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ABSTRACT
Given multiple time sequences with missing values, we pro-
pose DynaMMo which summarizes, compresses, and finds
latent variables. The idea is to discover hidden variables and
learn their dynamics, making our algorithm able to function
even when there are missing values.

We performed experiments on both real and synthetic
datasets spanning several megabytes, including motion cap-
ture sequences and chlorine levels in drinking water. We
show that our proposed DynaMMo method (a) can suc-
cessfully learn the latent variables and their evolution; (b)
can provide high compression for little loss of reconstruction
accuracy; (c) can extract compact but powerful features for
segmentation, interpretation, and forecasting; (d) has com-
plexity linear on the duration of sequences.

Categories and Subject Descriptors: H.2.8 Database
applications: Data mining I.2.6 Artificial Intelligence: Learn-
ing - parameter learning

General Terms: Algorithms; Experimentation.

Keywords: Time Series; Missing Value; Bayesian Network;
Expectation Maximization (EM).

1. INTRODUCTION
Time series data are abundant in many application ar-

eas such as motion capture, sensor networks, weather fore-
casting, and financial market modeling. The major goal of
analyzing these time sequences is to identify hidden pat-
terns so as to forecast the future trends. There exist many
mathematical tools to model the evolutionary behavior of
time series (e.g. Linear Regression, Auto-Regression, and
AWSOM [15]). These methods generally assume completely
available data. However, missing observations are hardly
rare in many real applications, thus it remains a big chal-
lenge to model time series in the presence of missing data.

We propose a method to handle the challenge, with occlu-
sion in motion capture as our driving application. However,
as shown in the experiments, our method is capable of han-
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Figure 1: Reconstruction for a jump motion with
322 frames in 93 dimensions of bone coordinates.
Blue line: the original signal for root bone z-
coordinate - the dash portion indicates occlusion
from frame 100 to 200. The proposed DynaMMo,
in red, gets very close to the original, outperforming
all competitors.

dling missing values in diverse settings: sensor data, chlorine
levels in drinking water system, and other similar coevolving
sequences.

Motion capture is a technique to produce realistic mo-
tion animation. Typical motion capture system use cameras
to track passive markers on human actors. However, even
when multiple cameras are used, some markers may be out
of view – especially in complex motions like handshaking or
modern dance. Handling occlusions is currently a manual
process, taking hours/days for human experts to fill in the
gaps. Figure 2 illustrates a case of motion-capture data,
with occlusions: A dark cell at row j, and column t denotes
a missing value, for that specific time (t-th frame/column)
and for that specific joint-angle (j-th row).

The focus of our work is to handle occlusions automati-
cally. Straightforward methods like linear interpolation and
spline interpolation give poor results (see Section 4). Ideally
we would like a method with the following properties:

1. Effective: It should give good results, both with re-
spect to reconstruction error, but primarily agreeing
with human intuition.

2. Scalable: The computation time of the method should
grow slowly with the input and the time-duration T

of the motion-capture. Ideally, it should be O(T ) or
O(T log(T )), but below (T 2).

3. Black-outs: It should be able to handle “black-outs”,
when all markers disappear (e.g., a person running be-
hind a wall, for a moment).

In this paper, we propose DynaMMo, an automatic method



Figure 2: Occlusion in handshake motion. 66 joint
angles (rows), for ≈ 200 frames. Dark color indi-
cates a missing value due to occlusion. Notice that
occlusions are clustered.

to learn the hidden pattern and handle missing values. Fig-
ure 1 shows the reconstructed signal for an occluded jumping
motion. Our DynaMMo gives the best result close to the
original value. Our main idea is to simultaneously exploit
smoothness and correlation. Smoothness is what splines and
linear interpolation exploit: for a single time-sequence (say,
the left-elbow x-value over time), we expect successive en-
tries to have nearby values (xn ≈ xn+1). Correlation reflects
the fact that sequences are not independent; for a given mo-
tion (say, “walking”), the left-elbow and the right-elbow are
correlated, lagging each other by half a period. Thus, when
we are missing xn, say, the left elbow at time-tick n, we can
reconstruct it by examining the corresponding values of the
right elbow (say, yn−1, yn, yn+1). This two-prong approach
can help us handle even“black-outs”, which we define as time
intervals where we lose track of all the time-sequences.

