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ABSTRACT

Multi-core processors with ever increasing number of cqes
chip are becoming prevalent in modern parallel computingir O
goal is to make use of the multi-core as well as multi-proocess
architectures to speed up data mining algorithms. Speltjficee
present a parallel algorithm for approximate learning ofdar Dy-
namical Systems (LDS), also known as Kalman Filters (KF)SED
are widely used in time series analysis such as motion captod-
eling and visual tracking etc. We propo€eat-And-Stitch (CAS),

a novel method to handle the data dependencies due to the chai
structure of hidden variables in LDS, so as to parallelize EM-
based parameter learning algorithm. We implement the glgor

using OpenMP on both a supercomputer and a quad-core commer:

cial desktop. The experimental results show that pardtielidhms
using Cut-And-Stitch achieve comparable accuracy and almost lin-
ear speedups over the serial version. In additiont-And-Stitch
can be generalized to other models with similar linear stmas
such as Hidden Markov Models (HMM) and Switching Kalman
Filters (SKF).

Categories and Subject Descriptorsi.2.6 Artificial Intelligence:
Learning - parameter learning D.1.3 Programming Techrig@en-
current Programming - parallel programming G.3 Probapind
Statistics: Time series analysis

General Terms: Algorithms; Experimentation; Performance.

Keywords: Linear Dynamical Systems; Kalman Filters; OpenMP;
Expectation Maximization (EM); Optimization; Multi-care

1. INTRODUCTION

Time series appear in numerous applications, includinganot

capture [11], visual tracking, speech recognition, quatitie stud-

ies of financial markets, network intrusion detection, éagting,
etc. Mining and forecasting are popular operations relet@time
series analysis. Two typical statistical models for suabbfams
are hidden Markov models (HMM) and linear dynamical systems
(LDS, also known as Kalman filters). Both assume linear trans
tions on hidden (i.e. ’latent’) variables which are consgedis-
crete for HMM and continuous for LDS. The hidden states or-var
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ables in both models can be inferred through a forward-bacttw
procedure involving dynamic programming. However, the max
mum likelihood estimation of model parameters is difficraguir-

ing the well-known Expectation-Maximization (EM) methot].[
The EM algorithm for learning of LDS/HMM iterates betweemto
puting conditional expectations of hidden variables tigtothe forward-
backward procedure (E-step) and updating model paramaiers
maximize its likelihood (M-step). Although EM algorithm mge
erally produces good results, the EM iterations may takeg han
converge. Meanwhile, the computation time of E-step isdine
in the length of the time series but cubic in the dimensiapaif
observations, which results in poor scaling on high dimemesi
data. For example, our experimental results show that on-a 93
dimensional dataset of length over 300, the EM algorithm ldiou
take over one second to compute each iteration and over ten mi
utes to converge on a high-end multi-core commercial coerput
Such capacity may not be able to fit modern computation-given
applications with large amounts of data or real-time caists.
While there are efforts to speed up the forward-backwardg@ro
dure with moderate assumptions such as sparsity or exestehc
low-dimensional approximation, we will focus on taking adv
tage of the quickly developing parallel processing techgigls to
achieve dramatic speedup.

Traditionally, the EM algorithm for LDS running on a multeie
computer only takes up a single core with limited procespimger,
and the current state-of-the-art dynamic parallelizateshniques
such as speculative execution [6] benefit little to the gtrdiorward
EM algorithm due to the nontrivial data dependencies in LBS.
the number of cores on a single chip keeps increasing, soonaye
be able to build machines with even a thousand cores, e.gn-an e
ergy efficient, 80-core chip not much larger than the sizefafger
nail was released by Intel researchers in early 2007 [10F péper
is along the line to investigate the following question: hawch
speed up could we obtain for machine learning algorithms oltim
core? There are already several papers on distributed datigu
for data mining operations. For example, “cascade SVMs"ewer
proposed to parallelize Support Vector Machines [9]. Otrécles
use Google's map-reduce techniques [8] on multi-core nmeshio
design efficient parallel learning algorithms for a set afnstard
machine learning algorithms/models such as naive BayeR@#ad
achieving almost linear speedup [4, 12]. However, thesdnaukst
do not apply to HMM or LDS directly. In essence, their techugg
are similar to dot-product-like parallelism, by using digiand-
conquer on independent sub models; these do not work for Isiode
with complicated data dependencies such as HMM and EDS.

