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ABSTRACT
Given a graph, how can we extract good features for the nodes?
For example, given two large graphs from the same domain, how
can we use information in one to do classification in the other
(i.e., perform across-network classification or transfer learning on
graphs)? Also, if one of the graphs is anonymized, how can we
use information in one to de-anonymize the other? The key step
in all such graph mining tasks is to find effective node features.
We propose ReFeX (Recursive Feature eXtraction), a novel algo-
rithm, that recursively combines local (node-based) features with
neighborhood (egonet-based) features; and outputs regional fea-
tures – capturing “behavioral” information. We demonstrate how
these powerful regional features can be used in within-network and
across-network classification and de-anonymization tasks – with-
out relying on homophily, or the availability of class labels. The
contributions of our work are as follows: (a) ReFeX is scalable and
(b) it is effective, capturing regional (“behavioral”) information in
large graphs. We report experiments on real graphs from various
domains with over 1M edges, where ReFeX outperforms its com-
petitors on typical graph mining tasks like network classification
and de-anonymization.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; E.1 [Data Struc-
tures]: Graphs and networks

General Terms
Algorithms, Design, Performance, Experimentation.

Keywords
Graph mining, feature extraction, network classification, identity
resolution

1. INTRODUCTION
Extracting effective features for nodes of a given graph is a key

step for many data mining tasks, such as outlier detection (i.e.,
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nodes with strange feature combinations), or mining across differ-
ent graphs from the same domain. For example, given IP communi-
cation graphs from different days or different enterprise networks,
can we train a classifier on one day (say Monday) and use the same
classifier to accurately predict traffic on another day (say Thursday)
without any labels on the latter graph? Here, the key step is to ex-
tract effective and transferrable features from each node that would
best capture node characteristics, so that we can distinguish and
classify the nodes (or edges). Another example is the following:
given an anonymized social network (say Twitter’s who-follows-
whom graph) and a non-anonymized communication graph (say
Twitter’s who-mentions-whom graph), can we find node features
that will help de-anonymize (or re-identify) the people in the social
network?

Here, we propose a novel solution, ReFeX (Recursive Feature
eXtraction) to these graph mining tasks. ReFeX recursively com-
bines local (node-based) features, with neighborhood (egonet-based)
features, and outputs regional features that capture “behavioral” in-
formation. These regional features represent the kind of nodes to
which a given node is connected (e.g., connected to rich people),
as opposed to the identity of those nodes (e.g., connected to Bill
Gates) – i.e., it is who you know at the type-level that matters in
mining across different graphs. In empirical studies, we demon-
strate how these powerful regional features can be used in within-
and across-network classification and de-anonymization tasks – with-
out relying on homophily, or the availability of class labels.

Thus, the problem is defined as follows. Given a graph G, com-
pute a node-feature matrix F with the following properties:

• Structural: The construction of F should not require addi-
tional attribute information on nodes or links.

• Effective: Good node-features should (1) help us predict node
attributes, when such attributes are available (as in the case of
IP traffic that we discuss next), and (2) be transferable across
graphs (e.g., when the graph changes over time).

The ideal features should help with data mining tasks. Typical
tasks include node classification (after we are given some labels),
de-anonymization of the nodes of a graph, and transfer learning.

Figure 1 gives a quick overview of (a) the intuition behind ReFeX

and (b) a preview of its classification accuracy. In (a), we show
egonets of nodes from different days in an IP network, where node
size and edge size are proportional to the traffic. The main point
is that the characteristics of the neighbors are valuable and help
us characterize the center node (manually labeled as ‘web’, ‘dns-
server’ and ‘p2p’, respectively for each column). Figure 1(b) shows
the classification accuracy of ReFeX (in blue bars) vs competitors -
higher is better; ReFeX wins consistently.



(a) Intuition (neighbors matter)
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(b) Performance preview (blue bars: highest - win)

Figure 1: (a) Intuition behind ReFeX: Six IP hosts from differ-
ent days of an enterprise network trace and (manually) labeled
by their primary traffic type. Node and edge size indicate com-
munication volume relative to the central node in each frame.
Regional structure, i.e. the types of neighbors that a given host
connects to, are vital. (b) classification accuracy of ReFeX with
respect to transfer learning, in blue bars (higher is better) - see
Figure (4) for more details.

The contributions of our work are as follows:

• Novel Design: We propose ReFeX, a scalable algorithm that
computes regional features capturing “behavioral” informa-
tion on large graphs.