The main contribution of our approach is that it shows
how to exploit both sources of redundancy (smoothness and
correlation) in a principled way. Specifically, we show how
to set up the problem as a Dynamic Bayesian Network and
solve it efficiently, yielding results with the best reconstruc-
tion error and agreeing with human intuition. Furthermore,
we propose several variants based on DynaMMo for ad-
ditional time series mining tasks such as forecasting, com-
pressing, and segmentation.

The rest of the paper is organized as follows: In Section 2,
we review the related work; the proposed method and its
discussion are presented in Section 3; the experimental re-
sults are presented in Section 4. Section 5 discusses addi-
tional benefits of our method: interpretation, compression
and segmentation. Finally, Section 6 concludes the paper.

2. RELATED WORK
Interpolation methods, such as linear interpolation and

splines, are commonly used to handle missing values in time
series. Both linear interpolation and splines estimate the
missing values based on continuity in a single sequence.
While these methods are generally effective for short gaps,
they ignore the correlations among multiple dimensions.

Singular Value Decomposition (SVD) and Principal Com-
ponent Analysis (PCA) [20] are powerful tools to discover
linear correlations across multiple sequences, with which it
is possible to recover missing values in one sequence based
on observations from others. Srebro and Jaakkola [18] have
proposed an EM approach (MSVD) to factor the data into
low rank matrices and approximate missing value from them.
We will describe MSVD in appendix, and we show that it
is a special case of our model. Brand [1] further develop
an incremental algorithm to fast compute the singular de-

composition with missing values. Similar to the missing
value SVD approach, Liu and McMillan [13] have proposed
a method that projects motion capture markers positions
into linear principal components and reconstructs the miss-
ing parts from the linear models. Furthermore, they pro-
posed an enhanced Local Linear method from a mixture of
such linear models. Park and Hodgins [16] have also used
PCA to estimate the missing markers for skin deformation
capturing. In another direction, Yi et al [21] have proposed
a online regression model over time across multiple dimen-
sion that is in extension to Autoregression (AR), thus could
handle missing values.

There are several methods specifically for modeling mo-
tion capture data. Herda et al [5] have used a human body
skeleton to track and reconstruct the 3-d marker positions.
If a marker is missing, it could predict the position using
three previous markers by calculating the kinetics. Hsu et
al [6] have proposed a method to map from a motion control
specification to a target motion by searching over patterns
in existing database. Chai and Hodgins [2] uses a small set
of markers as control signals and reconstruct the full body
motion from a pre-recorded database. The subset of mark-
ers should be known in advance, while our method does
not assume fixed subsets observed or missing. As an alter-
native non-parametric approach, Lawrence and Moore [9]
model the human motion using hierarchical Gaussian pro-
cesses. [13] provides a nice summary of related work on
occlusion for motion capture data as well as of techniques
for related tasks such as motion tracking.

There are many related work in time series representa-
tion [14, 12, 17], indexing [8], classification [3, 19] and out-
lier detection [10]. Mehta et al [14] proposed a represen-
tation method for time varying data based on motion and
shape information including linear velocity and angular ve-
locity. With this representation, they track the tangible fea-
tures to segment the sequence trajectory. Symbolic aggre-
gate approximation (SAX) [12] is a symbolic representation
for time series data, and later generalized for massive time
series indexing (iSAX) [17]. Keogh et al use uniform scaling
when indexing a large human motion database [8]. Lee et
al [10] proposed the TRAOD algorithm to identify outliers
in a trajectory database. In their approach, they first parti-
tion the trajectories into small segments and then use both
distance and density to detect abnormal sub-trajectories.
Gao et al [3] proposed an ensemble model to classify the
data streams with skewed class distributions and concept
drifts. Their approach is to undersample the dominating
class, oversample or repeat the rare class and then partition
the data set and perform individual training. The trained
models are then combined evenly into the resulting classifi-
cation function. However, none of these methods can handle
missing values.

Our method is also related to Kalman Filters and other
adaptive filters conventionally used in tracking system. Jain
et al [7] have adapted Kalman Filters for reducing commu-
nication cost in data stream. Tao et al [19] have proposed
a recursive filter to predict and index moving objects. Li et
al [11] used Kalman filter to stitch motions in a natural way.
While our method includes Kalman Filter as a special case,
DynaMMo can effectively cope with missing values.

