
Supplementary: A Nearly-Black-Box Online Algorithm for Joint Parameter and
State Estimation in Temporal Models

Yusuf B. Erol†∗ Yi Wu†∗ Lei Li‡ Stuart Russell†
† EECS, UC Berkeley {yberol,jxwuyi,russell}@eecs.berkeley.edu

‡ Toutiao Lab lileicc@gmail.com

Bootstrap particle filter as a subcase of APF
Here we will show that when q is a delta function, APF re-
covers the bootstrap particle filter. The Dirac delta function
can be considered as the limit of a Gaussian as the variance
goes to zero, δ(θ − µ) = limσ2→0N (θ;µ, σ2). Therefore,
we can view q as an exponential family distribution. Specif-
ically we are dealing with a Gaussian distribution with un-
known mean and known variance (zero-variance). Then the
moment matching integral required for assumed density fil-
tering reduces to matching the means. If qi−1 = δ(θ−µi−1),
then

µi =

∫
θqi(θ)dθ =

∫
θp̂(θ)dθ

=

∫
θsi(θ)δ(θ − µi−1)dθ∫
si(θ)δ(θ − µi−1)dθ

=
µi−1si(µi−1)

si(µi−1)
= µi−1 (5)

where the last equality follows from the sifting property of
the Dirac delta function. The main result here is that for Q
Dirac delta, µi = µi−1; that is, the APF Update step does
not propose new values. Therefore, our proposed algorithm
recovers the standard bootstrap particle filter.

Proof for Theorem 1
In this section1 we will assume an identifiable model where
the posterior distribution approaches normality and concen-
trates in the neighborhood of the posterior mode. Suppose θ̂
is the posterior mode and hence the first-order partial deriva-
tives of log p(θ | x0:T , y0:T) vanish at θ̂. Define

Î = −∂
2 log p(θ | x0:T , y0:T)

∂θ∂θT

∣∣∣∣
θ=θ̂

(6)

Applying a second-order Taylor approximation around θ̂ to
the posterior density results in

log p(θ | x0:T , y0:T) ≈ log p(θ̂ | x0:T)− 1

2
(θ− θ̂)T Î(θ− θ̂)

∗The first two authors contributed equally to this work.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Our discussion follows (Opper and Winther 1998) which con-
siders the asymptotic performance of assumed density filtering for
independent identically distributed data.

Hence;

p(θ | x0:T , y0:T) ∝ exp

{
−1

2
(θ − θ̂)T Î(θ − θ̂)

}
(7)

which is a p (θ ∈ Rp) dimensional Gaussian density with
mean θ̂ and covariance Î−1. As the posterior becomes highly
concentrated in a neighborhood of the posterior mode, the
effect of the prior on the posterior diminishes, which is the
Bernstein-von Mises theorem. Then we can rewrite Eq. 7 as

p(θ | x0:T , y0:T) ∝ exp

−T2 ∑
ij

(θi − θ̂i)Ĵij(θj − θ̂j)


where Ĵij = −∂i∂j 1

T

∑T
t=1 log st(θ̂) and st(θ) = p(xt |

xt−1, θ)p(yt | xt, θ).
The assumed density filter updates for the Gaussian case

has been derived in earlier sections. We will reorganize them
in a more convenient form.

µi(t) =

∫
θist(θ)qt−1(θ)dθ∫
st(θ)qt−1(θ)dθ

Σij(t) =

∫
θiθjst(θ)qt−1(θ)dθ∫
st(θ)qt−1(θ)dθ

− µi(t)µj(t)

We will use a simple property of centered Gaussian ran-
dom variables z, E[zf(z)] = E(f

′
(z)).E(z2) which can be

proven by applying integration by parts. Then the explicit
updates can be written as follows:

µi(t) = µi(t− 1)

+
∑
j

Σij(t− 1)× ∂j logEu[st(µ(t− 1) + u)]

Σij(t) = Σij(t− 1) (8)

+
∑
kl

Σik(t− 1)Σlj(t− 1)∂k∂l logEu[st(µ(t− 1) + u)]

where u is a zero-mean Gaussian random vector with co-
variance Σ(t− 1). We define Vkl = ∂k∂l logEu[st(θ + u)]
and assume that for large times we can replace the difference
equation for Σ(t) with a differential equation. Then we can
rewrite Eq. 8 as

dΣ

dt
= ΣV Σ (9)

which is solved by

dΣ−1

dt
= −V (10)

Integrating both sides

Σ−1(t)− Σ−1(t0) = −
∫ t

t0

V (τ)dτ (11)

