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• Gradient descent can be sped up by incremental 
updates 

– Convergence is guaranteed under most conditions 
‣ Learning rate must shrink with time for convergence 

– Stochastic gradient descent: update after each observation. 
Can be much faster than batch learning 

– Mini-batch updates:  update after batches.  Can be more 
efficient than SGD 

• Convergence can be improved using smoothed 
updates 

– AdaGrad, RMSprop, Adam and more advanced techniques
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Recap



• Instead of compute the full 
gradient, at each step, 
randomly select a sample  

 

• Compare to gradient descent 

ti
xt = xt−1 − ηt ∇ℓti(xt−1)

xt = xt−1 − η∇f(xt−1)

f(x) =
1
n

n

∑
i=0

ℓi(x)
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Stochastic Gradient Descent



• Instead of full gradient, evaluate and 
update on random minibatch of data 
samples Bt 

xt+1 = xt −
η

|Bt | ∑
tn∈Bt

∇ℓtn(xt)
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Minibatch Stochastic Gradient Descent



• The momentum method maintains a running average of all gradients 
until the current step 

– Typical  value is 0.9 
• The running average steps  

– Get longer in directions where gradient retains the same sign 
– Become shorter in directions where the sign keeps flipping

vt+1 = βvt − η∇ℓ(xt)
xt+1 = xt + vt

𝛽

Plain gradient update With momentum
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Momentum Method



• AdaGrad (Duchi, Hazan, and Singer 2010) very 
popular adaptive method.  

 

 

• Benefits: 
• AdaGrad does not require tuning learning rate  
• Actual learning rate will decrease  
• Can drastically improve over SGD

Gt+1 = Gt + ∇ℓ(xt)2

xt+1 = xt − η
1

Gt+1 + ϵ
∇ℓ(xt)

η
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AdaGrad

element-wise



• Similar to AdaGrad, accumulate the squared 
gradients, but with running average 
• Adagrad denominator monotonically increase ==> 

diminishing updates for parameters 
• why not decay the denominator 

 

 

•

Gt+1 = βGt + (1 − β)∇ℓ(xt)2

xt+1 = xt − η
1

Gt+1 + ϵ
∇ℓ(xt)
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RMSProp

element-wise



• RMS prop only considers a second-moment normalized version of the 
current gradient 

• ADAM utilizes a smoothed version of  the momentum-augmented 
gradient 

– Considers both first and second moments 

mt+1 = β1mt − (1 − β1)∇ℓ(xt)
vt+1 = β2vt + (1 − β2)(∇ℓ(xt))2

m̂t+1 =
mt+1

1 − βt+1
1

̂vt+1 =
vt+1

1 − βt+1
2

xt+1 = xt −
η

̂vt+1 + ϵ
m̂t+1
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ADAM: RMSprop + Momentum
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Image classification Object Detection
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• A bounding box can be 
defined by 4 numbers,  
– (top-left x, 

 top-left y, 
 bottom-right x, 
 bottom-right y) 

– (top-left x,  
 top-right y, 
 width, height)
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Locating the Object: Bounding Box

60, 45

378, 516



• Each row present an object 
– Image_filename, object_category, 

bounding box 
• PASCAL VOC 

– 11.53k images, 27.45k objects, 20 classes 
• COCO (cocodataset.org) 

– 80 object classes  
– 330K images 
– 1.5M objects
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Object Detection Dataset

http://cocodataset.org


• Open Image (v6): 
– 9M images,  
– 1.9M images with 16M bounding 

boxes, 600 classes 
– Includes 3.3M visual relations (of 

1466 types)  
– https://storage.googleapis.com/

openimages/web/factsfigures.html 
• BDD100k 

– 100k videos in driving scenario 
– https://github.com/bdd100k/

bdd100k
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Object Detection Dataset

https://storage.googleapis.com/openimages/web/factsfigures.html
https://storage.googleapis.com/openimages/web/factsfigures.html
https://github.com/bdd100k/bdd100k
https://github.com/bdd100k/bdd100k


• A detection algorithm 
often  
– Proposes multiple 

regions, called anchor 
boxes 

– Predict if an anchor box 
contains an object 

– If yes, predict the offset 
from the anchor box to 
the ground truth 
bounding box 
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Anchor Boxes



• IoU measures the 
similarity between two 
boxes 
– 0 means no-overlapping 
– 1 means identical 

• It’s an especial case of  
Jacquard index 
– Given sets A and B
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IoU - Intersection over Union

Intersection

IoU = 

Union

J(A, B) =
|A ∩ B |
|A ∪ B |



• Each anchor box is a training example 
• Label each anchor box with  

– Background 
– Associate with a bounding box 

• We may generate a large amount of 
anchor boxes 
– Leads to a large portion of negative examples
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Assign Labels to Anchor Boxes
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Assign Labels to Anchor Boxes
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• Each anchor box generates one 
bounding box prediction 

• Select the one with the highest 
score (not background) 

• Remove all other predictions 
with IoU >  compared to the 
selected one 

• Repeat until all are selected or 
removed

θ
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Output with non-maximum 
suppression (NMS)



Region-based CNNs



• Select anchor boxes with a heuristic 
algorithm 

• Use a pre-trained networks to extract 
features for each anchor box 
– Adding classifier layer  
– and regression layer to predict bounding 

boxes
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R-CNN



• Given an anchor box, uniformly cuts it into 
n x m blocks, output the maximal value in 
each block 