3. PROPOSED METHOD: DYNAMMO
Given a partially observed multi-dimensional sequence, we



Table 1: Symbols and Definitions

Symbol Definition

X a multi-dimensional sequence of observa-
tions with missing values (x1, ...xT)

Xg the observed values in the sequence X
Xm variables for the missing values in the se-

quence X
m dimension of X
T duration of X
W missing value indication matrix with the

same duration and dimension of X
Z a sequence of latent variables (z1, . . . zT)
H dimension of latent variables (z1 · · · zT)

propose DynaMMo, to identify hidden variables, to mine
their dynamics, and to recover missing values. Our moti-
vation comes from noticing two common properties of time
series data: temporal continuity and spatial correlation. On
one hand, by exploiting continuity as many interpolation
methods do, we expect that missing values are close to ob-
servations in neighboring time ticks and follow their moving
trends. On the other hand, by using the correlation be-
tween difference sequences as SVD does, missing values can
be inferred from other observation sources. Our proposed
approach makes use of both, to better capture patterns in
coevolving sequences.

3.1 The Model
We will first define the problem of time series missing

value recovery, and then present our proposed DynaMMo.
Table 1 explains the symbols and annotations.

Definition 1. Given a time sequence X with duration T
in m dimensions, X = {x1, . . . ,xT}, to recover the missing
part of the observations indicated by W. wt,k = 0 whenever
X ’s k-th dimensional observation is missing at time t, and
otherwise wt,k = 1.Let us denote the observed part as Xg,
and the missing part as Xm.

We build a probabilistic model (Figure 3) to estimate the
expectation of missing values conditioned on the observed
parts, E[Xm|Xg]. We use a sequence of latent variables (hid-
den states), zn, to model the dynamics and hidden patterns
of the observation sequence. Like SVD, we assume a linear
projection matrix G from the latent variables to the data se-
quence (both observed and missing) for each time tick. This
mapping automatically captures the correlation between the
observation dimensions; thus, if some of the dimensions are
missing, they can be inferred from the latent variables. For
example, the states could correspond to degrees of freedom,
the velocities, and the accelerations in human motion cap-
ture data (although we let DynaMMo determine them, au-
tomatically); while the observed marker positions could be
calculated from these hidden states.To model temporal con-
tinuity, we assume the latent variables are time dependent
with the values determined from the previous time tick by
a linear mapping F. In addition, we assume an initial state
for latent variables at the first time tick. Eq (1 - 3) give the
mathematical equations of our proposed model, with the

Z1 Z2 Z3 Z4

X1 X2 X3
X4

�(F∙z1, Λ)

�(z0, Γ)

�(G∙z3, Σ)

�(F∙z2, Λ)

�(G∙z1, Σ) �(G∙z2, Σ) �(G∙z4, Σ)

�(F∙z3, Λ) �(F∙z4, Γ)

… 

Figure 3: Graphical Illustration of the Model. z1···4:
latent variables; x1,2,4: observations; x3: partial ob-
servations. Arrows denote Gaussian distributions.

parameters θ = {F,G, z0, Γ, Λ, Σ}.

z1 = z0 + ω0 (1)

zn+1 = Fzn + ωn (2)

xn = Gzn + ǫn (3)

where z0 is initial state of the latent variables. F implies
the transition and G is the observation projection. ω0, ωi

and ǫi(i = 1 . . . T) are multivariate Gaussian noises with the
following distributions:

ω0 ∼ N (0, Γ) ωi ∼ N (0, Λ) ǫj ∼ N (0, Σ) (4)

The model is similar to Linear Dynamical System except
that it includes an additional matrix W to indicate the miss-
ing observations. The joint distribution of Xm, Xg and Z is
given by

P (Xm,XgandZ) = P (z1) ·
T

Y

i=2

P (zi|zi−1) ·
T

Y

i=1

P (xi|zi) (5)

3.2 The Learning Algorithm
Given an incomplete data sequence X and the indication

sequence W, we propose DynaMMo method to estimate:

1. the governing dynamics F and G, as well as other pa-
rameters z0, Γ, Λ and Σ;

2. the latent variables ẑn = E[zn], (n = 1 . . . T);
3. the missing values of the observation sequence E[Xm|Xg].

