Code Link: <u>https://github.com/heshanxiu/sbert.git</u> Department: Computer Science Affiliation: CMPSC 291K Project

Zero-Shot Dense Retrieval with Contrastive Dual Learning

Shanxiu He shanxiuhe@ucsb.edu

Motivation: Improve Dense Retrieval

Goal: Better Embedding Space

Only aligning query to relevant documents,

UC SANTA BARBARA

What about query embedding space?

Learn P(qd) Document

Query⁺, Query⁻, ..., Query⁻

- Both query retrieval and document retrieval
- Learn better query embedding space

(a) Embedding Space of ANCE. (b) Document Retrieval (Main). (c) Query Retrieval (Dual).

(d) Contrastive Dual Learning.

[1*] Diagram from Contrastive Dual Learning for Approximate Nearest Neighbor (DANCE)

Representation that **pushes document away from negative queries** Methods & Directions

Part 1. Cross-Encoder Knowledge Distillation

Part 2. Multiple Negative Ranking Loss

Directly learn how "teacher" positioned the embeddings

Margin-MSE-Dual, A Weighted Sum of

 $l(q, d^+, d^-) = MSE(M_s(q, d^+) - M_s(q, d^-), M_t(q, d^+)) - M_t(q, d^-))$ $l_d(d, q^+, q^-) = MSE(M_s(d, q^+) - M_s(d, q^-), M_t(d, q^+)) - M_t(d, q^-))$

Note: Teacher never learns how to position document with negative queries; might hurt performance compared to pure MMSE.

Anticipate: Improve Zero-Shot performance

Experiments and Results

Training Dataset: MS MARCO Teacher: cross-encoder/ms-marco-MiniLM-L-6-v2 Model: Part 1. MiniLM-L12 Part 2. DistillBERT

In-domain Evaluation on MS MARCO

Method MRR@10 NDCC@10 MAP@100 Recall@10

Differences from Previous Dual Learning Training

- Exact Match Instead of Approximate Nearest Search

Method	MIRIGIU	NDCG@10	MAP@100	Recall@10
MMSE	0.3620	0.4268	0.3676	0.6437
$MMSE_D$	0.3581	0.4244	0.3636	0.6457

Table 1: MS MARCO Performance on MiniLM-L12 with Margin-MSE loss.

Method	MRR@10	NDCG@10	MAP@100	Recall@10
MNRL	0.3318	0.3894	0.3369	0.5846
$MNRL_D$	0.3309	0.3884	0.3355	0.5844

Table 2: MS MARCO Performance on DistillBERT with Multiple Negatives Ranking loss.

Zero-Shot Evaluation Observation

Part 1. Directly imitate teacher on query retrieval is not preferrable. Part 2. Learning query retrieval (from scratch) contrastively improves on zero-shot setting

Zero-Shot Evaluation on BEIR

Corpus	Baselines		MiniLM12		DistillBERT	
	DPR	BM25	MMSE	$MMSE_D$	MNRL	$MNRL_D$
DBPedia	0.236	0.313	0.367	0.365	0.304	0.309
FiQA-2018	0.275	0.236	0.307	0.304	0.238	0.245
NQ	0.398	0.329	0.452	0.471	0.448	0.446
NFCorpus	0.208	0.325	0.308	0.308	0.269	0.267
TREC-COVID	0.561	0.656	0.476	0.454	0.443	0.479
Torche-2020	0.243	0.367	0.174	0.185	0.194	0.194
ArguAna	0.414	0.315	0.453	0.451	0.404	0.402
Climate-FEVER	0.176	0.213	0.239	0.211	0.185	0.184
Quora	0.842	0.789	0.869	0.867	0.839	0.839
SCIDOCS	0.108	0.158	0.180	0.176	0.124	0.126
SciFact	0.478	0.665	0.627	0.598	0.525	0.527
Avg	0.359	0.397	0.405	0.399	0.361	0.365

- Better Hard Negatives

- Efficient (No Need to Rebuild Indexes) and Synchronously Update

Observation

- 1) Distillation provides better baselines
- 2) For in-domain, dual training produces similar results

Next Step: Distillation + Multiple Negative Loss

Contribution

First to attempt dual training on zero-shot domain and demonstrates its efficacy

Table 3: NDCG@10 results on BEIR (HotpotQA and FEVER excluded)

- Lighter computation needs than previous attempt
- Deploy better hard negatives

Conclusion & Future Work

- Dual training might benefit zero-shot performance of dense retrieval model
- Employ techniques on better baselines and even improve training of cross encoder teachers