1or exactly, models with large diameters. The diameter of deho
is the length of longest acyclic path in its graphical repreation.
For example, the diameter of the LDS in Figure INs



Symbol | Definition Mug, T)
a multi-dimensional observation sequence \ N(F-z,, A (Fz,, A N(Fzy.,, /\0
Z the hidden variables {z1,...,zx}) oi’ev*)e_) +
m the dimension of the observation sequence
H the dimension of hidden variables N‘G'lez) N(G% ) N‘G'Za'lz’ NE 2y 2) N(G'Z{z’
N the duration of the observation
F the transition matrix/ x H ° G °
G the project matrix from hidden to observation, x H

Table 1: Symbol table Figure 1: A Graphical Representation of the Linear Dynamicd

System:zi, ..., zn indicate hidden variables;y1, ..., yx indi-
cate observation. Arrows indicate Linear Gaussian conditnal

In this paper, we propose theut-And-Sitch method (CAS), probabilistic distributions

which avoids the data-dependency problems. We show that CAS
can quickly and accurately learn an LDS in parallel, as demon
strated on two popular architectures for high performararamut- Given the observation sequence, the goal of the learning alg
ing. The basic idea of our algorithm is to (@ut both the chain rithm is to compute the optimal parameter&et (uo, T, F, A, G, X).
of hidden variables as well as the observed variables intallem The optimum is obtained by maximizing the log-likelihod@d’; 0)
blocks, (b) perform intra-block computation, and &itch the lo- over the parameter sét As mentioned in Section 1, the typical
cal results seamlessly by summarizing sufficient statistied up- learning method for LDS is the EM algorithm [1], which itexely
dating model parameters and an additional set of blockiipec  maximizes the expected complete log-likelihood in a cauatk-
parameters. The algorithm would iterate over 4 steps, wittee ascent manner:

most time-consuming E-step in EM as well as the two newlyointr

duced steps could be parallelized with little synchrornarabver- QO™ 0°") = Egorallog p(y1 - yn, 71 -2 [0"")]

head. Furthermore, this approximation of global modelsdmal In brief, the algorithm first guesses an initial set of modaigm-
sub-models sacrifices only a little accuracy, due to therchaiiic- etersy. Then, at each iteration, it uses a forward-backward algo-
ture of LDS (also HMM), as shown in our experiments, which was  rithm to compute expectations of the hidden variailgs= E[z, |

our first goal. On the other hand, it yields almost linear siope Y; 6] (n = 1,...,N) as well as the second moments and covari-
which was our second main goal. ance terms, which is the E-step. In the M-step, it maximibesek-

Thg rest of the paper is orga_nized as follows. We first describ pected complete log-likelihood @[L(Y, z1...n)] with respect to
the Linear Dynamical System in Section 2 and present our pro- the model parameters. Since the computatioRaf, | )] depends
posedCut-And-Stitch method in Section 3. Then we describe the onE[z,_; | V] andE[z,+1 | V)], the straightforward implemen-

programming interface and implementation issues in Sedtid\Ve tation of the EM algorithm can not exploit much instructi@ve!

present experimental results Section 5, the related worRdo- parallelism.

tion 6, and our conclusions in Section 7. Although we will focus on LDS in the rest of this paper, dut-
And-Stitch method could also be adapted to HMMs with a careful

2. BACKGROUND replacement of context, because their graphical models/eme

similar. Figure 1 shows the structure of the graphical repngation
of an LDS; notice that the structure remains the same foremdd
Markov models, with the only differences that the hidderd(pas-
sibly observed) variables are discrete and that the camditidistri-
butions should be replaced by multinomial distributionscérd-
ingly, the forward-backward algorithm of HMM is still traaible
and can be implemented in a similar manner, and the M-stdein t
learning algorithm can be modified as well.

Here we give a brief introduction to Linear Dynamical System
(LDS), including its formalization, its learning algorithand its
connections to hidden Markov models (HMM).

