
Neuroformer: A Framework for Multimodal Neural Data Analysis

Introduction
Motivation 
• Systems neuroscience experiments are growing in complexity 
• Large datasets are acquired with multiple modalities, including 

visual, neural, reward, pose, eye-movement, environment and 
more 

• No existing tools to unify training and analysis at this scale
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Framework 
• Re-frame Neuron IDs as token representations 
• Align multiple modalities using contrastive learning 
• Model Neural decoding as a sequential autoregressive process 
• Optimize using MLE 
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Architecture 
• Iteratively fuse the “Neural State” with all other modalities using 

a cross-attention transformer that unrolls recurrently in space 
• Decode using a causal transformer decoder with two projection 

outputs, one for temporal prediction, and one for classification 
Optimization 
• Alignment (contrastive objective)

Experiments
Uncovering Ground-truth Connectivity 
• Simulated dataset of Hub Neurons (“Neurons that fire together, 

wire together”) 
• Attention can uncover ground-truth connectivity (20% 

variability, compared to 13% for Pearson correlation)

Multi-region Mouse Cortex Recordings 
• Wide-field-of-view 2-photon imaging of V1 + AL brain areas 
• Mouse watching a naturalistic video 
• Neuroformer can generate high-precision simulations of 

ground-truth trials over 32 seconds 
• Cross-Attention between Neurons and Video reveals salient 

features

• Spatio-temporal Decoding (MLE)

• Weighted sum
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