• Effectiveness: ReFeX’s regional features perform well for
several graph mining tasks, like transfer learning (across-
network classification) and node de-anonymization on large
graphs.

The rest of the paper is organized as follows: the proposed strate-
gies are presented in Section 2; the experiments are presented in
Sections 3 and 4. In Section 5, we review the related work; and we
conclude the paper in Section 6.

2. PROPOSED ALGORITHM
Our algorithm ReFeX aggregates existing feature values of a node

and uses them to generate new recursive features. The initial set of

features used to seed the recursive feature generation can be struc-
tural information from the network or attributes from an external
source. Here, we focus on tasks where only structural information
is available. We separate structural attributes into three types: local,
egonet, and recursive features. Local and egonet features together
are called neighborhood features, and all three together are called
regional features.

2.1 Neighborhood Features
The base features that seed the recursive ReFeX process are lo-

cal and egonet features. These can be computed quickly for a given
node. We call the set of local and egonet features together neigh-

borhood features.
Local features are all essentially measures of the node degree.

If the graph is directed, they include in- and out-degree as well as
total degree. For weighted graphs, they contain weighted versions
of each local feature.

Egonet features are computed for each node based on the node’s
ego network (a.k.a. egonet). The egonet includes the node, its
neighbors, and any edges in the induced subgraph on these nodes.
Egonet features include the number of within-egonet edges, as well
as the number of edges entering and leaving the egonet. Strictly
speaking, the latter are not in the egonet but they can be counted
without looking at non-egonet nodes. As with local features, we
compute directed and/or weighted versions of these features if the
edges are directed and/or weighted.

2.2 Recursive Features
We broadly define a recursive feature as any aggregate computed

over a feature value among a node’s neighbors.

2.2.1 Generating Recursive Features

Currently ReFeX collects two types of recursive features: means
and sums.1 As a typical example, one recursive feature is defined as
the mean value of the feature unweighted degree among all neigh-
bors of a node. The features that can be aggregated are not re-
stricted to neighborbood features, or even to structural features.
The aggregates can be computed over any real-valued feature (in-
cluding other recursive features). We compute the means and sums
of all feature values. Moreover, when applicable, we compute these
for incoming and outgoing edges separately.

2.2.2 Pruning Recursive Features

Clearly, the number of possible recursive features is infinite and
grows exponentially with each recursive iteration. To reduce the
number of generated features, a variety of pruning techniques can
be employed. A simple example is to look for pairs of features
that are highly correlated. In this example case, the pruning strat-
egy is to eliminate one of the features whenever two features are
correlated above a user-defined threshold.

For computational reasons, ReFeX uses a simplified version of
this approach. Specifically, feature values are mapped to small in-
tegers via vertical logarithmic binning, then ReFeX looks for pairs
of features whose values never disagree by more than a threshold.
For details on the threshold, see Section 2.3 below.

First, each feature’s values are transformed into vertical loga-

rithmic bins of size p (where 0 < p < 1). The process is as

1We selected sum and mean as aggregate functions heuristically.
These simple measures capture the dominant trends among a node’s
neighbors w.r.t. each feature. Other functions, such as maximum,
minimum, and variance could easily be added to ReFeX. In our ex-
periments, sum and mean were sufficient to provide good empirical
performance on data mining tasks with a reasonable runtime.
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Figure 2: Vertical logarithmic binning of a feature value.

follows. For feature fi, the p |V | nodes with the lowest fi value
are reassigned fi value 0. If there are ties, it may be necessary to
include more than p |V | nodes. Next, p fraction of the remaining
nodes are assigned fi value 1, and p of the remaining nodes after
this are assigned value 2. This is repeated until all fi values have
been replaced by integer values between 0 and logp−1(|V |) (see
Figure 2).

We choose logarithmic binning for all features based on the ob-
servation that many graph properties exhibit power law distribu-
tions [1]. In particular, logarithmic binning always places most of
the discriminatory power among sets of nodes with large feature
values. This is reasonable, given that we expect to be able to make
better predictions about active nodes for which we have many ob-
servations than nodes for which we only have a few.

