165B
Machine Learning
Graph Neural Network

Lei Li (lelli@cs)
UCSB

Recap

« Key components in Transformer

— Positional Embedding (to distinguish tokens at
different pos)

— Multihead attention
— Residual connection
— layer norm

 Transformer is effective for machine translation,
and many other tasks

* Pre-training: using raw unlabeled data for
training, also known as self-supervised learning

2

Graph Data is everywhere

wo.g emay

2=
.'=‘3.
]
| 9 2@
=il v
—_— =0

Brain Graphs
-

¢ tvy®
RADS W 6'&335’ caau ?uw
o K
0% ® T T
ua| mcm. Seraat ."c

Croal Piysacsd iniaredas.
s et m | Peciced

Gene Graphs

BRCA2
Pase2 .)

2
y &

&Q“

Web Graphs Molecular Graphs

ML on Graphs

Numerous real-world problems can be summarized as a set
of tasks on graphs LT

= Link prediction
= Node Classification
= Community Detection

Classification

« Ranking Clustering
, Traditional
ML solutions Graphs i d data

Featu re/Representaﬁon

Ranking

Slides adapted from Yao Ma & Jiliang Tang@MSU

Deep Learning Meets Graphs: Challenges

Traditional DL is designed for simple grids or sequences

e CNNs for fixed-size images/grids
o RNNs for text/sequences

But nodes on graphs have different connections
o Arbitrary neighbor size /

« Complex topological structure
« No fixed node ordering

Slides adapted from Yao Ma & Jiliang Tang@MSU

Graph Representation

Node Embedding

Enc(-): V- R4

“Shallow” Node Embedding

* |s just a lookup-table

embedding
dimension

Embedding vector for a

/ specific node
Embedding

matrix [roeeccceeicieiiiieiaaas /

EQQQQQQQQQQQQQE
7 = | number of nodes

Deep Graph Neural Network

Graph Graph
Convolution Convolution

Activation
function

ecg ©
8 b E R E
\ W ©
®

Output is embedding matrix for nodes
for further downstream tasks: e.g. node classifications

From 2D-Convolution to Graph
Convolution

Every node’s neighbor defines a convolutional kernel

aggregate information
from its neighbors

10

Aggregate Neighbors

h;: node (hidden) embedding vector

hl,k+1 — AggregatevjeN(vi) f(hf, hjk), Vv.eV

N(v;): Neighbors of the node v,.

f(-): Feedforward network.

11

Multiple Computation Layers

12

A Simple Graph Convolution Layer

» Simple approach: averaging neighbor’s
message and apply nonlinear
transformation

13

Property: Equivariant

» the embeddings computed from graph
convolution layers is invariant to node
permutation

14

Model Training

« Parameters: weight matrix for each layer
WA = oWre——r) hf+ Bih)

* Unsupervised training:
— Linked nodes have similar embedding
L =) CE(y,Sim(hX,)
,J
~- Y= 1 if there is edge from v_ito v_j

— Similarity can be defined in many ways: e.g. inner
product

15

Model Training

« Parameters: weight matrix for each layer
WA = oWre——r) hf+ Bih)

* Supervised training: e.g. Node classification
— Linked nodes have similar embedding

L=) CE(y,f(hf))
— y; Is node label

16

Example: predict toxicity of a drug

17

Matrix Representations of Graphs

Ug
U
. U3 7 . : ..))
Adjacency Matrix: A[l,]] =1if U; 1S
Ug _
b adjacent to v,
U) .]]
) Adjacency A[l,]] = (0, otherwise
Matrix
01 00 0 0 O0 O
1 01 0 0 1 0O
01 01 0 1 1 0
001 01 00O
0O 0 01 01 00
01 1.0 1 010
001 00 1 01
0000 0O O010O0
A

Spectral graph theory. American Mathematical Soc.; 1997.

18

Matrix Representation of GCN

* Neighbor Aggregation can be performed efficiently using
matrix operations

H* = [hy, ..., b, 1"
Then Z hjszi,:Hk

VEN(V;)
Let D be diagonal matrix o
Di,i — Degree(vi) = Z Al.’j ------------------------------
J
|

Z h* = DIAH*
| (V) vEN(v)

20

Matrix Representation of GCN

* Neighbor Aggregation can be performed
efficiently using matrix operations

H* = [hy, ..., hi,1"
A=D7A
H**' = 6(AH* - W! + H*B/)

21

Graph Convolution Network

* Neighbor Aggregation can be performed
efficiently using matrix operations

« To make A symmetric
H* = [hy,....h},]"

~/

A=D"TAD:
H**! = o(AH* - W/ + H*B]')

22

Generic GNN framework

 GNN layer = message passing +
Aggregation
— different design choices under this
framework
— Graph convolutional network (GCN) O
— GraphSAGE
— GAT

§ T

23

Message Computation

* Each node will create a message
* e.qg.
— Linear projection

Aggregation/Pooling

Each node will aggregate messages from
its neighbors

e.g.

— Sum, Mean, Max operator O
Concat(AGG{m_j}, m_i)

S

25

GraphSAGE

Wt = 6 <Wk - CONCAT (hk AGG({h},Vv; € N(v,.)}))>

AGG can be designed in multiple ways

26

GraphSAGE

Wt = 6 <Wk - CONCAT (hk AGG({h},Vv; € N(v,.)}))>

AGG can be designed in multiple ways

27

Graph Attention Network (GAT)

B =o(), a;Whh)

v,EN(,)

a;; = Attention(Wih;, Wih,) =

%

exp(Wh)' Wih;

2 I exp(Wih)! Wh;

Py

¢

® -

Multi-head Attention for GAT? Yes

B =o(), a;Whh)

v,EN(,)

a;; = Attention(Wih;, Wih,) =

%

exp(Wh)' Wih;

2 I exp(Wh)' Wih;

Py

¢

® -

Tasks on Graph-Structured Data

Node-level Graph-level
Link Prediction Graph Classification
Node Classification CLabel2

30

Relation between GNN and CNN

Image

Graph

CNN can be viewed as a special GNN on grid graphs:

GNN vs. Transformer

* Transformer is special GNN on a full-
connected graph

32

Book: Deep Learning on Gra

S

https://cse.msu.edu/~mayao4/
dlg book/

1. Introduction

Part One: Foundations
I 2. Foundations of Graphs I
I 3. Foundations of Deep Learning I

v

Part Two: Methods
| 4. Graph Embedding I
[(6 Robust Graph Neural Networks |
| 7. Scalable Graph Neural Networks I

8. Graph Neural Networks for Complex Graphs
I 9. Beyond GNNs: More Deep Models for Graphs I

v

Part Three: Applications

| 10. Graph Neural Networks in Natural Language Processing |
I 11. Graph Neural Networks in Computer Vision I

| 12. Graph Neural Networks in Data Mining I
I 13. Graph Neural Networks in Bio-Chemistry and Healthcare I

v

Part Four: Advances

| 14. Advanced Methods in Graph Neural Networks I
I 15. Advanced Applications in Graph Neural Networks I

33

https://cse.msu.edu/~mayao4/dlg_book/
https://cse.msu.edu/~mayao4/dlg_book/

Summary

* Graph neural network
— message passed along graph edges
— aggregate message/embedding by FFN
— many variants

34

Next Up

e Variational Auto-Encoder

35