• Returns nm values for each anchor box 
• A special case of maxpooling 22

Region of Interest (RoI) Pooling
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• A CNN to extract features 
• Siding windows on the feature maps 
• RoI pooling returns fixed length feature for 

each anchor box
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Fast RCNN



• Use a region proposal network to replace 
select search for high quality anchor boxes
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Faster R-CNN



• Use a region proposal network to replace 
select search for high quality anchor boxes
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Faster R-CNN
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https://gluon-
cv.mxnet.io/
model_zoo/
detection.html 

Faster RCNN

https://gluon-cv.mxnet.io/model_zoo/detection.html
https://gluon-cv.mxnet.io/model_zoo/detection.html
https://gluon-cv.mxnet.io/model_zoo/detection.html
https://gluon-cv.mxnet.io/model_zoo/detection.html


Single Shot Multibox 
Detection (SSD)



• For each pixel, 
generate multiple 
anchor boxes 
centered at this 
pixel 

• Given n sizes             
and m ratios             
, generate n+m-1 
anchor boxes
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Generate Anchor Boxes

s1, …, sn

r1, …, rm

(s1, r1), (s2, r1), …, (sn, r1), (s1, r2), …, (s1, rm)



• A base network to  
extract feature, followed 
by conv-blocks to  
halve width and height 

• Generate anchor boxes at 
each sale 

– Bottom for small objects 
and  
top for large objects 

• Predict class and 
bounding box for each 
anchor box
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SSD Model
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You Only Look Once 
(YOLO)

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi 
CVPR 2016



• Anchor boxes are highly 
overlapped in SSD 

• YOLO cuts the input 
image uniformly into S x 
S anchor boxes 

• Each anchor box predicts 
B bounding boxes
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YOLO



Each cell predicts boxes and confidences: P(Object)

32Redmon. et al. 
2016



Each cell predicts boxes and confidences: P(Object)
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(x,y,w,h) 
P

Redmon. et al. 
2016

normalize



Each cell predicts boxes and confidences: P(Object)
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(x,y,w,h) 
P

Redmon. et al. 
2016



Each cell predicts boxes and confidences: P(Object)

35Redmon. et al. 
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Each cell predicts boxes and confidences: P(Object)
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(x,y,w,h) 
P
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Redmon. et al. 
2016



Each cell predicts boxes and confidences: P(Object)

37Redmon. et al. 
2016



Each cell also predicts a class probability.

38Redmon. et al. 
2016



Each cell also predicts a class probability.
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Dog

Bicycle Car

Dining 
Table



Conditioned on object: P(Car | Object)
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Dog

Bicycle Car

Dining 
Table



Then we combine the box and class predictions.
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Finally we do NMS and threshold detections
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The output
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Each cell predicts:
- For each bounding box:

- 4 coordinates (x, y, w, h)
- 1 confidence value

- Some number of class  
probabilities

For Pascal VOC:
- 7x7 grid
- 2 bounding boxes / cell
- 20 classes
7 x 7 x (2 x 5 + 20) = 7 x 7 x 30 tensor = 1470 outputs



A single pipeline for detection

44

backbone network: VGG16, ResNet101, …



During training, match example to the right cell
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center of 
object



During training, match example to the right cell

46



Adjust that cell’s class prediction
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Dog = 1
Cat = 0
Bike = 0
...



Look at that cell’s predicted boxes
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Find the best one, adjust it, increase the confidence

49



Find the best one, adjust it, increase the confidence
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Find the best one, adjust it, increase the confidence
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Decrease the confidence of other boxes
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Decrease the confidence of other boxes
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Some cells don’t have any ground truth detections!
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Some cells don’t have any ground truth detections!
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Decrease the confidence of these boxes
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Decrease the confidence of these boxes
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Don’t adjust the class probabilities or coordinates
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Training YOLO
if i-th cell contain object and 

j-th box has max IoU

if i-th cell contain object and 
j-th box has max IoU



- Pretraining on Imagenet
- SGD with decreasing learning rate
- Extensive data augmentation
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Other tricks



YOLO works across a variety of natural images
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It also generalizes well to new domains (like art)
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YOLO outperforms methods like DPM and R-CNN when generalizing 
to person detection in artwork
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S. Ginosar, D. Haas, T. Brown, and J. Malik. Detecting people in cubist art. In Computer Vision-ECCV 2014 Workshops, pages 101–116. 
Springer, 2014. 

H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-depiction problem: Computer vision algorithms for recognising objects in artwork and in 
photographs.



Pascal 2007 mAP Speed
DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Fast R-CNN 70.0 .5 FPS 2 s/img

Faster R-CNN 73.2 7 FPS 140 ms/img

YOLO 69.0 45 FPS 22 ms/img

Results: Performance vs Speed

65



• YOLO 
• YOLOv2 improves the detection of small 

objects in groups and the localization 
accuracy. 
– and adding batch norm 

• YOLOv3,  
– 106 layer resnet 
– multi-scale detection (three scales) 

• YOLOv4, …
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YOLO Series



• Apply to object detection as well
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Additional Tricks: Mixup
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Results for YOLOv3

Zhi et al, Bag of Freebies for Training Object Detection Neural 
Networks



• Object Detection 
– RCNN 
– YOLO: single pipeline model (e2e) for object 

detection
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Summary



https://forms.gle/QWgfehMBDasvRozu7
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TA evaluation form

https://forms.gle/QWgfehMBDasvRozu7


• Recurrent neural networks
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Next Up


