165B Machine Learning Transformer Lei Li (leili@cs) **UCSB**

Encoder-Decoder Paradigm

Seq2Seq

 Machine translation as directly learning a function mapping from source sequence to target sequence

Source: 天 气很 好 Decoder: LSTM

$$P(Y|X) = \prod P(y_t|y_{< t}, x)$$

Training loss: Cross-Entropy

$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_{n}, y_{n,1}, \dots, y_{n,t-1})$$

Teacher-forcing during training.

(pretend to know groundtruth for prefix)

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Limitation of RNN/LSTM

- No full context (only oneside)
 - Bidirectional LSTM encoder could alleviate
 - But still no long context
- Sequential computation in nature (encoder)
 - not possible to parallelize the computation
- Vanishing gradient

Source: 天 气很 好 Decoder: LSTM

Transformer

- Only use Attention in both encoder and decoder
- no recurrent
 like singing and dancing.
 Decoder
 Encoder

Source: 我喜欢唱歌和跳舞。

Transformer

Vaswani et al. Attention is All You Need. 2017

Transformer Multi-head Attention

- C layers of encoder (=6)
- D layers of decoder (=6)

Scaled Dot-Product Attention

Multi-head Attention

- Instead of one vector for each token
- break into multiple heads
- each head perform attention

Head_{*i*} = Attention(
$$QW_i^Q, KW_i^K, VW_i^V$$
)

 $MultiHead(Q, K, V) = Concat(Head_1, Head_2, ..., Head_h)W^o$

Multi-head Attention

sent len x sent len

sent len x dim

=

Alammar, The Illustrated Transformer

Self-Attention for Decoder

• Maskout right side before softmax (-inf)

Feedforward Net

- FFN(x) = max(0,x · W₁ + b₁) · W₂ + b₂
- internal dimension size = 2048 (in Vaswani 2017)

Residual Connection and Layer Normalization

- Residual Connection
- Make it zero mean and unit variance within layer
- Post-norm
- Pre-norm

Embedding

- Token Embedding: 512 (base), 1024 (large)
 - Shared (tied) input and output embedding
- Positional Embedding:
 - to distinguish words in different position, Map position labels to embedding, dimension is same as Tok Emb

$$PE_{pos,2i} = \sin(\frac{pos}{1000^{2i/d}})$$
$$PE_{pos,2i+1} = \cos(\frac{pos}{1000^{2i/d}})$$

Transformer

Vaswani et al. Attention is All You Need. 2017

Training Loss

$$P(Y|X) = \prod_{n} P(y_t|y_{
Training loss: Cross-Entropy
$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_n, y_{n,1}, \dots, y_{n,t-1})$$

Teacher-forcing during training.
(pretend to know groundtruth for prefix)
(preten$$

Training

- Dropout
 - Applied to before residual
 - and to embedding, pos emb.
 - p=0.1 ~ 0.3
- Label smoothing
 - 0.1 probability assigned to non-truth
- Vocabulary:
 - En-De: 37K using BPE
 - En-Fr: 32k word-piece (similar to BPE)

Label Smoothing

- Assume $y \in \mathbb{R}^n$ is the one-hot encoding of label $y_i = \begin{cases} 1 & \text{if belongs to class } i \\ 0 & \text{otherwise} \end{cases}$
- Approximating 0/1 values with softmax is hard
- The smoothed version

 $y_i = \begin{cases} 1 - \epsilon & \text{if belongs to class } i \\ \epsilon/(n-1) & \text{otherwise} \end{cases}$

– Commonly use $\epsilon = 0.1$

Training

- Batch
 - group by approximate sentence length
 - still need shuffling
- Hardware
 - one machine with 8 GPUs (in 2017 paper)
 - base model: 100k steps (12 hours)
 - large model: 300k steps (3.5 days)
- Adam Optimizer
 - increase learning rate during warmup, then decrease

$$\eta = \frac{1}{\sqrt{d}} \min(\frac{1}{\sqrt{t}}, \frac{t}{\sqrt{t_0^3}})$$

ADAM

$$\begin{split} m_{t+1} &= \beta_1 m_t - (1 - \beta_1) \,\nabla \ell(x_t) \\ v_{t+1} &= \beta_2 v_t + (1 - \beta_2) (\nabla \ell(x_t))^2 \\ \hat{m}_{t+1} &= \frac{m_{t+1}}{1 - \beta_1^{t+1}} \\ \hat{v}_{t+1} &= \frac{v_{t+1}}{1 - \beta_2^{t+1}} \\ x_{t+1} &= x_t - \frac{\eta}{\sqrt{\hat{v}_{t+1}} + \epsilon} \hat{m}_{t+1} \end{split}$$

- A single model obtained by averaging the last 5 checkpoints, which were written at 10-minute interval (base)
- decoding length: within source length + 50

Evaluation for Machine Translation

Many possible translation, which is better?

SpaceX周三晚间进行了一次发射任务,将四名毫无航天经验 的业余人士送入太空轨道。

SpaceX launched a mission Wednesday night to put four amateurs with no space experience into orbit.

SpaceX conducted a launch mission on Wednesday night, sending four amateurs with no aerospace experience into space orbit.

SpaceX conducted a launch mission Wednesday night that sent four amateurs with no spaceflight experience into orbit. SpaceX carried out a launch mission on Wednesday night to put four amateurs without Aerospace experience into orbit.