Once a set of features has been generated and binned, ReFeX

looks for pairs of features that do not disagree at any vertex by more
than a threshold s. We call such a pair of features s-friends. To
eliminate redundant features, we construct a feature-graph, whose
nodes are features and whose links are s-friend relations. Each
connected component of this graph is replaced by a single feature.
When possible, we retain “simpler” features, i.e. features generated
using fewer recursive iterations.2

If a recursive iteration results in no retained features, ReFeX halts
and reports the retained feature values from each of the previous
iterations. Note that a feature retained in iteration k may not be
retained in iteration k + 1, due to recursive features connecting
them in the feature-graph. In this case, we still record and output
the feature because it was retained at some iteration.

2.3 Parameters
ReFeX requires two parameters: p, which is the fraction of nodes

placed in each logarithmic bin, and s, which is the feature similarity
threshold.

The parameter p takes a value between 0 and 1, inclusive. In-
creasing p too close to 1 reduces the number of bins and increases
the effective pruning aggressiveness, which can lead to a loss of
2It may be the case that two features are not similar enough to
be joined in the feature graph, but reside in the same component
because of a chain of similar features between them. We exam-
ined feature graphs for a number of data sets and found that this
does occur. However, any other choice of criterion for joining fea-
tures (cliques, community discovery algorithms, etc.) would be
similarly heuristic and probably include outside cases that are un-
satisfactory. Any of these criteria could be used in place of the
connected-components criterion, however; we use connectedness
for its simplicity and ease of computation.

discriminatory power. Decreasing p to near 0 can generate many
bins and retain many features during pruning, which can increase
runtime significantly. In our experiments, we found p = 0.5 to be
a sensible choice – with each bin containing the bottom half of the
remaining nodes. We also found that the results were not sensitive
to the value of p as long as its value was not near 0 or 1.

For s, ReFeX uses relaxation at each iteration. For small graphs
(≤ 100K nodes), ReFeX uses s = 0 for the initial iteration (to
generate neighborhood features). This effectively retains any fea-
ture that does not totally agree with another feature in logarithmic
bin values. For larger graphs (> 100K nodes), the initial value of s
may be increased if computational resources are insufficient to gen-
erate the full set. On each subsequent iteration, ReFeX increased s

by 1. This ensures that the process will halt after no more than
logp−1(|V |) iterations, since the maximum value of any feature is
s at that point.

2.4 Computational Complexity
Let n be the number of nodes, m be number of edges, M = max-

imum degree, f = number of features, and di = degree of node i.
Computational complexity of ReFeX can be divided into two steps:
(1) computation of neighborhood features and (2) computation at
each subsequent iteration. Computation of neighborhood features
is expected to take O(n) for real-world graphs. See Lemma 1 for
details. At each subsequent iteration, ReFeX takes O(f(m+ nf))
time where f � n. The space requirement is O(m+ nf).

Lemma 1. The computation of neighborhood features takes O(nM �).
Proof. For brevity, we only give a sketch of the proof:�
(u→v)∈E degree(u) ≈

�M

1
n ∗ d(�−1)

i ∂di ≈ nM
�.

� = 3−α for real-world graph with power-law degree distributions
with exponent α. However, since α is typically in the range 2 <

α < 3 for real-world graphs [3], 0 < � < 1. �

3. FEATURE EFFECTIVENESS ON
NETWORK CLASSIFICATION

We describe experiments on within- and across-network classifi-
cation using features from ReFeX.

3.1 Data
IP-A and IP-B are real network-trace data sets collected roughly

one year apart on separate enterprise networks. The nodes are IP
addresses and the links are communications between the IPs. The
IP-A trace begins at midnight on day 1 and continues up to 12pm
on day 5. The IP-B trace begins at midnight on day 1 and continues
up to ≈5pm on day 6.

For days 1-4 of the IP-A dataset (IP-A1 to IP-A4), we extract
flows in the period from 12pm-1pm. We exclude day 5 because the
trace ended at 12pm. For IP-B, we extract flows from 12pm-1pm
for day 3 only. We then label all flows using a payload signature-
based classification tool. Once network flows are labeled, we trans-
fer labels to hosts by selecting the most frequent class labels from
among the host’s flows. The payload classifier can distinguish be-
tween over 15 classes of traffic (e.g., Web, DNS, SMTP, P2P).
However, since we found that 3 classes (namely, Web, DNS, and
P2P) made up the dominant traffic type for over 90% of the labeled
hosts, we remove all other labels and focus on the 3-class classifi-
cation problem. Table 1 summarizes the data that we extracted.