For large t ; we expect the covariance Σ to be small such
that logEu[st(µ+u)] = log st(µ). Assuming that the online
dynamics is close to θ∗ and dividing both sides of Eq. 11 by
t and taking the limit t→∞, we get

lim
t→∞

(Σ−1(t))ij
t

= lim
t→∞

−
∫ t
t0
∂i∂js(θ

∗)

t
(12)

Further assuming ergodicity (i.e., markov process converg-
ing to some stationary distribution π), we can replace the
time average with the probabilistic average.

limt→∞
(Σ−1(t))ij

t
= (13)

−
∫
π(x)p(x′ | x, θ∗)∂i∂j log s(θ∗)dxdx′

If we define the right hand side as Aij = −
∫
π(x)p(x′ |

x, θ∗)∂i∂j log p(x′ | x, θ∗)p(y | x′, θ∗)dxdx′ we have;

lim
t→∞

Σ(t) =
A−1

t
(14)

We will also analyze the asymptotic scaling of the estima-
tion error, defined as the deviation between θ∗ and µ(t). As-
suming that the estimate µ is close to θ∗ and the posterior
is sharply concentrated we can neglect the expectation with
respect to u in Eq.8. Defining µi(t) = θ∗i + εi(t), and apply-
ing a first order Taylor approximation to Eq. 8 around θ∗ we
get;

εi(t+1)−εi(t) =
∑
`

Σi`∂` logP+
∑
k`

Σi`εk(t)∂k∂l logP

where P ≡ p(x′ | x, θ∗)p(y | x′, θ∗). Taking the expecta-
tion with respect to the stationary distribution (denoted by
an overbar) and using the relationship in Eq. 14 and replac-
ing the difference equation with a differential equation we
get an equation of motion for the expected error ei = ε̄i.

dei
dt

+
ei
t

=
∑
j

(A−1)ij
t

∂j logP (15)

As t→∞ right hand side vanishes and hence the error term
decays like ei ∝ 1

t .
Revisiting Eq. 7, the true posterior covariance matrix is

given by C−1 = T Ĵ . Due to our ergodicity assumption,
limt Ĵ = A. Hence the true posterior density covariance
asymptotically converges to A−1/T which is the same limit
as the assumed density filter covariance Σ(t).

KL divergence between two d-dimensional multivariate
Gaussians, N (µ1,Σ1) and N (µ2,Σ2) is given by

1

2

[
log
|Σ2|
|Σ1|

− d+ tr(Σ−12 Σ1) + (µ2 − µ1)TΣ−12 (µ2 − µ1)

]

We have shown that limt→∞ C,Σ = A−1/t and µ(t) →
θ∗. Due to the identifiability assumption, the posterior mode
is also assumed to converge to the parameter θ∗. Applying
these findings to the earlier KL-divergence formula, we can
see that;

lim
t→∞

DKL(p(θ | x0:t, y0:t)||qt(θ)) = 0. (16)

For the SIN model discussed in the experiments section,
the true posterior p(θ | x0:t) is computed for a grid of pa-
rameter values in O(t) time per parameter value. Assumed
density filtering is also applied withQ Gaussian and the true
density (solid) vs. assumed density (dashed) is illustrated in
Fig. 2. Notice that, ADF is slightly off at earlier stages, how-
ever, does indeed catch up with the ground truth with more
data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

0

5

10

15

t=100

t=250

t=500

t=1000

t=100

t=250

t=500

t=1000

Figure 2: True posterior p(θ | x0:t) vs assumed density fil-
ter estimate qt(θ) (solid vs dashed line respectively). for the
SIN model.

As predicted by Eq. 15, the error term converges to zero
as shown in Fig. 3(a). Figure 3(b) illustrates the asymptotic
behavior of the true posterior covariance C(t) and assumed
density covariance Σ(t). Assumed density filter quickly ap-
proximates the covariance. Most importantly, as can be
seen from the plot, logC(t) and log Σ(t) is log(1/t) +
constant asymptotically, and this agrees with our deriva-
tions in Eq. 14. Figure 3(c) confirms our theoretical result
of KL divergence converging to zero in the long-sequence
limit.

More Details of Experiments
Choice of M in APF: Generally, for continuous parame-
ters, thanks to the Gaussian quadrature rule, a small M is
enough (7 in SIN and 15 in BIRD). For discrete parameters,
a larger M is required (100 in SLAM). Note that the choice
of M does not depend on K or T .

