Deployment Efficient Reward-Free Reinforcement Learning in Linear MDPs

Dan Qiao, Yu-Xiang Wang

INTRODUCTION AND PRELIMINARIES

In many real-world reinforcement learning (RL) tasks, it is costly to run fully adaptive algorithms that update the exploration policy frequently. Instead, collecting data in large batches using the current policy deployment is usually cheaper.

◊ Some examples

- Recommendation systems
- Healthcare
- Database optimization
- Computer networking

ALGORITHMS AND RESULTS

Algorithmic design.

Algorithm 1 Layer-by-layer Reward-Free Exploration via Experimental Design (Exploration)1: Input: Accuracy ϵ . Failure probability δ .2: Initialization: $\iota = \log(dH/\epsilon\delta)$. Error budget for each layer $\bar{\epsilon} = \frac{C_1\epsilon}{H^2\sqrt{d_1}}$. Construct $\Pi_{\epsilon/3}^{exp}$ as in
Section 3.2. Number of episodes for each deployment $N = \frac{C_2de}{\epsilon^2} = \frac{C_2d^2H^4s^3}{C_1^2\epsilon^2}$. Dataset $\mathcal{D} = \emptyset$.3: for $h = 1, 2, \cdots, H$ do4: Solve the following optimization problem.5: $\pi_h = \underset{\pi \in \Delta(\Pi_{\epsilon/3}^{exp}) \text{ s.t. } \lambda_{\min}(\hat{\Sigma}_{\pi}) \ge C_3d^2H\bar{\epsilon}_i \Pi_{\epsilon/3}^{exp} \widehat{\mathbb{E}}_{\pi} \left[\phi(s_h, a_h)^\top (N \cdot \hat{\Sigma}_{\pi})^{-1} \phi(s_h, a_h) \right], (1)$ 6: where $\hat{\Sigma}_{\pi}$ is $\hat{\mathbb{E}}_{\pi} [\phi(s_h, a_h)\phi(s_h, a_h)^\top] = \text{EstimateER}(\pi, \phi(s, a)\phi(s, a)^\top, A = 1, h, \mathcal{D}, s_1),$ 7: $\hat{\mathbb{E}}_{\pi} \left[\phi(s_h, a_h)^\top (N \cdot \hat{\Sigma}_{\pi})^{-1} \phi(s_h, a_h) \right] = \text{EstimateER}(\hat{\pi}, \phi(s, a)^\top (N \cdot \hat{\Sigma}_{\pi})^{-1} \phi(s, a), A = \frac{\epsilon}{C_2d^2H_{\epsilon/3}} h, \mathcal{D}, s_1). // Both expectations are estimated via Algorithm 4.8: for <math>n = 1, 2, \cdots, N$ do9: Run π_h and add trajectory $\{s_i^n, a_i^n\}_{i\in[H]}$ to \mathcal{D} . // Run Policy π_h for N episodes.10: end for11: end for12: Output: Dataset \mathcal{D} .

• New material design

\diamond Goal of this work

Design an algorithm that can minimize the number of policy deployments while maintaining (nearly) the same sample complexity as its fully-adaptive counterparts.

Linear MDP with feature map ϕ whose dimension is d and planning horizon H.

Assumption on reachability For policy π , we define $\Lambda_{\pi,h} := \mathbb{E}_{\pi}[\phi(s_h, a_h)\phi(s_h, a_h)^{\top}]$. We assume $\lambda^* = \min_{h \in [H]} \sup_{\pi} \lambda_{\min}(\Lambda_{\pi,h}) > 0.$

Policy We consider non-Markovian policies.

Reward-free RL The procedure contains two steps:

- 1. Exploration phase: Given ϵ and δ , the learner explores an MDP for $K(\epsilon, \delta)$ episodes and collects data without rewards $\{s_h^k, a_h^k\}_{(h,k)\in[H]\times[K]}$.
- 2. Planning phase: The learner outputs a function $\hat{\pi}(\cdot)$ which takes reward function as input. The function

Algorithm 2 Find Near-Optimal Policy Given Reward Function (Planning)

- 1: Input: Dataset \mathcal{D} from Algorithm 1. Feasible linear reward function $r = \{r_h\}_{h \in [H]}$.
- 2: Initialization: Construct $\prod_{\epsilon/3}^{eval}$ as in Section 3.2. // The set of policies to evaluate.
- 3: for $\pi \in \prod_{\epsilon/3}^{eval}$ do
- 4: $\widehat{V}^{\pi}(r) = \text{EstimateV}(\pi, r, \mathcal{D}, s_1).$ // Estimate value functions using Algorithm 3.
- 5: end for

6: $\widehat{\pi} = \arg \max_{\pi \in \prod_{\epsilon \neq 3}^{eval}} \widehat{V}^{\pi}(r)$. // Output the greedy policy w.r.t $\widehat{V}^{\pi}(r)$.

7: Output: Policy $\hat{\pi}$.

Key components.1. Design of policy sets.