3.2 Classifiers
To test the predictive ability of ReFeX’s features, we use the log-

Forest model described by Gallagher et al. [11]. The logForest is a
bagged model, composed of a set of logistic regression (LR) clas-



IP-A1 IP-A2 IP-A3 IP-A4 IP-B
Nodes 81450 57415 154103 206704 181267

(labeled) 29868 16112 30955 67944 27649
Links 968138 432797 1266341 1756082 1945215

(unique) 206112 137822 358851 465869 397925
Web 32% 38% 38% 18% 42%
DNS 36% 49% 39% 20% 42%
P2P 32% 12% 23% 62% 16%

Table 1: Extracted data

sifiers, where each is given a subset of log(f ) + 1 of the f total
features. For our experiments, we use a logForest of 500 LR clas-
sifiers. Like Gallagher et al. [11], we found that the overall per-
formance of logForest was superior to standard logistic regression.
In addition, as a baseline, we include a standard homophily-based
relational neighbor classifier: wvRN (short for weighted-vote Re-
lational Neighbor) [23]. The wvRN classifier has been shown to
have excellent performance across a range of tasks. The classifiers
we compare are:

• wnRN+RL - a relational neighbor model, which uses wvRN
and relaxation labeling for collective classification

• Neighborhood - a logForest model, which uses the neighbor-
hood features only

• Regional - a logForest model, which uses the regional fea-
tures (i.e., neighborhood + recursive)

3.3 Feature Effectiveness on Within-Network
Classification

3.3.1 Methodology

Each data set contains a set of core nodes for which we have
ground-truth (i.e., we know the true class labels). In all cases, clas-
sifiers have access to the entire data graph during both training and
testing. However, not all of the core nodes are labeled. We vary
the proportion of labeled core nodes from 10% to 90%. Classifiers
are trained on all labeled core nodes and evaluated on all unlabeled
core nodes.

Our methodology is as follows. For each proportion of core
nodes labeled, we run 10 trials and report the average performance.
For each trial and proportion labeled, we choose a class-stratified
random-sample containing (1.0 - proportion labeled)% of the core
instances as the test set and the remaining core instances become
the training set. Note that proportion labeled less than 0.9 (or
greater than 10 trials) means that a single instance will necessarily
appear in multiple test sets. The test sets cannot be made to be in-
dependent because of this overlap. However, we carefully choose
the test sets to ensure that each instance in our data set occurs in
the same number of test sets over the course of our experiments.
This ensures that each instance carries the same weight in the over-
all evaluation regardless of the proportion labeled. Labels are kept
on the training instances and removed from the test instances. We
use identical train/test splits for each classifier. Our experimental
framework sits on top of the open source Weka system [28]. We
implement our own network data representation and experimental
code, which handles tasks such as splitting the data into training
and test sets, labeling and unlabeling of data, and converting net-
work fragments into a Weka-compatible form. We rely on Weka for
the implementation of logistic regression and for measuring classi-
fier performance on individual training/test trials.

3.3.2 Results
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Figure 3: Within-network classification with wvRN+RL, neigh-
borhood, and regional classifiers. The regional classifier domi-
nates when labels are sparse.
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Table 2: Across-network experiments performed

Figure 3 demonstrates the performance of the wnRN+RL, Neigh-

borhood and Regional classifiers on a within-network classification
task on the IP-A3 data set. We repeated this task on each of the IP-
A data sets with essentially equivalent results. The within-network
classification setting is the sweet spot for homophily-based mod-
els like wvRN. So, it is no surprise that wvRN+RL performs well
on this task with 90% of nodes in the network labeled. However,
the performance of wvRN+RL degrades quickly as labels become
more sparse. The Regional and Neighborhood classifiers are less
sensitive to the availability of labeled data since they do not rely on
labeled neighbors to make accurate classifications. As a result, the
Regional classifier outperforms wvRN+RL when labeled data are
sparse. The dramatic difference in performance between Neigh-
borhood and Regional demonstrates that the recursive feature gen-
eration process leads to more expressive features that are able to
represent important concepts that cannot be captured by the neigh-
borhood features alone.

3.4 Feature Effectiveness on Across-Network
Transfer Learning

3.4.1 Methodology

For each experiment, the training graph has all known labels
available. The test graph is completely unlabeled. Each classifier
is evaluated on all known ground truth labels in the test graph. We
use an identical set of features for all data sets. This set of fea-
tures comes from running ReFeX on the IP-A1 data set. Table 2
summarizes the across-network experiments:
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Figure 4: Across-network transfer learning with neighborhood
and regional features. Regional demonstrates consistently high
accuracy on difficult transfer learning tasks.