Consider a multi-dimensional sequen¥e= yi,...,y~ of a
lengthN. For example,)Y could be a sequence of marker posi-
tion vectors captured by video cameras, where each vggtis
of dimensionalitym. Suppose the evolution of the observation is
driven by a hidden Markov process. For example, in motioriuoap

modeling, hidden variables may correspond to a sinusoidimgov 3. CUT-AND-STITCH: PROPOSED METHOD

pattern, while the observed motion could be periodic wajkig-

cles. In LDS, both the transitions among the hidden varmbte In the standard EM learning algorithm described in Sectipn 2
well as their projections to the observations are descritseihear ~ the chain structure of the LDS enforces the data dependentie
Gaussian models (Eq (2-2)). We denote them as a miBtfor the both the forward computation from, (e.g. E[z, | V; 0]) 0 z;41
transition ( x H) with noises{w, }; and a matrixG (m x H) and the backward computation fram 1 to z,, In this section, we
for the projection with the noisee,,} at each time-ticks. Fig- will present ideas on overcoming such dependencies andildesc
ure 1 provides the graphical representation of followingatipns the details ofCut-And-Siitch parallel learning algorithm.
defining an LDS: 3.1 Intuition and Preliminaries
zZ1 = 2o+ wo (1) Our guiding principle to reduce the data dependencies is-to d
Znyi = Fzp4wn 2) vide LDS into smaller, independent parts. Given a data sepig
_ and k processors with shared memory, we could cut the sequence
yn = Gzp+en 3) . - .
into k£ subsequences of equal sizes, and then assign one proces-
where z is the initial state of the whole system, and, w; and sor to each subsequence. Each processor will learn the pteean
ei(1 = 1...M) are multivariate Gaussian noises: sayb,...,0, associated with its subsequence, using the basic,

sequential EM algorithm. In order to obtain a consistenb$eia-
wo ~N(0,T) wi ~N(0,A) ¢ ~N(0,%) rameters for the whole sequence, we use a non-trivial metiiod
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Figure 2: Graphical illustration of dividing LDS into block s in
the Cut step. NoteCut introduces additional parameters for
each block.

(?

summarize all the sub-models rather than simply averadhice
each subsequence is treated independently, our algoriihrobw
tain neark-fold speedup. The main design challenges are: (a) how
to minimize the overhead in synchronization and summadaat
and (b) how to retain the accuracy of the learning algoriti®uwr
Cut-And-Stitch method (or CAS) is targeting both challenges.
Given a sequence of observed valgéswith length of N, the
learning goal is to best fit the parametérs= (uo, T, F, A, G, X).
The Cut-And-Stitch (CAS) algorithm consists of two alteing
steps: theCut step and th&itch step. In theCut step, the Markov
chain of hidden variables and corresponding observatioasiia
vided into smaller blocks, and each processor performsdbal |
computation for each block. More importantly, it computes ini-
tial beliefs (marginal expectation of hidden variables)ife block,
based on the neighboring blocks, and then it computes the im-
proved beliefs for its block, independently. In tBetch step,
each processor computes summary statistics for its bloukitzen
the parameters of LDS are updated globally to maximize the EM
learning objective function (also known as tegected complete
log-likelihood). Besides, local parameters for each block are also
updated to reflect changes in the global model. The CAS algori
iterates betweeg@ut andSitch until convergence.

3.2 Cutstep

The objective ofCut step is to compute the marginal posterior
distribution ofz,,, conditioned on the observatiogs, . . . , y~ given
the current estimated parameter P(z,|y1,...,yn;60). Given
the number of processoksand the observation sequence, we first
divide the hidden Markov chain intb blocks: Bi,..., B, with
each block containing the hidden variablesthe observationy,
and four extra parametets ®, , ¥. The sub-model foi-th block
B; is described as follows (see Figure 2):

P(zip) = N(vi,®:) 4

P(zij1lzi;) = N(Fzij,A) ©)

P(zirlzir) = N(Fzir,A) (6)