The goal of parameter estimation is achieved through max-
imizing the likelihood of observed data, L(θ) = P (Xg). How-
ever, it is difficult to directly maximize the data likelihood
in missing value setting, instead, we maximize the expected
log-likelihood of the observation sequence. Once we get the
model parameters, we use belief propagation to estimate the
occluded marker positions. We define the following objective
function as the expected log-likelihood Q(θ) with respect to
the parameters θ = {F,G, z0, Γ, Λ, Σ}:

Q(θ) = EXm,Z|Xg,W [P (Xg,Zm,Z)] (6)

= EXm,Z|Xg ,W [−D(z1, z0, Γ)−
T

X

t=2

D(zt,Fzt−1, Γ) (7)

−
T

X

t=1

D(xt,Gzt,Σ) −
log|Γ|

2
−

(T− 1) log|Λ|

2
−

T log|Σ|

2
](8)

where D() is the square of the Mahalanobis distance D(x,y, Σ) =
(x− y)T Σ−1(x− y)

Our proposed DynaMMo searches for the optimal solu-
tion using Expectation-Maximization [4]. The optimization



algorithm is actually an iterative, coordinate descent pro-
cedure: estimating the latent variables, maximizing with
respect to parameters, estimating the missing values, and
iterating until convergence.

To estimate the parameters, taking the derivatives of Eq 7-
8 with respect to the components of θnew and setting them
to zero yield the following results:

µ
new
0 = E[z1] (9)

Γnew = E[z1z
T
1 ]− E[z1]E[zT

1 ] (10)

Fnew = (

N
X

n=2

E[znzT
n−1])(

N−1
X

n=1

E[znzT
n ])−1 (11)

Λnew =
1

N − 1

N
X

n=2

(E[znzT
n ]− Fnew

E[zn−1z
T
n ]

−E[znzT
n−1](F

new)T + Fnew
E[znzT

n−1](F
new)T )(12)

Gnew = (
N

X

n=1

xnE[zT
n ])(

N
X

n=1

E[znzT
n ])−1 (13)

Σnew =
1

N

N
X

n=1

(ynyT
n −Gnew

E[zn]yT
n

−ynE[zT
n ](Gnew)T + Gnew

E[znzT
n ](Gnew)T )(14)

The calculation of optimal parameters in Eq 9-14 requires
estimation of latent variables, which includes our second
goal. We use a belief propagation algorithm to estimate the
posterior expectations of latent variables, similar to mes-
sage passing in Hidden Markov Model and Linear Dynam-
ical Systems. The general idea is to compute the posterior
distribution of latent variables tick by tick, based on the
computation of previous time tick.

Finally, the missing values are easily computed from the
estimation of latent variables using Markov property in the
graphical model (Figure 3). We have the following equation:

E[Xm|Xg,Z; θ] = G · E[Z]{i,j}({i, j} ∈ W) (15)

The overall algorithm is described in Algorithm 1, omit-
ting details explained in Appendix A.1.

3.3 Discussion
Model Generality: Our model includes MSVD, linear in-
terpolation, and Kalman filters as special cases:

• MSVD: If we set F and z0 to 0, and Γ = Λ, then the
model becomes MSVD, We describe MSVD in Sec-
tion 4

• Linear interpolation: For one dimensional data, we ob-
tain the linear interpolation by setting Λ = 0 and the
rest of the parameters to the following values:

F =

„

1 1
0 1

«

G =

„

1
0

«

• Equations (1)-(3) of DynaMMo become the equa-
tions of the traditional Kalman filters if there are no
missing values. In that case, the well-known, single-
pass Kalman method applies.

Penalty and Constraints: In the algorithm described
above, Eq. (7) is error term for the initial state. Eq. (8)
is trying to estimate the dynamics for the hidden states,

Algorithm 1: DynaMMo

Input: Observed data sequence: X = Xg,
Missing value indication matrix:W
the number of latent dimension H

Output:
• Estimated sequence:X̂
• Latent variables ẑ1 · · · ẑT|

• Model parameters θ

Initialize X̂ with Xg and the missing value filled by
linear interpolation or other methods;
Initialize F,G, z0;
Initialize Γ, Λ, Σ to be identity matrix;
θ ← {F,G, z0, Γ, Λ, Σ};
repeat

Estimate ẑ1···T = E[Z|X̂ ; θ] using belief propagation1

(see details in Appendix A.1);