3.4.2 Results

Figure 4 demonstrates the performance of Neighborhood and Re-

gional on a series of across-network transfer learning tasks. Here,
we train on one network, where all known labels are available, and
test on a separate network that is completely unlabeled. We em-
phasize the difficulty of these tasks given the (sometime extreme)
differences in class distributions between data sets (see Table 1).
The performance of the Default classifier is a good indicator of the
difficulty of each task since this model makes predictions based
solely on the most frequent class from the training set. We also
note that wnRN+RL is not applicable for these tasks since it relies
on the availability of some known class labels to seed the inference
process.

As in the within-network setting, the Regional classifier is the
best overall performer on the across-network tasks, achieving 82%
- 91% accuracy training and testing on separate days of IP-A and
77% accuracy training on all days of IP-A and testing on IP-B. The
performance of Regional applied to IP-A4 is particularly impres-
sive, given the extreme differences in class distribution between
IP-A4 and the other data sets (see Table 1). We note that Regional
is somewhat less successful training on IP-A4. In fact, training on
IP-A4 and testing on IP-B is the one case where Regional under-
performs Neighborhood. However, the difference in performance
is small (¡5%). Finally, and not surprisingly, we see a benefit to
training on a number of diverse data sets instead of a single data
set. Specifically, we achieve 77% training on all of the IP-A data
sets and testing on IP-B, whereas we see a lot of variation (55% -
85%) training on individual days from IP-A.

4. FEATURE EFFECTIVENESS ON
IDENTITY RESOLUTION

To demonstrate that regional features capture meaningful and in-
formative behaviors of nodes, we present a collection of identity
resolution tasks. In each task, we compute a set of regional fea-
tures on a pair of networks whose node-sets overlap. Our hypoth-
esis is that a node’s feature values will be similar across graphs.
We present an experimental framework that allows us to test this
empirically. In our experiments, we will demonstrate how this

method can be used to perform “de-anonymization”on social net-
work datasets when external non-anonymized data is available.

4.1 Problem Statement
For a pair of graphs whose node-sets overlap, but whose edge-

sets can be distinct (or even represent a totally different type of
observation), can we use network structure alone to map nodes in
one network to nodes in the other? More realistically, can we re-
duce the entropy associated with each node in one graph, with re-
spect to its possible identity among nodes in the second graph? For
a given method, we will measure success at this task by counting
how many “incorrect” nodes the method guesses before it finds the
correct node in the second graph.

4.2 Methodology
We are given two graphs, Gtarget and Greference, and a vertex

vtest which exists in both graphs. To test a given identity resolution
strategy, we allow the strategy to guess reference vertices �vguess1 ,
v
guess
2 , . . . , vguessk � until it correctly guesses vtest. The score as-

sociated with this strategy is k, the number of guesses required to
find the node. The baseline method is to guess at random; for this
strategy we assume the expected score |Vreference| /2.

The strategies we test experimentally use structural features to
compute guesses. We present results for (1) Local features only,
(2) Neighborhood features only, and (3) Regional features. The fea-
tures are computed using ReFeX on Gtarget. The same features are
then computed on Greference. For a given strategy, the guesses are
generated in order of increasing Euclidian distance from Vtarget in
feature space. Our hypothesis is that Regional will score lower (i.e.
better) than Local or Neighborhood.

To compare the overall performances of strategies, we compute
scores across a set Soverlap of all vertices that exist in both graphs.
When it is not computationally feasible to analyze every node in
Soverlap, we select a set of vertices Stest ⊂ Soverlap and report
all scores for nodes in Stest. In these experiments, we select Stest

by taking the 1000 vertices in Vtarget with the highest degree, and
keeping only those vertices that are also in Soverlap.

There are a number of ways to compare performance on a given
test set. For example, the mean score across all target instances
is a measure of success, with lower mean scores indicating better
performance. We can also compute the fraction of target instances
that score less than a given threshold; here a larger fraction is better.
For example, we can report the fraction of target vertices whose
score is less than 1% of |Vreference|.3

4.3 Data
Table 3 outlines the data sets used in this set of experiments.

The first is a pair of Twitter networks from 2008, including a who-
follows-whom network and a who-mentions-whom network. The
second is an SMS communication network. The third is a collection
of 28 days of Yahoo IM events. The fourth is IP traffic on two
separate enterprise networks, observed at several different times.
We described the IP network in details in Section 3.1.