P(yi;lzi;) = N(Gzi;, %) (M

where the block sizd" = % andj = 1...T indicatingj-th vari-

ables ini-th block (Zi,j = Z(i—1)xT+j andyiﬁj = y(i,l)*Tﬂ-). iy

¥, could be viewed as messages passed from next block, through

the introduction of an extra hidden variatdg .
P(zir) = N (i, ¥:) ®

Intuitively, the Cut tries to approximate the global LDS model
by local sub-models, and then compute the marginal posteith
the sub-models. The blocks are both logical and computation
meaning that most computation about each logical blocklessin
one processor. In order to simultaneously and accuratetypote

all blocks on each processor, the block parameters shouwdebie
chosen with respect to the other blocks. We will describepidte
rameter estimation later but here we first describe ther@it&rom

the Markov properties of the LDS model, the marginal postest

z;,; conditioned ory is independent of any observgdutside the
block B;, as long as the block parameters satisfy:

P(zialys,...,yi-1,1) N (vi, ®;) 9)
P(zit11ly1,...,¥N) N (ni, ¥s) (10)

Therefore, we could derive a local belief propagation atbar to
compute the marginal posterié®(z; ;|y:,1 - . - Yi,7;vi, ®s, 05, U3, 0).
Both computation for the forward passing and the backwas$pa
ing can reside in one processor without interfering witheotpro-
cessors except possibly in the beginning. The local forveass
computes the posterior up to current time tick within onecklo
P(z;,;lyi,1--.Yyi;), While the local backward pass calculates the
whole posteriorP(z; ;|y:,1 ... ys:r) (to save space, we omit the
parameters). Using the properties of linear Gaussian tiondi
distribution and Markov properties (Chap.2 &8 in [1]), oreneas-
ily infer that both posteriors are Gaussian distributiatenoted as:

-Yig) N (i, Vij) (11)
Yir) N (i, Vig) (12)

We can obtain the following forward-backward propagatiqoa
tions from Eq (4-8) by substituting Eq (9-12) and expanding.

P(zijlyin -

P(zijlyia -

Pij1 = FV,; . F' +A (13)
Ki; = Pi; 1.GT(GP,; .GT"+%)! (14)
pij = Fpij1+Kij(yi; — GFuij-1) (15)
Vi;i = I-K;;)Pi 1 (16)
The initial values are given by:
Ky = ®G"(Ge,G"+x%)! 17)
wii = vi+K;1(yi1 — Gus) (18)
Vii = (I-K;1)®; (19)
The backward passing equations are:
Jij = Vi ,FI(Piy)™! (20)
fhi.;j g+ Jig(figr1 — Fpig) (21)
Vii = Vij+3i;(Vijg —Piy)JIi; (22)
The initial values are given by:
Jir = VieF'(FV,7F" +A)7! (23)
fir = pir+Jir(ns — Fuar) (24)
Vir = Vir+Jir(V; —FV,7F" — NI (25)
Except for the last block:
e, = Wi, T Vk,T =V,r (26)

3.3 Stitch step

In the Sitch step, we estimate the block parameters, collect the
statistics and compute the most suitable LDS parameterthéor
whole sequence. The parametérs= (uo,I', F, A, G, X) is up-
dated by maximizing over the expected complete log-lilaith
function:

Q™™ ,0°Y) = Epora[log p(y . . -zn|07°Y)] (27)

Now taking the derivatives of Eq 27 and zeroing out give the up
dating equations (Eq (34-39)). The maximization is simitathe

.YN,Z ..



M-step in EM algorithm of LDS, except that it should be congalit
in a distributed manner with the availalbiteprocessors. The solu-
tion depends on the statistics over the hidden variableghndre
easy to compute from the forward-backward propagationrieesit
in Cut.

E[z;,;] fi,; (28)
Elzijzi ;1] = Jij-aVij+ gl j (29)
Elzi zi;] = Vij+ i i, (30)

where the expectations are taken over the posterior mamajstai-
butionp(z,|y1,...,yn~). The next step is to collect the sufficient
statistics of each block on every processor.