Maximizing Eq (7)-(8) with E[Z|X̂ ; θ] using2

Eq. 9-14,
θnew ← arg maxθ Q(θ);

forall i,j do
// update the missing values

if Wi,j = 0 then Xi,j is missing

X̂new
i,j ← (Gnew · E[Z|X̂ ; θ])i,j

until converge ;

while Eq. (8) is getting the best projection from observed
motion sequence to hidden states. Eq. (8) is penalty for the
covariance, similar to model complexity in BIC. It is easy to
extend the model by putting a further penalty on the model
complexity through a Bayesian approach. For example, we
could constraint the covariance to be diagonal σ2I, which is
used in our experiments, since it is faster to compute.
Time Complexity: The algorithm needs time linear on the
duration T , and specifically O(#(iterations) ·T ·m3). Thus,
we expect it to scale well for longer sequences. As a point of
reference, it takes about 6 to 10 minutes per sequence with
several hundreds time ticks, on a Pentium class desktop.

4. EXPERIMENTAL RESULTS
We evaluate both quality and scalability of DynaMMo

on several datasets. To evaluate the quality of recovering
missing values, we use a real dataset with part of data
treated as “missing” so that it enables comparing the real
observations with the reconstructed ones. In the following
we first describe the dataset and baseline methods, and then
present the reconstruction results.

4.1 Experiment Setup

4.1.1 Baseline Methods
We use linear interpolation and Missing Value SVD (MSVD)

as the baseline methods. We also compare to spline inter-
polation.

Missing Value SVD involves iteratively taking the SVD
and fitting the missing values from the result [18]. This
method is very easy to implement and already used on mo-
tion capture datasets in [13] and [16]. In our implementation
(appendix A.2), we initialized the holes by linear interpola-
tion, and use 15 principal dimensions (99% of energy).



4.1.2 Datasets
Chlorine Dataset (Chlorine): The Chlorine dataset (see
sample in Figure 6(a)) was produced by EPANET 21 that
models the hydraulic and water quality behavior of water
distribution piping systems. EPANET can track, in a given
water network, the water level and pressure in each tank,
the water flow in the pipes and the concentration of a chem-
ical species (Chlorine in this case) throughout the network
within a simulated duration. The data set consists of 166
nodes (pipe junctions) and measurement of the Chlorine
concentration level at all these nodes during 15 days (one
measurement for every 5 minutes, a total of 4310 time ticks).
Since the water demand pattern during the 15 days follows
a clear global periodic pattern (daily cycle, dominating res-
idential demand pattern), EPANET would correctly reflect
the pattern in the Chlorine concentration with a few excep-
tions and slight time shifts.
Full body motion set (Motion): This data set contains
58 full body motions of walking, running, and jumping mo-
tions from subject #16 of mocap database2. Each motion
spans several hundred of frames with 93 features of bone
positions in body local coordinates. The total size of the
dataset is 17MB. We make random dropouts and reconstruct
the missing values on the data set.

4.1.3 Simulate Missing Values
We create synthetic occlusions (dropouts) on the Motion

data and evaluate the effectiveness of reconstruction by Dy-
naMMo. To mimic a real occlusion, we collected the occlu-
sion statistics from handshake motions. For example, there
are 10.44% of occluded values in typical handshake motions,
and occlusions often occur consecutively (Figure 2). To cre-
ate synthetic occlusions, we randomly pick a marker j and
the starting point (frame) n for the occlusion of this marker;
we pick the duration as a Poisson distributed random vari-
able according to the observed statistics, and we repeat, un-
til we have occluded 10.44% of the input values.

4.2 Experimental Results
We present three sets of results, to illustrate the quality

of reconstruction of DynaMMo.

4.2.1 Qualitative result
Figure 1 shows the reconstructed signal (root bone z-

coordinate) for a jump motion. Splines find a rather smooth
curve which is not what the human actor really did. Lin-
ear interpolation and MSVD are a bit better while still far
from the ground truth. Our proposed DynaMMo (with 15
hidden dimensions) captured both the dynamics of the mo-
tion as well as the correlations across the given inputs, and
achieved a very good reconstruction of the signal.

