Scrambler-Resolver-Explorer:

A Hindsight based Backward & Forward Exploration Strategy

for State Space Search Problems

Vihaan Akshaay
vihaanakshaay@ucsb.edu

Overall Learning Flowchart

Github Repository

Agent Architecture

GOAL STATE
<

e-greedy with hindsight

START STATE

Experience Replay

(stllg, at,rt, S41) |gtmject0ry_end>

(stllg, at, e, 3t+1‘|ggoal)

Current_state

O)

o o\
>

N y
)

—

Goal_ state

Q-Network

Current_state

O)

* /o

—

Goal_ state

Target Q-Network

Existing Exploration Algorithms

> e-Greedy Exploration

While agent collects experiences from the environment (during the learning
phase) it chooses a mix of random and greedy actions to ensure good distribution.

arg, max Q¢(state),

| AgentAction = {

Random Action,

» Hindsight Experience Replay (HER) , -

To make use of every exploration trajectory, the :
policy NN is modified to take both the 'state” |
and the ‘goal’ as inputs and trained to predict |
the optimal action. [
I
I
I
I
I

Trajectories that don't reach the goal, we take

the final state as a ‘pseudo goal” and train the
function with these augmented data points.

Experiments

A custom (nxn) grid environment was constructed and these 4 competing agents were

Aam E IS IS S S S S S .

Current_state

Goal_ state

\
with probability 1 -€¢ |
: - I
with probability € :

Updates are done by
picking a trajectory and
using transitions In
reverse order.

This way sparse reward
systems get state values
passed on successively
with better sample
efficiency.

I I S S S S S s s

made to learn the shortest path from start to goal state on opposite ends of the grid.

The agent receives a reward of +100 for reaching the goal and -1 for every step.

26302,33437,int,inf 2908,22437, inf
|
W’H |
260- | v 401 ‘
8 40 M §20- ﬂ ’
%%'((Wl Y lwv o UW‘ ,
N = 3 N'= 5
® DQN-SRE ® DON-HER O

[1]S. Li, etc. Sample Efficient Deep Reinforcement Learning via Episodic Backward Update

M\LJL‘JJPMMLMLU,AAJM JMMJMMJMMMMJL

3304,inf,inf,inf

30 1 ‘

20

104 |

0 200

N'= 10
® \anilla DON

1000

Rubik’s Cube: State Sphere & Trajectories

Rubik’s cube configurations can be modeled

as a graph with,

« Each

node

as a configuration

(4.3 * 10N 9 nodes)

Each edge is an action on the cube.
(18 actions for every state)

* The upper bound on the shortest path
between any two nodes is 20.

 The extreme opposite states

in the

scramble state space is called the super-
flip which is guaranteed to take 20 moves
to reach the goal state.

The proposed Scrambler-Resolver-Explorer
Algorithm has the following components:

« SCRAMBLER:

Starts the environment from the goal state.
Generates trajectories in reverse that are hard
for the resolver to guess.

» RESOLVER:

From every scrambled state the agent tries to
learn how to resolve back to the goal state. It
uses the hindsight formulation to learn and
match the explorer configuration.

« EXPLORER:

This follows a traditional exploration strategy.
It starts from the super-flip state, and tries to
learn through hindsight experience replay to
reach the goal state.

|

Conclusion & Future Work

* For smaller grids

explorations and beats them with a smal

It competes with

other standard

margin, and as the

state space keeps getting bigger, this shines as expected.

* For state search problems this exploration encorporates

strengths from various other algorithms.

* Construct Graphs from Obtained Traj

detection algorithm to improve samp

——— Significant References ——

[2] M. Andrychowicz, etc. Hindsight Experience Replay

ectories and run loop

eS.

[3] Z. Hong, etc. Topological Experience Replay