T
o= > yisElz] (31)
j=1
T
& = Elzaziag)+ Y Elzizi, 1] (32)
j=2
T
G = Y Elziz,] (33)
j=1

To ensure its correct execution, statistics collectingudhde run
after all of the processors finish the@ut step, enabled through
the synchronization among processors. With the local statistics for
each block,

‘ugew _ ﬂl,l (34)
ry” = Vi (39)
k k -1
Fnew — (Z fz) <z CZ _ E[ZNZ%]) (36)

=1 i=1
1 k
new  __ new T . new\T
= e (- e -y

e

+F"(Y G — Elznzi ) (F")" — Elz1a21 1]

) 37)

k -1
G (Z n) <Z gi) (38)
i=1 =1
1 k
Brew ¥ <Cov(y) + ;(—G"Cw{
R (ETEGE ) @)

whereCov()) is the covariance of the observation sequences and
could be precomputed.

N
Cov(y) = Z yn)’f
n=1

As we estimate the block parameters with the messages from
the neighboring blocks, we could reconnect the blocks. Réta
conditions in Eq (9-10), we could approximately estimatelitock
parameters with the following equations.

vi = Fui—1r (40)
® = FV,rFT +A (41)
M = flit11 (42)
U, = Vipa (43)

Except for the first block (no need to computg and ¥, for the
last block):

V1 = o ¢, =T (44)

In summary, the parallel learning algorithm works in thddal-
ing two steps, which could be further divided into four subps:

Cut divides and builds small sub-models (blocks), and then each
processorestimate (E) in parallel posterior marginal distri-
bution in Eq (28-30), which includeerward andbackward
propagation of beliefs.

Stitch estimates the parameters througlecting (C) local statis-

tics of hidden variables in each block Eq (31-33), taking
the maximization (M) of the expected log-likelihood over
the parameters Eq (34-39), and connecting the blockeby
estimate (R) the block parameters Eq (40-44).

To extract the most parallelism, any of the above equatiote-i
pendent of each other could be computed in parallel. Cortipata
of the local statistics in Eq (31-33) is done in parallelioproces-
sors. Until all local statistics are computed, we use onegssor
to calculate the parameter using Eq (34-39). Upon the cdiople
of computing the model parameters, every processor corsiste
own block parameters in Eq (40-44). To ensure the correatiexe
tion, Stitch step should run after all of the processors finish their
Cut step, which is enabled through the synchronization amoog pr
cessors. Furthermore, we also use synchronization to @ Maxi-
mization part afterCollecting and Re-estimate after Maximization.
An interesting finding is that our method includes the setjakn
version of the learning algorithm as a special case. Notedf t
number of processors is 1, tigit-And-Sitch algorithm falls back
to the conventional EM algorithm sequentially running ongse
processor.

3.4 Warm-up step

In the first iteration of the algorithm, there are undefined in
tial values of block parameters,®,n and ¥, needed by the for-
ward and backward propagationsQ@at. A simple approach would
be to assign random initial values, but this may lead to p&wr p
formance. We propose and use an alternative method: we run a
sequential forward-backward pass on the whole observaisti-
mate parameters, i.e. we execute € step with one processor,
and theStitch step withk processors. After that, we begin nor-
mal iterations ofCut-And-Stitch with k processors. We refer to this
step as thevarm-up step. Although we sacrifice some speedup, the
resulting method converges faster and is more accurateird-ig
illustrates the time line of the whole algorithm on four CPUs

4. IMPLEMENTATION

We will first discuss properties of our propos€dt-And-Sitch
method and what it implies for the requirements of the comput
architecture:

e Symmetric: TheCut step creates a set of equally-sized blocks
assigned to each processor. Since the amount of computation
depends on the size of the block, our method achieves good
load balancing on symmetric processors.

e Shared Memory. The Stitch step involves summarizing suf-
ficient statistics collected from each processor. This stap
be done more efficiently in shared memory, rather than in
distributed memory.
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Figure 3: Graphical illustration of Cut-And-Stitch algorithm on
4 CPUs. Arrows indicates the computation on each CPU. Tilt-
ing lines indicate the necessary synchronization and datadns-
fer between the CPUs and main memory. Tasks labeled with
“E” indicate the (parallel) estimation of the posterior marginal
distribution, including the forward-backward propagatio n of
beliefs within each block as shown in Figure 2. (C) indi-
cates thecollection of local statistics of the hidden variables in
each block; (M) indicates themaximization of the expected log-
likelihood over the parameters, and then itre-estimates (R) the
block parameters.

e Local Cache In order to reduce the impact of the bottle-
neck of processor-to-memory communication, local caches
are necessary to keep data for each block.