Yahoo! IM Networks. Each graph here is a collection of IM
events taken from one of 28 days of observation.4 Each node is
an IM user, and each link is a communication event on a given

3If we combine the latter across all thresholds, we can treat it as
the cumulative distribution function of p(score(x)), the empirical
probability distribution over scores for this strategy. This presenta-
tion is harder to interpret, however, since one strategy may perform
better in some regions and worse in others, and we are generally
concerned with the lowest possible scores.
4http://sandbox.yahoo.com/



Data Graph Source # Nodes # Edges Weighted? Directed? # Local # Nbrhood # Regional # Recursive
Features Features Features Iterations

Twitter (T) Who-follows-whom 465K 845K Yes No 3 8 45 6
Twitter (R) Who-mentions-whom-1st 840K 1.4M Yes No 3 8 45 –
SMS (T) 04/01/2008 144K 580K Yes Yes 7 21 53 3
SMS (R) 04/02/2008 128K 505K Yes Yes 7 21 53 –

Yahoo! IM (T) Day 1 50K 123K Yes Yes 3 12 79 5
Yahoo! IM (R) Day 2-28 29K-100K 80K-280K Yes Yes 3 12 79 –
IP Comm. (T) IP-A1 81K 206K Yes Yes 7 22 373 4
IP Comm. (R) IP-A2, -A3, -A4, IP-B 57K-206K 137K-466K Yes Yes 7 22 373 –

Table 3: Data sets used in the identity resolution task. (R) refers to the Reference Graph. (T) refers to the Target Graph. The features
are generated on the Target Graph are used to compute feature values in the Reference Graph.

day. In some cases, multiple events are reported for a given pair of
users on a given day; when this happens the links are given weights
according to how many events are reported.

We use the IMs from day 1 as Gtarget, and compute scores for
the other days (2 - 28) as Greference. The task here is to take an IM
user from day 1 and locate him in later days. Figure 5 shows that
the similarity in node-sets and edge-sets with Gtarget is low for all
Greference graphs. However, in most cases there is a significant
overlap with the 1000 nodes in the test set Stest.
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Figure 5: Yahoo! IM graphs across 28 days. The similarity
between Gtarget on Day 1 and Greference on Days 2 to 28 is
low but there is significant overlap in most cases with the test
nodes.

Enterprise Network Traces. We describe these IP networks in
detail in Section 3.1. The target graph comes from IP-A1. There
are four reference graphs total: IP-A2, IP-A3, IP-A4, and IP-B.
The task is to identify an external IP address from one day to the
next or one IP network to the next. A potential application of this
task is to de-anonymize a network trace where the IP addresses are
hidden; one could observe a non-anonymized enterprise trace and
use structural information to guess the identities of the anonymized
IPs.

Twitter Relationships. This dataset consists of two graphs taken
from Twitter in 2008.5 One is a social “who-follows-whom” net-
work that was generated by starting with a few seed users (all fa-
mous people with verified accounts) and crawling “follows” links
5http://www.public.asu.edu/ mdechoud/datasets.html

for a few iterations. The other is taken from actual tweets observed
during a year. The users whose tweets are observed are the same as
the users in the social network.

To construct a graph from tweets, we generate “mentions-first”
edges. That is, if a tweet by user1 contains a username (e.g.
@user2), we add a link between user1 and user2 in the network,
but only if user2 is the first user mentioned in the tweet. We do
not include self-mentions.

For this experiment, we use the social network as Gtarget and the
mentioning network as Greference. Success at this task indicates
that one could de-anonymize a social network by using publicly
available text data, so long as usernames can be parsed from the
text. This has important implications with respect to privacy of
users in published “anonymized” social networks.

SMS Messages. SMS-Message dataset is constructed from short
messages in a mobile phone operator at Asia. Each node corre-
sponds to a mobile phone client. The reference and the target
graphs encode the number of short messages among those nodes,
extracted at two different days. We also eliminate those pairs of
less active users with only one message exchange between them.

4.4 Feature Effectiveness Results
We present results for each of the four datasets. The first three

demonstrate the effectiveness of regional features for identity reso-
lution, and the fourth serves as a practitioner’s note regarding test-
set selection.