Toy nonlinear model (SIN)
The reason for generating 5000 data points is to ensure the
true posterior converges to a sharp mode around the true pa-
rameter 0.5, as shown in Fig. 2. Due to the sharp posterior,
PMMH with a naive proposal or PGibbs without enough par-
ticles will mix very slowly.

0 100 200 300 400 500 600 700 800 900 1000

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ǫ
(t

)

(a) Error term ε(t)

0 100 200 300 400 500 600 700 800 900 1000

t

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g
va
ri
an

ce

logΣ(t)
logC(t)
log 1

t

(b) Covariance term Σ(t)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

t

0

0.5

1

1.5

2

2.5

3

3.5

D
K
L
(p
(θ
|x

0:
t
)|
|q
t
(θ
))

×10
-4

(c) KL divergence

Figure 3: SIN model with θ∗ = 0.5

When given too few data points, the posterior becomes
flat and makes the approximation problem easy for the in-
ference algorithms.

The bimodal variant of SIN demonstrates the applicabil-
ity of APF for models with a multi-modal posterior when
using mixtures of Gaussians as the approximate distribu-
tion. As shown in Fig.1(b), increasing the number of mix-
tures will help improve the chance for finding all the pos-
sible modes while an inappropriate approximate distribu-
tion (L = 2) can lead to large bias. Lastly, although APF
needs more mixtures to find multiple modes, it still con-
verges much faster than PMCMC in this specific example.

Simultaneous localization and mapping (SLAM)
The 41 actions consist of 21 consecutive right-move actions
in the beginning and 20 left-move actions afterwards. Ini-
tially the robot locates on the leftmost cell. We color all the
odd cells 1 and even cells 0. The robot slipped at time 4 and
always observed the true color of the cell. In this case, the
true posterior of the colors conditioning on the observations
is very sharp and close to the true colors.

Note that randomly generated data may lead to a very flat
posterior close to the prior, on which even the plain particle
filter may work. While, with our specially designed data, a
single particle may succeed in guessing the true color only
with probability of 2−20.

Likewise, PMCMC using a proposal resampling the col-
ors of all the cells will fail either. Therefore, in the experi-
ment, we choose a proposal that resamples only a single cell
per iteration. In our experiments, as N increases, the KL-
divergence decreases very slowly. We suspect that, although
better than resampling all the cells, the chosen proposal is
still not enough for PMCMC to mix fast. By contrast, APF
can quickly converge to the correct posterior even using a
very small number of particles (K) as shown in Fig.1(d).

Tracking bird migration (BIRD)
In the dataset of the bird migration problem, there are
roughly 106 birds observed. The eastern continent of the
U.S.A. is partitioned into a 10x10 grid. For each grid cell,
the total number of birds is observed on 60 days. We aim
to infer the number of birds migrating at different grid loca-
tions between two consecutive days.
BIRD can be viewed as complicated HMM model where

both the transition and observation likelihood depend on the
parameters.

Here is a simplified BLOG program for the BIRD model.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

//parameters
random Real beta1 ~ UniformReal(0, 10);
random Real beta2 ~ UniformReal(0, 10);
random Real beta3 ~ UniformReal(0, 10);
random Real beta4 ~ UniformReal(0, 10);
//pre-computed features, details omitted
fixed RealMatrix F1(Loc src) = ...
fixed RealMatrix F2(Loc src) = ...
fixed RealMatrix F3(Loc src,Timestep t)=...
fixed RealMatrix F4(Loc src) = ...
//flow probabilities (states)
random RealMatrix probs(Loc src, Timestep t)~
 exp(beta1 * F1(src) + beta2 * F2(src)
 + beta3 * F3(src,t) + beta4 * F4(src));
//number of birds at location loc (state)
random Integer birds(Loc loc, Timestep t) ~
 if t == @0 then initial_value[loc]
 else
 sum({outflow(src,prev(t))[dst] for Loc src});
//outflow from src to other locations (state)
random RealMatrix outflow(Loc src, Timestep t)
 ~ Multinomial(birds(src, t), probs(src, t));
//Noisy Observations
random Integer NoisyObs(Loc loc, Timestep t)~
 if birds(loc, t) == 0 then Poisson(0.01)
 else Poisson(birds(loc, t));

Compilation Optimizations in SPEC
In this section, we introduce some optimizations in the im-
plementation of SPEC. These techniques are mostly stan-
dard techniques from programming languages and adopted
by many modern PPL compilers. All the source code of
SPEC will be released after the paper gets accepted.

