of the future life
9	Delete	Reject	BMW , the sports car of the future life
10	Delete	Accept	BMW , the sports car of the future life

Step	Action	Acc/Rej	Sentences
0	[lnput]		BMW sports
1	Insert	Accept	BMW sports <mark>car</mark>
2	Insert	Accept	BMW the sports car
			•••
6	Insert	Accept	BMW , the sports car of daily life
7	Replace	Accept	BMW , the sports car of future life
8	Insert	Accept	BMW , the sports car of the future life
9	Delete	Reject	BMW , the sports car of the future life
10	Delete	Accept	BMW , the sports car of the future life
11	[Output]		BMW, the sports car of the future

Experiment

- Keywords to Sentence Generation (hard)
- Unsupervised Paraphrase Generation (soft)
- Sentence Correction (soft)

Experiment – Keywords to Sentence Generation

CGMH outperforms previous work in both NLL and human evaluations.

#keywords

Scores of human evaluation (\uparrow)

#keywords

Keyword-to-Sentence: Showcase

> Examples of CGMH and GBS.

Keyword(s)	Generated Sentences	GBS
friends	My good friends were in danger .	But friends and family have been arrested .
project	The first project of the scheme .	The project , which is expected to be completed next year
have, trip	But many people have never made the trip .	But the trip has be completed .
lottery, scholarships	But the lottery has provided scholarships.	The lottery is a scholarship .
decision, build, home	The decision is to build a new home.	The decision builds a house for home .
attempt, copy, painting, denounced	The first attempt to copy the painting was denounced.	But attempt to copy painting will be denounced.

Experiment – Paraphrase Generation

CGMH is the first unsupervised model to achieve comparable results with supervised models.

Experiment – Unsupervised Paraphrase Generation > CGMH is the first unsupervised model to achieve comparable

results with supervised models.

Examples

1,what 's the best plan to lose weight -> what 's the best way to slim down quickly

- 2. how should i control my emotion -> how do i control my anger
- 3. why do my dogs love to eat tuna fish -> why do my dogs like to eat raw tuna and raw fish

Experiment – Unsupervised Error Correction

- CGMH outperforms some of the supervised models trained on large parallel corpus.
- Dataset: JFLEG, 1501 sentences

Results of Sentence Correction

Experiment – Unsupervised Error Correction

CGMH outperforms some of the supervised models trained on large parallel corpus.

Erroneous sen1	Even if we are failed , we have to try to get a new things .
Reference sen1	Even if we all failed , we have to try to get new things .
Output sen1	Even if we are failing , we have to try to get some new things
Erroneous sen2	In the world oil price very high right now .
Reference sen2	In today 's world , oil prices are very high right now .

Conclusion

- CGMH is a Monte Carlo sentence generation algorithm capable of dealing with various constrained sentence generation.
- Method beyond DL such as Bayesian method still works
- Unsupervised method can achieve comparable performance to supervised methods in paraphrasing

Thanks!

- Contact: lileilab@bytedance.com
- Code is available at: https://github.com/NingMiao/CGMH

Reference

[1] Hokamp, C., and Liu, Q. 2017. Lexically constrained decoding for sequence generation using grid beam search. In *ACL*.

[2] Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S. 2017. Guided open vocabulary image captioning with constrained beam search. In EMNLP.

[3] Gupta, A.; Agarwal, A.; Singh, P.; and Rai, P. 2017. A deep generative framework for paraphrase generation. *arXiv preprint arXiv:1709.05074*.

[4] Mou, L.; Yan, R.; Li, G.; Zhang, L.; and Jin, Z. 2015. Backward and forward language modeling for constrained sentence generation. *arXiv preprint arXiv:1512.06612*.

[5] Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A.; Jozefowicz, R.; and Bengio, S. 2016. Generating sentences from a continuous space. In CoNLL.

[6] Li, Z.; Jiang, X.; Shang, L.; and Li, H. 2017. Paraphrase generation with deep reinforcement learning. *arXiv preprint arXiv:1711.00279*.

[7] Junczys-Dowmunt, M., and Grundkiewicz, R. 2016. Phrasebased machine translation is state-of-the-art for automatic grammatical error correction. *arXiv preprint arXiv:1605.06353*.

[8] Felice, M.; Yuan, Z.; Andersen, Ø. E.; Yannakoudakis, H.; and Kochmar, E. 2014. Grammatical error correction using hybrid systems and type filtering. In *CoNLL*.

[9] Napoles, C.; Sakaguchi, K.; Post, M.; and Tetreault, J. 2015. Ground truth for grammatical error correction metrics. In *ACL*.

Appendix – Properties of CGMH

- Property of CGMH:
 - 1. Detailed balance condition is satisfied;
 - 2. Sampling process is *irreducible* and *nonperiodic*.
 - 3. So *ergodicity* of sampling from π is satisfied.

Appendix – $P_C(x)$ for different tasks

For different tasks, we use different $P_C(x)$:

- Keywords2Sentence: $P_C(x) = 1_{\{x \text{ contains the keywords}\}}$
- Paraphrase: $P_C(x) = 1 / P_C^{KW}(x) / P_C^{KW}(x) P_C^{SIM}(x)$
- Correction: $P_C(x) = 1 / P_C^{WMA}(x)$

Appendix – Details of experiments

- Keywords to Sentence Generation (hard)
 - Aim: To generate fluent sentences containing the given set of words.
 - Dataset: A subset of One–Billion–Word Corpus (5M)
 - Initial sentence: Keywords.
- Unsupervised Paraphrase Generation (soft)
 - Aim: To generate sentences with similar meaning of the given one.
 - Dataset: Quora(140k pairs of paraphrase sentences)
 - Initial sentence: Original sentence.
- > Sentence Correction (soft)
 - Aim: To correct the errors in the given sentence.
 - Dataset: A subset of One–Billion–Word Corpus (5M, base language model) and JFLEG(1501 sentences, for test only)
 - Initial sentence: Erroneous sentence.