The current Symmetric MultiProcessing (SMP) technologies
vide opportunities to match all of these assumptions. Wdamp
ment our parallel learning algorithm for LDS using OpenMP, a
multi-programming interface that supports shared memamnany
architectures, including both commercial desktops anesgm-
puter clusters. Our choice of the multi-processor API iselasn
the fact that OpenMP is flexible and fast, while the code gatimT
for the parallel version is decoupled from the details oflésening
algorithm. We use the OpenMP to create multiple threadsesha
workload and synchronize the threads among different [ssoms.
Note that OpenMP needs compiler support to translate phdit
rectives to run-time multi-threading. And it also includésown
library routines (e.g. timing) and environment variablegy( the
number of running processors).

The algorithm is implemented in C++. Several issues on cenfig
uring OpenMP for the learning algorithm are listed as fokow

e Variable Sharing Conditional expectation in the E-step are
stored in global variables of OpenMP, visible to every pro-
cessor. There are also several intermediate matrices &ad ve
tors results for which only local copies need to be kept; they
are temporary variables that belong to only one processor.
This also saves the computational cost by preserving kycali
and reducing cache miss rate.

e Dynamic or Static SchedulingWhat is a good strategy to
assign blocks to processors? Usually there are two choices:
static and dynamic. Static scheduling will fix processor to
always operate on the same codes while dynamic scheduling
takes an on-demand approach. We pick the static scheduling
approach (i.e. fix the block-processor mapping), for the fol
lowing reasons: (a) the computation is logically block-evis
and in a regular fashion and (b) we have performance gains
by exploiting the temporal locality when we always asociate
the same processor with the same block. Furthermore, in our
implementation, we improve the M-step by using four pro-
cessors to calculate model parameters in Eq (34-39): two for
Eq (34-35), one for Eq (36-37) and one for Eq (38-39).

e Synchronization As described earlier, th&itch step of the
learning algorithm should happen only after (et step has
completed, and the order of stages instiech should be
collecting, maximization andre-estimate. We put barriers af-
ter each step/stage to synchronize the threads and keep them
in the same pace. Each iteration would include four barriers
as shown in Figure 3.

EXPERIMENTS

To evaluate the effectiveness and usefulness of our prdfiage
And-Stitch method in practical applications, we tested our imple-
mentation on SMPs and did experiments on real data. Our goal i
to answer the following questions:

e Speedup: how would the performance change as the number
of processors/cores increase?

e Quality: how accurate is the parallel algorithm, compared t
serial one?

We will first describe the experimental setup and the dataset
used.



| #of Procs] time (sec.)| avg. of norm. time]

1(serial) 3942 1

2 1974 0.5

4 998 0.256

8 510 0.134
16 277 0.0703
32 171 0.0438
64 117 0.0342
128 115 0.0335

Table 2: Wall-clock time for the case of Walking Motion (#22)
on multi-processor/multi-core (in seconds), and the aveige of
normalized running time on 58 motions (serial time= 1).

#of operation |

E N-(m>+H -m”>+m-H?+8H°)

C N.-H?
M[2k-H*+4H> +k-m-H+2m -H>+m°-H
R 2k - H3

Table 3: Rough estimation of the number of arithmetic oper-
ations (+, —, x, /) in E, C, M, R sub steps ofCut-And-Stitch.
Each type of operation is equally weighted, and only the largst
portions in each step are kept.

5.1 Dataset and Experimental Setup

we provide an analysis of the complexity of our algorithm byiet-

ing the basic arithmetic operations. Assume that the matriki-
plication takes cubic time, the inverse uses Gaussian reitioin,
there is no overhead in synchronization, and there is no memo
contention. Table 3 lists a rough estimate of the number sicha
arithmetic operations in théut and Sitch steps with E, C, M, and

R sub steps. As we mentioned in Section 3, the E,C,R sub steps
can run onk processors in parallel, while the M step in principle,
has to be performed serially on a single processor (or up to fo
processors with a finer breakdown of the computation).

In our experimentN is around 100-500,: = 93, H = 15, thus
p is approximately99.81% ~ 99.96%.