Memory Efficiency
Memory Pre-allocation: Memory management is a critical
issue for particle filter algorithms since it is often necessary
to launch a large number of particles in practice. Systems
that does not manage the memory well will repeatedly allo-
cate memory at run time. For example, the original inference
engine of BLOG will allocate memory for new particles and

erase the memory belonging to the old ones after each iter-
ation. This introduces tremendous overhead since memory
allocation is slow.

By contrast, SPEC will analyze the input model and al-
locate the minimum static memory for computation: if the
user specifies to run K particles, and the Markov order of
the input model is D, SPEC will allocate static memory for
(D+1)∗K particles in the target code. When the a new itera-
tion starts, we utilize a rotational array to re-use the memory
of previous particles.
Lightweight Memoization: Notice that adopting an ex-
pressive language interface (i.e. syntax of BLOG) might lead
to time-varying dependencies between random variables.
Similar to the compilation of lazy evaluation in program-
ming language community, SPEC memoizes the value for
each random variables already sampled. An example com-
piled code fragment for the SIN is shown below.

class TParticle { public:

// value of x and y at current timestep

double val_x, val_y;

// flag of whether x/y is sampled

int mark_x, mark_y;

} particles[K][DEP]; // particle objects

// getter function of y(t)

double get_y(int t) {

// get the corresponding particle

TParticle &part = get_particle(t);

// memoization for y(t)

if(part.mark_y == cur_time) return part.val_y;

part.mark_y = cur_time;

// sample y(t), call getter function of x(t)

part.val_y = sample_normal(

sin(get_theta() * get_x(t-1)),

0.5);

return part.val_x;

}

This code fragment demonstrate the basic data structures
as well as the memoization framework in the target code. K
denotes the number of particles. DEP is equal to the Markov
order of the model plus 1. In the memoization framework,
SPEC allocates static memory for all the random variables
within a particle data structure and generates a flag for
each random variable denoting whether it has been sampled
or not. Each random variable also has its getter function.
Whenever accessing to a random variable, we just call its
getter function. In practice, memoization causes negligible
overhead.

Memoization also occurs in BLOG. However, every ran-
dom variable in BLOG has a string “name”, and a generic
hashmap is used for value storage and retrieval, which brings
a great deal of constant factor at run time.
Other Optimizations: SPEC also avoids dynamic mem-
ory allocation as much as possible for intermediate computa-
tion step. For example, consider a multinomial distribution.
When its parameters change, a straightforward implemen-
tation to update the parameters is to re-allocate a chunk of
memory storing all the new parameters and pass in to the ob-
ject of the multinomial distribution. However, this dynamic
memory allocation operation is also avoided in SPEC by
pre-allocating static memory to store the new parameters.

Computational Efficiency
Pointer References: Resampling step is critical for parti-
cle filter algorithms since it requires a large number of data
copying operations. Note that a single particle might oc-
cupy a large amount of memory in real applications. Directly
copying data from the old particles to a new ones induce
tremendous overhead.

In SPEC, every particle access to its data via an indirect
pointer. As a result, redundant memory copying operations
are avoided by only copying the pointers referring to the ac-
tual particle objects during resampling Note that each parti-
cle might need to store multiple pointers when dealing with
models with Markov order larger than 1. An example com-
piled code is shown below.
// indirect pointers to the actual particle

TParticles* part_ptrs[K][DEP];

TParticle& get_particle(int t) {// rotational array

return *part_ptr[cur_part][t % DEP]; }

Locality: Besides using pointer references to reduce the
amount of moving data, SPEC also enhances program lo-
cality to speed up re-sampling. In the compiled code, the
index of the arrays stores the indirect pointers are carefully
designed to take advantage of memory locality when copy-
ing. The fragment of code used in resampling step is shown
below.
void resample_ptr(int* target,

TParticle* part_ptr[K][DEP], //storage of pointers

TParticle* backup_ptr[K][DEP]) // temporary storage

{ for (int i = 0; i < K; ++i) {

// pos: index of particle to copy data from

int& pos = target_ptr[i];

// move continuous range of data

std::memcpy(backup_ptr[i], part_ptr[pos],

sizeof(TParticle*)* DEP); }

std::memcpy(ptr_temp_memo, backup_ptr,

sizeof(TParticle*)* DEP * K);

}

In the preceding code fragment, the first dimension of the
storage array, part ptr, corresponds to the particle index.
While the second dimension corresponds to the current it-
eration. In this case, when copying the pointers during re-
sampling step, all the memory are continuously located in
the memory space, which reduces the constant factor at run
time.

References
Opper, M., and Winther, O. 1998. A Bayesian approach to on-
line learning. On-line Learning in Neural Networks, ed. D. Saad
363–378.