4.2.2 Reconstruction Error
For each motion in the data set, we create a synthetic

occluded motion sequence as described above, reconstruct
using DynaMMo, then compare the effectiveness against
linear interpolation, splines and MSVD. To reduce random
effects, we repeat each experiment 10 times and we report
the average of MSE. To evaluate the quality, we use the
MSE: Given the original motion X, the occlusion indica-
tion matrix W and the fitted motion X̂ , the MSE is the
1http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
2http://mocap.cs.cmu.edu
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on a sample mocap data (subject#16.22). Average
rmse over 10 runs, versus average missing length
λ(from 10 to 100). Randomly 10.44% of the values
are treated as “missing”. DynaMMo (in red solid
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average of squared differences between the actual (X) and

reconstructed (X̂) missing values - formally:

MSE(X, W, X̂) =
||(1−W )⊗ (X − X̂)||2

||1−W ||2

=
1

P

t,k
(1−Wt,k)

X

t,k

(1−Wt,k)(Xt,k − X̂t,k)2 (16)

Both MSVD and our method use 15 hidden dimensions (H =
15). Figures 4(a)-4(c) show the scatter plots of the average
reconstruction error over 58 motions in the Motion dataset,
with 10% missing values and 50 average occlusion length. It
is worth to noting that the reconstruction grows little with
increasing occlusion length, compared with other alternative
methods (Figure 5). There is a similar result found in exper-
iments on Chlorine data as shown in Figure 6(b). Again, our
proposed DynaMMo achieves the best performance among
the four methods.

4.2.3 Scalability
As we discussed in Section 3, the complexity of DynaMMo

is O(#(iterations)·T ·m3). Figure 7 shows the running time
of the algorithm on the Chlorine dataset versus the sequence
length. For each run, 10% of the Chlorine concentration
levels are treated as missing with average missing length 40.
As expected, the wall clock time is almost linear to sequence
duration.

5. ADDITIONAL BENEFITS
In addition to recovering the missing observations, our
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Figure 6: Reconstruction experiment on Chlorine
with 10% missing and average occlusion length 40.



0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
er

ro
r 

of
 D

yn
aM

M
o

error of Linear Interpolation

DynaMMo
loses

DynaMMo
wins

(a) DynaMMo v.s. Linear

0 2 4 6
0

1

2

3

4

5

6

error of Spline

er
ro

r 
of

 D
yn

aM
M

o

DynaMMo
loses

DynaMMo
wins

(b) DynaMMo v.s. Spline

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

er
ro

r 
of

 D
yn

aM
M

o

error of MSVD

DynaMMo
loses

DynaMMo
wins

(c) DynaMMo v.s. MSVD

Figure 4: Scatter plot of missing value reconstruction error for Mocap dataset.

0 1000 2000 3000 4000
0

1000

2000

3000

4000

5000

ru
nn

in
g 

tim
e

sequence length

 

 

Figure 7: Running time versus the sequence length
on Chlorine dataset. For each run, 10% of the values
are treated as “missing”.

proposed DynaMMo method can be easily extended for
further data mining tasks. Here we propose several Dy-
naMMo extensions for time series compression, segmenta-
tion, and forecasting.

5.1 Interpretation and Forecasting
One of the advantages of our proposed DynaMMo is that

its learnt representation of a data stream contains informa-
tion about behavior of patterns and trends, as illustrated in
the following examples. As shown in top of Figure 8, we
create a sinusoid sequence with a cycle of 32, then learn the
parameters θ = {F, G, z0, Γ, Λ, Σ} using DynaMMo with
hidden dimension of 6, and then generate a simulated signal
x̂ using only the parameter z0,F,G: ẑ1 = z0, ẑn+1 = Fẑn,
x̂n = Gẑn. The simulated signal in Figure 8 presents an
identical periodic pattern to the original signal, with negli-
gible difference in amplitude. Note it is easy to forecast the
future if we continue ticking the time. As this simple case
demonstrates, DynaMMo is able to learn dynamics from
a data stream and reproduce its behavior even without ob-
servations. This suggests that it could be used to compress
time sequences, as we will discuss in the next section.

5.2 Compression
Time series data are usually real valued which makes it

hard to achieve a high compression ratio using lossless meth-
ods. However, lossy compression is reasonable if it gets
a high compression ratio and low recovery error. As de-
scribed in Section 3, DynaMMo produces three outputs:
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Figure 8: Simulated signal versus original signal.
The top is the original signal (blue curve), while
the bottom (red curve) is the generated using pa-
rameters learnt from original with a hidden dimen-
sion of 6. Note the almost identical pattern in both
generated and original signal, and will continue if
prolonged.

model parameters, latent variables (posterior expectation)
and missing values. To compress, we record some of the
hidden variables learned from DynaMMo instead of stor-
ing direct observations. By controlling the hidden dimension
and the number of time ticks of hidden variables to keep, it
is easy to trade off between compression ratio and error. We
provide three alternatives for compression.

