Deployment Efficient Reward-Free

Reinforcement Learningin Linear MDPs

Dan Qiao, Yu-Xiang Wang

INTRODUCTION AND PRELIMINARIES

ALGORITHMS AND RESULTS

o> Motivation of deployment efficiency

In many real-world reinforcement learning (RL) tasks, it
is costly to run fully adaptive algorithms that update the
exploration policy frequently. Instead, collecting data in
large batches using the current policy deployment is
usually cheaper.

o Some examples

¢ Recommendation systems
* Healthcare

e Database optimization

e Computer networking

* New material design

o Goal of this work

Design an algorithm that can minimize the number of
policy deployments while maintaining (nearly) the same
sample complexity as its fully-adaptive counterparts.

o Problem setup

Linear MDP with feature map ¢ whose dimension is d
and planning horizon H.

Assumption on reachability For policy 7, we define
A = E[o(sh,an)d(sh,an)']. We assume
A = minhE[H] sup . Amin(Aﬂ',h) > 0.

Policy We consider non-Markovian policies.

Reward-free RL

I'he procedure contains two steps:

1. Exploration phase: Given € and 0, the learner
explores an MDP for K (¢, ¢) episodes and collects
data without rewards {s}, aj } (n.x)e[m]x[K]-

2. Planning phase: The learner outputs a function 7(-)
which takes reward function as input. The function

P

7 (-) satisfies that for any valid reward function r,
yr(r) (r) > V*(r) —e.

The goal of reward-free RL is to design a procedure that
satisfies the above guarantee with probability at least
1 — 0 while collecting as few episodes as possible.

o Deployment complexity

We say that an algorithm has deployment complexity of
M, if the algorithm is guaranteed to finish running
within M policy deployments. In each deployment, the
algorithm is allowed to deploy non-Markovian policies.

¢ Questions of interest
Can we achieve near optimal sample complexity and
near optimal deployment complexity at the same time?

o Algorithmic design.

Algorithm 1 Layer-by-layer Reward-Free Exploration via Experimental Design (Exploration)

1: Input: Accuracy €. Failure probability ¢.

2: Initialization: . = log(dH /ed). Error budget for each layer € = Cre

H2\/d-.
Section 3.2. Number of episodes for each deployment N = C;Ezd" — ngi‘rj:"a. Dataset D = ().
1
3: forh=1,2,--- |H do
4: Solve the following optimization problem.

. Construct HE?:? as in

5:
Th = argmin _max Bz [@(%;%)T(N - Yr) o(sh, an)| (1)
TEA(IIEE) s.t. Amin(Sr)>Cad2He " /3

6: where 3. is I@ﬂ[gﬁ(sh,ah)qb(shgahﬁ] — EstimateER(m, ¢(s,a)o(s,a) ', A =1,h, D, s1).

7 Ba|o(sn,an)T(V - S to(sn,an)| = EstimateER(F, é(s,a) (N - Sx)l6(s,0),4 =
C—ng_mg, h,D,s1). // Both expectations are estimated via Algorithm 4.

8 forn=12---,N do

0: Run 7, and add trajectory {sI,al

10: end for

11: end for
12: Output: Dataset D.

Yiepm to D. // Run Policy mp, for N episodes.

Algorithm 2 Find Near-Optimal Policy Given Reward Function (Planning)

Input: Dataset D from Algorithm 1. Feasible linear reward function r = {?"h}he[H]*
Initialization: Construct HE}"E""! as in Section 3.2. // The set of policies to evaluate.

for ™ Hi}’gl do

V7 (r) = EstimateV(m, 7, D, s1). // Estimate value functions using Algorithm 3.
end for

T = arg MAX e preval T?’”(r). // Output the greedy policy w.r.t v (7).

Output: Policy 7.

P L~ A S

¢ Key components.
1. Design of policy sets.

Description
The largest possible policy set

Policy sets Cardinality
The set of all policies Infinity

Explorative policies: IIe™7 | log |IIZ7F| = O(d?)

Relationship with each other
Contains the following two sets

Sufficient for exploration Subset of all policies

Uniform policy evaluation over II¢"*

exp
is sufficient for policy identification Subset of Il

Policies to evaluate: IV | log |H§?Jhd| = 5(0{)

Table 2: Comparison of different policy sets.

2. Generalized G-optimal design

Theorem 1 If there exists policy my € A(II) such that
Amin (B, @n @)) > 0, then the following is bounded by d:

minwoeA(H) maXzrcrl ‘Ew¢(8h, ah)(o ¢h¢2)_1¢(5h7 ah)-

3. Estimating expectation/value function based on LSVI
(without optimism): EstimateV and EstimateER.

o Comparison to previous works.

Algorithms for reward-free RL Sample complexity Deployment complexity
Algorithm 1 & 2 in Wang et al. [2020] O(L4h) O(Lil)
FRANCIS [Zanette et al., 2020b]* O(EL) O(EL)
RFLIN [Wagenmaker et al., 2022b]} O(LL2) O(E)
Algorithm 2 & 4 in Huang et al. [2022]} O(LL) H
LARFE [Qiao et al., 2022]! O(S412) OH
Our Algorithm 1 & 2 (Theorem 5.1)* 6(dgf i) H
Our Algorithm 1 & 2 (Theorem 7.1)* 5(‘5—2?5&) H
Lower bound [Wagenmaker et al., 2022b] Q(d—gﬁ) N.A.
Lower bound [Huang et al., 2022] If polynomial sample Q(H)

¢ Future extensions.
1. Improve the computational efficiency.

2. Remove the assumption on reachability.