Yahoo! IM Networks. Figure 6 shows the average score for
each of the 27 reference graphs, as a percentage of the expected
score in the baseline strategy (recall that the baseline strategy scores
|Vreference|

2 on average). All feature-based strategies outperform
the baseline strategy, but performance of all strategies suffers on
weekends when the graphs are significantly different. In general,
expected scores are much better (lower) for Neighborhood than Lo-
cal, and somewhat better for Regional than Neighborhood.

Figure 7 provides another view of the performance. Each data
point here shows the fraction of test nodes that scored better than
1% of the maximum possible score |Vreference|. A higher fraction
here indicates better performance, as the distribution of scores is
higher near the minimum score 1. Again, Regional outperforms
the other strategies in most instances. This improvement decreases
on the weekends, and in one case (Day 27) Regional does no better
than Local.

Poor performance on the weekends is not unexpected, and strength-
ens our belief that structural features are capturing behavior. Recall
from Figure 5 that the set of active users is significantly different
on the weekends, as is the set of observed communications. Intu-
itively, it is an obvious fact that many users behave differently both
in general and specifically with respect to IM communication on
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Figure 6: Yahoo! IM: Regional is consistently better (lower
average score) at tracking test nodes across several weeks of
IM traffic.
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Figure 7: Yahoo! IM: Regional is consistently able to identify
more test nodes within the first 1% of guesses (higher is better).
It dips in performance corresponding to weekends, when the
graph structure is very different.

the weekend than during the weekdays. Regional is especially sus-
ceptible to errors in this case, because these changes in behavior
are amplified during recursive feature generation.

Enterprise Network Traces. Regional is very effective at track-
ing external IP addresses over time, as seen Figure 8. It dominates
the performance of Local and Neighborhood in all tests, with over
45% of Stest scoring in the top 1% of possible scores even a year
after the communications in Gtarget are observed. Note that Stest

is significantly smaller after a year due to decreased overlap; the re-
ported results are fractions of |Stest|. Even though the traces were
collected from separate networks, common external nodes (e.g.,
google.com) will be included in both.

In this task, average scores were inconsistent, with Local outper-
forming Regional in some instances. Analysis of the distributions
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Figure 8: IP Communication: Regional is the best strategy
for tracking IP addresses (higher is better). Even in the IP-B1
graph, which was observed on a different enterprise network,
Regional locates nearly 50% of test nodes in the first 1% of its
guesses.

of scores here shows that Regional outperforms Local for a major-
ity of the test instances, but there is a small subset of test nodes for
which Regional performs extremely poorly (near baseline).

Twitter Relationships. This experiment is the “hardest”, in that
Gtarget and Greference are generated by different processes alto-
gether. Gtarget is a social network of users following other users,
while Greference is generated by users mentioning each other in
tweets. Surprisingly, our method is still able to do well at resolving
some users here.

For this experiment, we applied each strategy to several different
test sets, rather than just taking the top 1000 nodes by degree. In
particular, we tested separately on each vertical logarithmic bin (see
Section 2.2.2). For bins with over 1000 users, we sampled 1000
users uniformly at random.
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Figure 9: Twitter: Regional features are able to de-anonymize
more active nodes (lower is better).



Figure 9 shows the expected scores of each strategy. The ten
highest-degree bins, taken together, correspond roughly to the top
1000 nodes by degree. Regional features outperform other strate-
gies in this range, although their performance drops off in the lower
degree bins.

All three strategies perform less well on these graphs than on the
other datasets, but they are still able to reduce the entropy signif-
icantly for the most active users. For example, the highest degree
user is BarackObama, and Regional achieved a score of 5 on that in-
stance (the four wrong guesses were AddToAny, MrTweet, tferriss,
and THE REAL SHAQ). Local and Neighborhood each scored 24
for BarackObama.

For the lowest-degree nodes, all methods perform worse than
baseline. This drop-off is expected; less active nodes are harder to
identify because (1) they have fewer observed behaviors to leverage
and (2) there are more nodes that are very similar to them.

SMS Messages. This dataset serves to point out a case in which
Regional does not perform best, but also a practitioner’s note that
often allows for improved results when performing identity resolu-
tion outside of an experimental setting.