Here we first present the decompression algorithm in Al-
gorithm 2.

5.2.1 Fixed Compression: DynaMMof

The fixed compression will first learn the hidden variables
using DynaMMo and store the hidden variables for every
k time ticks. In addition, it stores the matrix F, Λ, G and
Σ. Both covariance Λ and Σ are constrained to λ2I and
σ2I respectively. It also stores the number k.

The total space required for fixed compression is Sf =
T

k
·H + H2 + H ·m + 3, where k is the gap number given.

5.2.2 Adaptive Compression: DynaMMoa

The adaptive compression will first learn the hidden vari-



Algorithm 2: DynaMMo Decompress

Input: ẑS , hidden variables, indexed by S ⊆ [1 · · ·T],
F, G.

Output: The decompressed data sequence x̂1···T

y← ẑ1;
for n← 1 to T do

if n in S then
y← ẑn;

else
y← F · y;

x̂n ← G · y;

ables using DynaMMo and store the hidden variable only
for the necessary time ticks, when the error is greater than
a given threshold. Like fixed compression, it also stores the
matrix F, Λ, G and Σ. Both covariance Λ and Σ are con-
strained to λ2I and σ2I respectively. For each stored time
tick, it also records the offset of next storing time tick.

The total space required for adaptive compression is Sa =
l · (H + 1) + H2 + H ·m + 2 where l is the number of stored
time ticks.

5.2.3 Optimal Compression: DynaMMod

The optimal compression will first learn the hidden vari-
ables using DynaMMo and store the hidden variables for
the time ticks determined by dynamic programming, so as to
achieve the smallest error for a given number of stored time
ticks. Like the fixed compression, it also stores the matrix
F, Λ, G and Σ. Both covariance Λ and Σ are constrained
to λ2I and σ2I respectively.

The total space required for optimal compression is Sd =
l · (H + 1) +H2 +H ·m + 2 where k is the number of stored
time ticks.

5.2.4 Baseline Method
We use a combined method of SVD and linear interpo-

lation as our baseline. It works as follows: given k and h,
it first projects the data into h principle dimensions using
SVD, then records the hidden variables for every k time
ticks. In addition, it will also record the projection matrix
from SVD. When decompressing, the hidden variables are
projected back using the stored matrix and the gaps filled
with linear interpolation.

The total space required for baseline compression is Sb =
T

k
· h + h ·m + h + 1, where k is the gap number given, and

h is the number of principle dimensions.
For all of these methods, the compression ratio is defined

as

R∗ =
Total uncompressed space

compressed space
=

T ·m

S∗

Figure 9 shows the decompression error (in terms of RMSE)
with respect to compression ratio compared with the base-
line compression using a combined method SVD and Linear
Interpolation. DynaMMod wins especially in high com-
pression ratio.

5.3 Segmentation
As a further merit, our DynaMMo is able to segment

the data sequence. Intuitively, this is possible because Dy-
naMMo identifies the dynamics and patterns in data se-
quences, so segments with different patterns can be expected
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Figure 9: Compression for Chlorine dataset:
RMSE versus compression ratio. Lower is better.
DynaMMod (in red solid) is the best.

to have different model parameters and latent variables. We
use the reconstruction error as an instrument of segmenta-
tion. Note that since there might be missing value in the
data sequences, a normalization procedure with respect to
the number observation at each time tick is required. We
present our segmentation method in Algorithm 3.

Algorithm 3: DynaMMo Segment

Input: Data sequence: X,
With or without missing value indication matrix:W
the number of latent dimension H

Output: The segmentation position s

{G, ẑ1···m} ← DynaMMo(X, W,H);
for n = 1 to m do

Reconstruct the data for time tick n: x̂n ← G · ẑn;
Computer the reconstruction error for time tick n:

△n ←
||wT

n ⊗ (x̂n − xn)||2
P

wn

find the split: s← arg max
k
△k;

To illustrate, Figure 10 shows the segmentation result on
a sequence composed of two pieces of sinusoid signals with
different frequencies. Our segmentation method could cor-
rectly identify the time of frequency change by tracking the
spikes in reconstruction error. Figure 11 shows the recon-
struction error from segmentation experiment on a real hu-
man motion sequence in which an actor running to a com-
plete stop. Two (y-coordinates of left hip and femur) of 93
joint coordinates are shown in the top of the plot. Note the
spikes in the error plot coincide with the slowdown of the
pace and transition to stop.