Figure 4 shows the wall clock time and speedup on the super-
computer with a maximum of 128 processors. Figure 5 shows the
wall clock time and speedup on the multi-core desktop (marim
4 cores). We also include the theoretical limit from Amdatdiw.
Table 2 lists the running time on the motion set. In order tm¢o
pute the average running time, we normalized the wall cladiet
relative to the serial one, defined as
te 1
ti Sk
wheret,, is wall clock time withk processors.

The performance results show almost linear speedup as we in-
crease the number of processors, which is very promisinginga
a closer look, it is near linear speedup up to 64 processore T
speedup for 128 processors is slightly below linear. A gesx-
planation is that we may hit the bus bandwidth between psmres
and memory, and the synchronization overhead increasesatira

tnorm =

We run the experiments on a supercomputer as well as on a com-cally with a hundred processors.

mercial desktop, both of which are typical SMPs.

e The supercomputer is an SGI Altix systérat National Cen-
ter for Supercomputing Applications (NCSA). The cluster
consists of 512 1.6GHz Itanium2 processors, 3TB of total
memory and 9MB of L3 cache per processor. It is config-
ured with an Intel C++ compiler supporting OpenMP.

e The test desktop machine has two Intel Xeon dual-core 3.0GH

CPUs (a total of four cores), 16G memory, running Linux
(Fedora Core 7) and GCC 4.1.2 (supporting OpenMP).

We used a 17MB motion dataset from CMU Motion Capture
Databas€. It consists of 58 walking, running and jumping mo-
tions, each with 93 bone positions in body local coordinafése
motions span several hundred frames long (500). We use our
method to learn the transition dynamics and projection ixaif
each motion, using7=15 hidden dimensions.

5.2 Speedup

We did experiment on all of the 58 motions with various number
of processors on both machine. The speedup:fprocessors is
defined as

__running time with a single processor

S - - -
b running time withk processors

According to Amdahl’s law, the theoretical limit of speedsp

1
Sk < s
(1-p+%

wherep is the proportion of the part that could run in parallel, and
(1 — p) is the part remains serial. To determine the speedup limit,

<k

2cobalt.ncsa.uiuc.edu
3http://mocap.cs.cmu.edu/

5.3 Quality

In order to evaluate the quality of our parallel algorithrme mn
our algorithm on a different number of processors and comties
error against the serial version (EM algorithm on singlecessor).
Due to the non-identifiability problem, the model parameter
different run might be different, thus we could not direatympute
gwe error on the model parameters. Since both the serial Bi{e
ing algorithm and the parallel one tries to maximize the da¢p
likelihood, we define the error as the relative differencéneen
log-likelihood of the two, where data log-likelihood is cpated
from the E step of the EM algorithm.

1(Y;61) — L(Y; 0r)
1(Y;601)

where) is the motion data sequenoéq are parameters learned
with & processors and{) is the log-likelihood function. The er-
ror from the experiments is very tiny, with a maximu% and
mean0.17%, and no clear evidence of increasing error with more
processors. In some cases, the parallel algorithm evernlfoigiher
(0.074%) likelihood than the serial EM. Note there are limitations
of the log-likelihood criteria, namely higher likelihoodés not
necessarily indicate better fitting, since it might get efitting.
The error curve shows the quality of parallel is almost idEit

to the serial one.

5.4 Case study

In order to show the visual quality of the parallel learnirigoa
rithm, we observe a case study on two different sample mstion
walking motion (Subject 16 #22, with 307 frames), jumping-mo
tion (Subject 16 #1, with 322 frames), and running motionbj8ct
16 #45, with 135 frames). We run the CAS algorithm with 4 cores
to learn model parameters on the multi-core machine, anduke

errory = x 100%
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Figure 4: Performance of Cut-And-Stitch on multi-processor supercomputer, running on the 58 motios. The Sequential version is on
one processor, identical to the EM algorithm. (a) Running tine for a sample motion (subject 16 #22, walking, 307 frameshilog-log
scales; (b) Speedup for walking motion(subject 16 #22) comaped with the sequential algorithm; (c) Average running time (red line)
for all motions in log-log scales. (d) Average speedup for Binotions, versus number of processors.
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Figure 5: Performance of Cut-And-Stitch on multi-core desktop, running on the 58 motions. The Sequdrial version is on one
processor, identical to the EM algorithm. (&) running time for all motions in log-log scales; (b) average speedup for th&8 motions,
versus number of coresk.