The set of all policiesInfinityThe largest possible policy setContains the following two setsExplorative policies: Π_{ϵ}^{exp} $\log \Pi_{\epsilon,h}^{exp} = \tilde{O}(d^2)$ Sufficient for explorationSubset of all policiesPolicies to evaluate: Π_{ϵ}^{eval} $\log \Pi_{\epsilon,h}^{eval} = \tilde{O}(d)$ Uniform policy evaluation over Π_{ϵ}^{eval} Subset of Π_{ϵ}^{exp}	Γ	Policy sets	Cardinality	Description	Relationship with each other
Explorative policies: Π_{ϵ}^{exp} $\log \Pi_{\epsilon,h}^{exp} = \widetilde{O}(d^2)$ Sufficient for explorationSubset of all policiesPolicies to evaluate: Π_{ϵ}^{eval} $\log \Pi_{\epsilon,h}^{eval} = \widetilde{O}(d)$ Uniform policy evaluation over Π_{ϵ}^{eval} is sufficient for policy identificationSubset of Π_{ϵ}^{exp}	Γ	The set of all policies	Infinity	The largest possible policy set	Contains the following two sets
Policies to evaluate: Π_{ϵ}^{eval} $\log \Pi_{\epsilon,h}^{eval} = \widetilde{O}(d)$ Uniform policy evaluation over Π_{ϵ}^{eval} Subset of Π_{ϵ}^{exp}	Γ	Explorative policies: Π_{ϵ}^{exp}	$\log \Pi_{\epsilon,h}^{exp} = \widetilde{O}(d^2)$	Sufficient for exploration	Subset of all policies
		Policies to evaluate: Π_{ϵ}^{eval}	$\log \Pi^{eval}_{\epsilon,h} = \widetilde{O}(d)$	Uniform policy evaluation over Π_{ϵ}^{eval} is sufficient for policy identification	Subset of Π_{ϵ}^{exp}

Table 2: Comparison of different policy sets.

2. Generalized G-optimal design

Theorem 1 If there exists policy $\pi_0 \in \Delta(\Pi)$ such that $\lambda_{\min}(\mathbb{E}_{\pi_0}\phi_h\phi_h^{\top}) > 0$, then the following is bounded by d: $\min_{\pi_0\in\Delta(\Pi)}\max_{\pi\in\Pi}\mathbb{E}_{\pi}\phi(s_h,a_h)(\mathbb{E}_{\pi_0}\phi_h\phi_h^{\top})^{-1}\phi(s_h,a_h).$

3. Estimating expectation/value function based on LSVI (without optimism): EstimateV and EstimateER.

 $\widehat{\pi}(\cdot)$ satisfies that for any valid reward function r, $V^{\widehat{\pi}(r)}(r) \geq V^{\star}(r) - \epsilon$.

The goal of reward-free RL is to design a procedure that satisfies the above guarantee with probability at least $1 - \delta$ while collecting as few episodes as possible.

Oeployment complexity

We say that an algorithm has deployment complexity of M, if the algorithm is guaranteed to finish running within M policy deployments. In each deployment, the algorithm is allowed to deploy non-Markovian policies.

\diamond Questions of interest

Can we achieve near optimal sample complexity and near optimal deployment complexity at the same time?

\diamond Comparison to previous works.

Algorithms for reward-free RL	Sample complexity	Deployment complexity
Algorithm 1 & 2 in Wang et al. $[2020]$	$\widetilde{O}(\frac{d^3H^6}{\epsilon^2})$	$\widetilde{O}(\frac{d^3H^6}{\epsilon^2})$
FRANCIS [Zanette et al., $2020b$] [‡]	$\widetilde{O}(\frac{d^3H^5}{\epsilon^2})$	$\widetilde{O}(\frac{d^3H^5}{\epsilon^2})$
RFLIN [Wagenmaker et al., $2022b$] [‡]	$\widetilde{O}(\frac{d^2H^5}{\epsilon^2})$	$\widetilde{O}(\frac{d^2H^5}{\epsilon^2})$
Algorithm 2 & 4 in Huang et al. $[2022]^{\ddagger}$	$\widetilde{O}(\frac{d^3H^5}{\epsilon^2\nu_{\min}^2})^*$	\check{H}
LARFE [Qiao et al., 2022] [†]	$\widetilde{O}(\frac{S^2 A H^5}{\epsilon^2})$	2H
Our Algorithm 1 & 2 (Theorem $5.1)^{\ddagger}$	$\widetilde{O}(rac{d^2H^5}{\epsilon^2})$	H
Our Algorithm 1 & 2 (Theorem 7.1) [*]	$\widetilde{O}(rac{S^2AH^5}{\epsilon^2})$	H
Lower bound [Wagenmaker et al., 2022b]	$\Omega(\frac{d^2H^2}{\epsilon^2})$	N.A.
Lower bound [Huang et al., 2022]	If polynomial sample	$\widetilde{\Omega}(H)$

◊ Future extensions.

- 1. Improve the computational efficiency.
- 2. Remove the assumption on reachability.