BLEU

- Measuring the precision of n-grams
 - Precision of n-gram: percentage of tokens in output sentences

 $p_n = \frac{num.of.correct.token.ngram}{total.output.ngram}$

- Penalize for brevity
 - if output is too short

$$-bp = min(1, e^{1-r/c})$$

- BLEU= $bp \cdot (\prod p_i)^{\frac{1}{4}}$
- Notice BLEU is computed over the whole corpus, not on one sentence

Ref: A SpaceX rocket was launched into a space orbit Wednesday evening.

- System A: SpaceX launched a mission Wednesday evening into a space orbit.
- System B: A rocket sent SpaceX into orbit Wednesday.

Ref: A SpaceX rocket was launched into a space orbit Wednesday evening.

System A: SpaceX launched a mission Wednesday evening into a space orbit.

	Precision	bp=e ^{1-12/11} =0.91
Unigram	9/11 	BLEU=0.91*(9/11 * 4/10 * 2/9 * 1/8) ^{1/4}
Bigram	4/10	=28.1%
Trigram	2/9	
Four-gram	1/8	26

Machine Translation using Seq2seq and Transformer

LSTM Seq2Seq w/ Attention

Jean et al. On Using Very Large Target Vocabulary for Neural Machine Translation. 2015

Performance with Model Ensemble

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

Results on WMT14

Madal	BL	EU	Training Co	Training Cost (FLOPs)		
WIOUEI	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [15]	23.75					
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot10^{21}$		
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$		
Transformer (base model)	27.3 38.1		$3.3\cdot\mathbf{10^{18}}$			
Transformer (big)	28.4	41.0	$2.3 \cdot$	10^{19}		

Effectiveness of Choices

- num. head-
- dim of key
- num layers
- hid dim
- ffn dim
- dropout
- pos emb

		N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$params \times 10^6$
Ών	base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
Cy					1	512	512				5.29	24.9	
	(A)				4	128	128				5.00	25.5	
orc	(Л)				16	32	32				4.91	25.8	
CI 2					32	16	16				5.01	25.4	
	(D)					16					5.16	25.1	58
	(Б)					32					5.01	25.4	60
		2									6.11	23.7	36
		4									5.19	25.3	50
		8									4.88	25.5	80
	(C)		256			32	32				5.75	24.5	28
			1024			128	128				4.66	26.0	168
				1024							5.12	25.4	53
				4096							4.75	26.2	90
								0.0			5.77	24.6	
	(D)							0.2			4.95	25.5	
h	(D)								0.0		4.67	25.3	
J									0.2		5.47	25.7	
(E) positional embedding instead of sinusoids						ds		4.92	25.7				
	big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Deep Transformer

- 30 ~ 60 encoder
- 12 decoder
- dynamic linear combination of layers (DLCL)
 - or. deeply supervised
 - combine output from all layers

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Model		Param.	Batch	Updates	[†] Times	BLEU	Δ
			(×4096)	(×100k)			
Vasw	rani et al. (2017) (Base)	65M	1	1	reference	27.3	-
Bapna et	al. (2018)-deep (Base, 16L)	137M	-	-	-	28.0	-
Vasv	vani et al. (2017) (Big)	213M	1	3	<u>3</u> x	28.4	-
Che	en et al. (2018a) (Big)	379M	16	†0.075	1.2x	28.5	-
Н	e et al. (2018) (Big)	†210M	1	-	-	29.0	-
Sh	aw et al. (2018) (Big)	[†] 210M	1	3	3x	29.2	-
De	Dou et al. (2018) (Big)		1	-	-	29.2	-
0	Ott et al. (2018) (Big)		14	0.25	3.5x	29.3	-
	Transformer (Base)	62M	1	1	1x	27.5	reference
	Transformer (Big)	211M	1	3	3x	28.8	+1.3
post-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1x	failed	failed
	DLCL (Base)	62M	1	1	1x	$\bar{27.6}^{-}$	+0.1
	DLCL-deep (Base, 25L)	121M	2	0.5	1x	29.2	+1.7
	Transformer (Base)	62M	1	1	1x	27.1	reference
	Transformer (Big)	211M	1	3	3x	28.7	+1.6
pre-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1 x	28.9	+1.8
	DLCL (Base)	- 62M	1	1	$\overline{1x}$	27.3	+0.2
	DLCL-deep (Base, 30L)	137M	2	0.5	1x	29.3	+2.2

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Model	Param.	newstest17	newstest18	$\Delta_{avg.}$
Wang et al. (2018a) (post-norm, Base)	102.1M	25.9	-	-
pre-norm Transformer (Base)	102.1M	25.8	25.9	reference
pre-norm Transformer (Big)	292.4M	26.4	27.0	+0.9
pre-norm DLCL-deep (Base, 25L)	161.5M	26.7	27.1	+1.0
pre-norm DLCL-deep (Base, 30L)	177.2M	26.9	27.4	+1.3

Table 4: BLEU scores [%] on WMT'18 Chinese-English translation.

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Summary

- Key components in Transformer
 - Positional Embedding (to distinguish tokens at different pos)
 - Multihead attention
 - Residual connection
 - layer norm
- Transformer is effective for machine translation, and many other tasks

Pretraining for NLP