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Recap

« Key components in Transformer

— Positional Embedding (to distinguish tokens at
different pos)

— Multihead attention
— Residual connection
— layer norm

 Transformer is effective for machine translation,
and many other tasks

* Pre-training: using raw unlabeled data for
training, also known as self-supervised learning
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Graph Data is everywhere
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ML on Graphs

Numerous real-world problems can be summarized as a set
of tasks on graphs LT

= Link prediction
= Node Classification
= Community Detection

Classification

« Ranking .... Clustering
, Traditional
ML solutions Graphs i d data

Featu re/Representaﬁon

Ranking

Slides adapted from Yao Ma & Jiliang Tang@MSU



Deep Learning Meets Graphs: Challenges

Traditional DL is designed for simple grids or sequences

e CNNs for fixed-size images/grids
o RNNs for text/sequences

But nodes on graphs have different connections
o Arbitrary neighbor size /

« Complex topological structure
« No fixed node ordering

Slides adapted from Yao Ma & Jiliang Tang@MSU



Graph Representation




Node Embedding

Enc(-): V- R4




“Shallow” Node Embedding

* |s just a lookup-table

embedding
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Embedding vector for a
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Deep Graph Neural Network

Graph Graph
Convolution Convolution

Activation
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Output is embedding matrix for nodes
for further downstream tasks: e.g. node classifications




From 2D-Convolution to Graph
Convolution

Every node’s neighbor defines a convolutional kernel

aggregate information
from its neighbors
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Aggregate Neighbors

h;: node (hidden) embedding vector

hl,k+1 — AggregatevjeN(vi) f(hf, hjk), Vv.eV

N(v;): Neighbors of the node v,.

f(-): Feedforward network.
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Multiple Computation Layers

12



A Simple Graph Convolution Layer

» Simple approach: averaging neighbor’s
message and apply nonlinear
transformation
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Property: Equivariant

» the embeddings computed from graph
convolution layers is invariant to node
permutation
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Model Training

« Parameters: weight matrix for each layer
WA = oWre——r ) hf+ Bih)

* Unsupervised training:
— Linked nodes have similar embedding
L =) CE(y,Sim(hX, )
,J
~- Y= 1 if there is edge from v_ito v_j

— Similarity can be defined in many ways: e.g. inner
product
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Model Training

« Parameters: weight matrix for each layer
WA = oWre——r ) hf+ Bih)

* Supervised training: e.g. Node classification
— Linked nodes have similar embedding

L= ) CE(y,f(hf))
— y; Is node label
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Example: predict toxicity of a drug
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Matrix Representations of Graphs

Ug
U
. U3 7 . : .. ) )
Adjacency Matrix: A[l,]] =1if U; 1S
Ug _
b adjacent to v,
U ) . ] ]
) Adjacency A[l,]] = (0, otherwise
Matrix
01 00 0 0 O0 O
1 01 0 0 1 0O
01 01 0 1 1 0
001 01 00O
0O 0 01 01 00
01 1.0 1 010
001 00 1 01
0000 0O O010O0
A

Spectral graph theory. American Mathematical Soc.; 1997.
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Matrix Representation of GCN

* Neighbor Aggregation can be performed efficiently using
matrix operations

H* = [hy, ..., b, 1"
Then Z hjszi,:Hk

VEN(V;)
Let D be diagonal matrix o
Di,i — Degree(vi) = Z Al.’j ------------------------------
J
|

Z h* = DIAH*
| (V) vEN(v)
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Matrix Representation of GCN

* Neighbor Aggregation can be performed
efficiently using matrix operations

H* = [hy, ..., hi,1"
A=D7A
H**' = 6(AH* - W! + H*B/)
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Graph Convolution Network

* Neighbor Aggregation can be performed
efficiently using matrix operations

« To make A symmetric
H* = [hy,....h},]"

~/

A=D"TAD:
H**! = o(AH* - W/ + H*B]')
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Generic GNN framework

 GNN layer = message passing +
Aggregation
— different design choices under this
framework
— Graph convolutional network (GCN) O
— GraphSAGE
— GAT

§ T
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Message Computation

* Each node will create a message
* e.qg.
— Linear projection




Aggregation/Pooling

Each node will aggregate messages from
its neighbors

e.g.

— Sum, Mean, Max operator O
Concat(AGG{m_j}, m_i)

-------------------------------

S
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GraphSAGE

Wt = 6 <Wk - CONCAT (hk AGG({h},Vv; € N(v,.)}))>

AGG can be designed in multiple ways
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GraphSAGE

Wt = 6 <Wk - CONCAT (hk AGG({h},Vv; € N(v,.)}))>

AGG can be designed in multiple ways
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Graph Attention Network (GAT)

B =o( ), a;Whh)

v,EN(,)

a;; = Attention(Wih;, Wih,) =
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exp(Wh)' Wih;
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Multi-head Attention for GAT? Yes

B =o( ), a;Whh)

v,EN(,)

a;; = Attention(Wih;, Wih,) =

%

exp(Wh)' Wih;

2 I exp(Wh)' Wih;
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Tasks on Graph-Structured Data

Node-level Graph-level
Link Prediction Graph Classification
Node Classification CLabel2
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Relation between GNN and CNN

Image

Graph

CNN can be viewed as a special GNN on grid graphs:



GNN vs. Transformer

* Transformer is special GNN on a full-
connected graph
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Book: Deep Learning on Gra

S

https://cse.msu.edu/~mayao4/
dlg book/

1. Introduction

Part One: Foundations
I 2. Foundations of Graphs I
I 3. Foundations of Deep Learning I

v

Part Two: Methods
| 4. Graph Embedding I
[ (6 Robust Graph Neural Networks |
| 7. Scalable Graph Neural Networks I

8. Graph Neural Networks for Complex Graphs
I 9. Beyond GNNs: More Deep Models for Graphs I

v

Part Three: Applications

| 10. Graph Neural Networks in Natural Language Processing |
I 11. Graph Neural Networks in Computer Vision I

| 12. Graph Neural Networks in Data Mining I
I 13. Graph Neural Networks in Bio-Chemistry and Healthcare I

v

Part Four: Advances

| 14. Advanced Methods in Graph Neural Networks I
I 15. Advanced Applications in Graph Neural Networks I
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https://cse.msu.edu/~mayao4/dlg_book/
https://cse.msu.edu/~mayao4/dlg_book/

Summary

* Graph neural network
— message passed along graph edges
— aggregate message/embedding by FFN
— many variants
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Next Up

e Variational Auto-Encoder
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