| method
Serial
Parallel(4-core)

| Walking [ Jumping| Running |
1.929% | 1.139% | 0.988%
1.926% | 1.140% | 0.985%

Table 4: Normalized Reconstruction Error

these parameters to estimate the hidden states and remirbe
original motion sequence. The test criteria is the recotivn
error (NRE) normalized to the variance, defined as

NRE = SNy — il
Sy = 320 v /N2

wherey; is the observation far-th frame andj; is the reconstructed
with model parameters from 4-core computation. Table 4 shbe
reconstruction error: both parallel and serial achievey wenall er-
ror and are similar to each other. Figure 6 and Figure 7 shaw th
reconstructed sequences of the feet coordinates. Noteeoan+
struction (red lines) is very close to the original signdugblines).

6. RELATED WORK

Data mining and parallel programming receives increagibeyi
est. Parthasarathy et al. [2] develop parallel algorithansxining
terabytes of data for frequent itemsets, demonstratingaaliveear
scale-up on up to 48 nodes.

Reinhardt and Karypis [13] used OpenMP to parallelize tise di
covery of frequent patterns in large graphs, showing ezoeipeedup
of up to 30 processors.

Cong et al. [7] develop the Par-CSP algorithm that deteotsec
sequential patterns on a distributed memory system, anaktrep
good scale-up on a 64-node Linux cluster.

Graf et al. [9] developed a parallel algorithm to learn SVivbiigh
cascade SVM. Collobert et al. [5] proposed a method to learixa
ture of SVM in parallel. Both of them adopted the idea of $ipli
dataset into small subsets, training SVM on each, and thesbico
ing those SVMs. Chang et al. [3] proposed PSVM to train SVMs
on distributed computers through approximate factoriatf the
kernel matrix.

There is an attempt to use Google’s Map-Reduce [8] to paral-
lelize a set of learning algorithm such as naive-Bayes, RiGéar
regression and other similar algorithms [4,12]. Their feavork re-
quires the summation form (like dot-product) in the leagnéigo-
rithm, and hence could distribute independent calculattormany
processors and then summarize them together. Therefoeathe
techniques could hardly be used to learn long sequentighiyra
cal models such as Hidden Markov Models and Linear Dynamical
Systems.

CONCLUSIONS

In this paper, we explore the problem of parallelizing trerthéng
algorithm for LDS models on symmetric multiprocessor atet
tures. The main contributions are as follows:

x 100%

7.

e \We propose an approximate parallel learning algorithm for
Linear Dynamic Systems, and implement it using the OpenMP
API on shared memory machines.

We performed experiments on a large collection 0&kS3

real motion capture sequences spanning 17 K@&t-And-
Sitch showed near-linear speedup on typical settings (a com-
mercial multi-core desktop, as well as a super computer). We
showed that our reconstruction error is almost identicéthéo
serial algorithm.

Future work could extend ouut-And-Sitch method to models
with similar chain structure such as HMMs. Another direntis to
extendCut-And-Stitch for switching Kalman filters (SKF).
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Figure 6: Visual effects: the reconstructed X, y, z coordintes using learned parameters on 4 cores. Horizontal axis isdme index
(time tick). (a) right foot coordinates (x,y,z) for the walking motion (subject 16 #22). (b) left foot coordinates for tie jumping motion
(subject 16 #1). (c) right foot coordinates for the running notion (subject 16 #45). (d) magnification of the x coordinatéthe upper
curve in (b)). Note that the reconstructed sequences (redres) are so close to the original signals (blue lines), thate plots looks like
a set of purple lines; this illustrates the high accuracy ofCut-And-Stitch.
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Figure 7: Scatter plot: reconstructed value versus true vale. For clarity, we only show the 500worst reconstructions - even then,
the points are very close on the 'ideal’, 45 degree line. (a)alking motion (subject 16 #22). (b) jumping motion (subjectl6 #1). (c)
running motion (subject 16 #45).