6. CONCLUSIONS
Given multiple time sequences, we propose DynaMMo

(Dynamics Mining with Missing values), which includes a
learning algorithm and its variant extensions to summarize,
compress and find latent variables. The idea is to auto-
matically discover a few, hidden variables and to compactly
describe how the hidden variables evolve by learning their
transition matrix F . Our algorithm can even work when
there are missing observations, and includes Kalman filters
as special case.

We presented experiments on motion capture sequences
and chlorine measurements and demonstrated that our pro-
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Figure 10: Segmentation result on one dimensional
synthetic data. Top is a sequence composed of two
pieces of sinusoid signals with different frequencies
64 and 128 respectively. Bottom is the reconstruc-
tion error per time tick. Note the spike in the middle
correctly identify the shifting of frequencies.

posed DynaMMo method and its extensions (a) can suc-
cessfully learn the latent variables and their evolution, (b)
can provide high compression for little loss of reconstruc-
tion accuracy, and (c) can extract compact, but powerful
features, for sequence forecasting, interpretation and seg-
mentation, (d) scalable on duration of time series.
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APPENDIX

A. APPENDIX

A.1 Algorithm 1 details
In Algorithm 1, the estimation (line 1) is to find the

marginal distribution for hidden state variables given the
data, e.g. ẑn = E[zn | Xg,Xm](n = 1, . . . , T). Since both
prior and conditional distributions in the model are Gaus-
sian, the posterior up to current time tick p(zn|x1, . . . ,xT )
should also be Gaussian, denoted by α̂(zn) = N (µn,Vn).
Let p(xn|x1, . . . ,xn−1) denoted as cn, We have the follow-
ing propagation equation:

cnα̂(zn) = p(xn|zn)

Z

α̂(zn−1)p(zn|zn−1)dzn−1 (17)

From Eq 17 we could obtain the following forward passing
of the belief. The messages here are µn, Vn and Pn−1(needed
in later backward passing).

Pn−1 = FVn−1F
T + Λ (18)

Kn = Pn−1G
T (GPn−1G

T + Σ)−1 (19)

µn = Fµn−1 + Kn(xn −GFµn−1) (20)

Vn = (I−Kn)Pn−1 (21)

cn = N (GFµn−1,GPn−1G
T + Σ) (22)

The initial messages are given by:

K1 = ΓGT (GΓGT + Σ)−1 (23)

µ1 = µ0 + K1(x1 −GFµ0) (24)

V1 = (I−K1)Γ (25)

c1 = N (Gµ0, GΓGT + Σ) (26)

For the backward passing, let γ(zn) denote the marginal
posterior probability p(zn|x1, . . . ,xN) with the assumption:

γ(zn) = N (µ̂n, V̂n) (27)

The backward passing equations are:

Jn = VnFT (Pn)−1 (28)

µ̂n = µn + Jn(µ̂n+1 − Fµn) (29)

V̂n = Vn + Jn(V̂n+1 −Pn)JT
n (30)

Hence, the expectation for Algorithm 1 line 1 are com-
puted using the following equations:

E[zn] = µ̂n (31)

E[znzT
n−1] = Jn−1V̂n + µ̂nµ̂

T
n−1 (32)

E[znzT
n ] = V̂n + µ̂nµ̂

T
n (33)

where the expectations are taken over the posterior marginal
distribution p(zn|y1, . . . , yN).

From these estimations, the new parameter θnew is obtain
by maximizing the Equations 7-8 with respect to the com-
ponents of θnew given the current estimate of θold, yield the
Algorithm 1 line 2.

A.2 Missing Value SVD
Algorithm 4: Missing Value SVD

Input: Observed data matrix: Xg ,
Occlusion indication matrix:W
the number of hidden dimensions H

Output: Estimated data matrix:X̂

Initialize X̂ with Xg and the missing value filled by
linear interpolation;
repeat

taking SVD of X̂ , X̂ ≈ UHΛHV T
H ;

// update estimation

Y ← UHΛHV T
H ;

forall i,j do
if Wi,j = 0 then Xi,j is missing

X̂new
i,j ← Yi,j

until converge ;


