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INTRODUCTION AND PRELIMINARIES

⋄ Motivation of deployment efficiency
In many real-world reinforcement learning (RL) tasks, it
is costly to run fully adaptive algorithms that update the
exploration policy frequently. Instead, collecting data in
large batches using the current policy deployment is
usually cheaper.

⋄ Some examples

• Recommendation systems

• Healthcare

• Database optimization

• Computer networking

• New material design

⋄ Goal of this work
Design an algorithm that can minimize the number of
policy deployments while maintaining (nearly) the same
sample complexity as its fully-adaptive counterparts.

⋄ Problem setup

Linear MDP with feature map ϕ whose dimension is d
and planning horizon H .

Assumption on reachability For policy π, we define
Λπ,h := Eπ[ϕ(sh, ah)ϕ(sh, ah)

⊤]. We assume
λ⋆ = minh∈[H] supπ λmin(Λπ,h) > 0.

Policy We consider non-Markovian policies.

Reward-free RL The procedure contains two steps:

1. Exploration phase: Given ϵ and δ, the learner
explores an MDP for K(ϵ, δ) episodes and collects
data without rewards {skh, akh}(h,k)∈[H]×[K].

2. Planning phase: The learner outputs a function π̂(·)
which takes reward function as input. The function
π̂(·) satisfies that for any valid reward function r,
V π̂(r)(r) ≥ V ⋆(r)− ϵ.

The goal of reward-free RL is to design a procedure that
satisfies the above guarantee with probability at least
1− δ while collecting as few episodes as possible.

⋄ Deployment complexity
We say that an algorithm has deployment complexity of
M , if the algorithm is guaranteed to finish running
within M policy deployments. In each deployment, the
algorithm is allowed to deploy non-Markovian policies.

⋄ Questions of interest
Can we achieve near optimal sample complexity and
near optimal deployment complexity at the same time?

ALGORITHMS AND RESULTS

⋄ Algorithmic design.

⋄ Key components.
1. Design of policy sets.

2. Generalized G-optimal design

Theorem 1 If there exists policy π0 ∈ ∆(Π) such that
λmin(Eπ0

ϕhϕ
⊤
h ) > 0, then the following is bounded by d:

minπ0∈∆(Π) maxπ∈Π Eπϕ(sh, ah)(Eπ0ϕhϕ
⊤
h )

−1ϕ(sh, ah).

3. Estimating expectation/value function based on LSVI
(without optimism): EstimateV and EstimateER.

⋄ Comparison to previous works.

⋄ Future extensions.

1. Improve the computational efficiency.

2. Remove the assumption on reachability.