Figure 10 shows that the performance with respect to nodes scor-
ing better than 1% of |Vreference| can depend on the elements of
Stest. When Stest consists of the top 1000 nodes by degree, each
method scores better than 1% on 60 − 65% of the test nodes, and
Regional performs worst. However, if each strategy is allowed to
“hand-pick” a test set by taking the top 1000 nodes by feature-
vector magnitude (in that strategy’s feature space), performance
improves across the board. Regional improves the most, and is
the top performer in this case.
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Figure 10: SMS: When allowed to suggest test nodes, Neigh-
borhood and Regional locate near 85% of test nodes in the top
1% of guesses. Without test set selection, all strategies perform
equally well.

By allowing each strategy to select its test set, we leverage the
fact that a high-degree node may be less distinctive than a low-
degree node that has other large feature values. However, as an
experiment to compare strategies this approach is not “fair” because
the set of test instances is different for each strategy.

We tested the other datasets to determine whether feature mag-
nitude is always better than degree for selecting test nodes. While
this is true in general, there are cases in which performance de-
grades when using feature magnitudes. This is often due to differ-

ent sizes in the overlap between the 1000 proposed test nodes and
Vreference.

With respect to runtime, our largest graph (Twitter Mentions
graph with 840K nodes and 1.4M edges) ran in about 5 hours on a
commodity processor. Graphs with fewer than 100K nodes run in
an hour or less.

5. RELATED WORK
Feature Engineering in Graph data. There has been compre-

hensive work studying both global and local structural features of
real graphs. For example, at global scale, graph diameter has been
observed to be small [2] and to shrink over time [20]. It has also
been reported that the number of edges in a time-varying graph
grows super-linearly with the number of nodes, following a power-
law relation [20]. Moreover, the principal (largest) eigenvalue of
the graph is shown to be informative as a vulnerability measure of
the graph [27]. Other local and community-level observations show
that degree distributions in many graphs follow power-laws [5, 7,
17, 24] and that graphs exhibit modular structure, with nodes form-
ing groups, and groups within groups [9, 14]. This body of work
has informed our selection of a set of neighborhood features, upon
which we then build recursive features.

Feature Extraction for Data Mining. There also exists related
work which exploits feature extraction from graphs for several data
mining tasks. One study approaches link prediction as a super-
vised learning problem [21]. They extract topological features for
node pairs and show that the features boost prediction performance
and that the supervised approach outperforms unsupervised meth-
ods. Another recent study [16] develops a multi-level framework
to detect anomalies in time-varying graphs based on graph, sub-
graph, and node level features. The algorithms rely on extracting
graph-level (global) features and tracking these metrics over time.
The time points identified as interesting or suspicious are passed to
finer levels where more complex tools inspect node and community
features to spot regions of interests and flag abnormal nodes. An-
other study extracts egonet features and patterns in order to detect
anomalous nodes in weighted graphs[1]. There has also been work
on using local and global structural features to improve the perfor-
mance of network classifiers[10]. In our work, we introduce meth-
ods for recursive feature extraction. Our results show that recursive
features yield better performance in several data mining tasks, such
as transfer learning and identity resolution, compared to their non-
recursive counterparts.

Another body of related work uses frequent sub-graphs as struc-
tural features for classification of graphs [18, 8] and anomaly de-
tection [26, 22]. These methods, however, assume that the nodes in
given graphs have labels. On the other hand, our feature extraction
procedures exploit the structure of the graphs, without any assump-
tion on the availability of labels.

Transfer Learning. Transfer learning (i.e., domain adaption)
has been a very active research area in recent years. Representa-
tive work includes multi-label text classification [30, 13], cross-
domain sentiment prediction [4, 6, 15], intrusion detection [12],
verb argument classification [19], cross-lingual classification [25],
and cross-domain relation extraction [29]. In all of these scenarios,
the features are given as the input of their algorithms (e.g. the word
frequency of the documents) and the goal is to leverage the given
features to boost performance in the target domain. In this paper,
we aim to answer an orthogonal question: what kind of features

are effective in transferring the knowledge from the source domain

to the target domain? Our case studies show that the proposed
recursive features are indeed effective for across-network classifi-
cation and identity resolution, especially when there are few or no



labels in the target domain, or homophily among class labels does
not hold. We expect the proposed recursive features to have wide
applicability for transfer learning tasks.

6. CONCLUSIONS
We described a novel algorithm ReFeX, which extracts regional

features from nodes based on their neighborhood connectivity. These
regional features capture behavior in terms of the the kind of nodes
to which a given node is connected as opposed to the identity of
those nodes. We showed that ReFeX was scalable and effective in
various graph mining tasks including within- and across-network
classification and identity resolution tasks.
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