
Lecture 20
Reinforcement Learning

(Part II)
Lei Li, Yu-Xiang Wang

Announcements

1. Poster printing: See the poster printing
instructions from edstem.

2. Project Presentation day: Small prizes will be
given to the best poster presentations. You can
invite your friends to come！

3. Course evaluation: Please complete you ESCI
surveys if you haven’t yet. It takes only a few
minutes.

Optional HW4

• For practice problems in convex optimization
• For a simple coding problem with cvx: Q4 of here with data here
• For practices on convex analysis: Q1,2,3 here

• Theory / concept practices for RL:
• Problem 3 and 4 here
• Problem 1 and 2 here

• Coding practice for MDP / RL: Here

• For more advanced problems in RL:
• see HW1,2,3 from my RL theory course.
• These are only useful if you are hoping to do RL research.

Recap: Markov Decision processes
(infinite horizon / discounted)
• Infinite horizon / discounted setting

4

Initial state distribution

Transition kernel:

Discounting factor:

(Expected)
reward function:

Stationary Policy π: mapping from state to an action (possibly a random action).

Recap: Value functions

• state value function: Vp(s)
• expected long-term return when starting in s and

following p

• state-action value function: Qp(s,a)
• expected long-term return when starting in s,

performing a, and following p

<latexit sha1_base64="nQg091M9cWDJGCCzLb1YURkaW60=">AAACQnicbVDLSsQwFE19O75GXboJDoIillYE3QiiCC59zahMa0kzmZlg0pbkVhhqv82NX+DOD3DjQhG3LkzHIr4uBM495x5u7gkTwTU4zoM1MDg0PDI6Nl6ZmJyanqnOzjV0nCrK6jQWsToPiWaCR6wOHAQ7TxQjMhTsLLzaK/Sza6Y0j6NT6CXMl6QT8TanBAwVVC8al17Cl/UK3saeJNANw2w/DzJD5k18HLh4FXsdIiUxzbppbNv+oi4zWHNzI0Ap3OAT49jGGvuVoFpzbKdf+C9wS1BDZR0G1XuvFdNUsgioIFo3XScBPyMKOBUsr3ipZgmhV6TDmgZGRDLtZ/0IcrxkmBZux8q8CHCf/e7IiNS6J0MzWVypf2sF+Z/WTKG95Wc8SlJgEf1c1E4FhhgXeeIWV4yC6BlAqOLmr5h2iSIUTOpFCO7vk/+CxrrtGny0UdvZLeMYQwtoES0jF22iHXSADlEdUXSLHtEzerHurCfr1Xr7HB2wSs88+lHW+wfnv6pD</latexit>

<latexit sha1_base64="rv5r6WVnCPbjRTFivYSHhSUMwnE=">AAACTXicbVFdS9xAFJ2sbbWrrWv72JdLF0GpDYkI+iLYlkIftXZV2MRwMzu7Ds4kYeamsMT8wb4U+tZ/0Zc+tIh0sgapHxcGzj3nHmbumbRQ0lIQ/PQ6c48eP5lfeNpdXHr2fLm38uLI5qXhYsBzlZuTFK1QMhMDkqTESWEE6lSJ4/T8Q6MffxXGyjz7QtNCxBonmRxLjuSopDc6OI0KuWY3cB12IdJIZ2lafayTytH1ED4nIbyBaIJao2s2XeP7/g11WtHbsHYCtcIFHDrHLtgNeDcDCHE36fUDP5gV3AdhC/qsrf2k9yMa5bzUIiOu0NphGBQUV2hIciXqblRaUSA/x4kYOpihFjauZmnUsOqYEYxz405GMGP/d1SorZ3q1E0269q7WkM+pA1LGu/ElcyKkkTGry8alwoohyZaGEkjOKmpA8iNdG8FfoYGObkPaEII7658Hxxt+qHDB1v9vfdtHAvsFXvN1ljIttke+8T22YBx9o39Yn/YX++799u79K6uRzte63nJblVn/h992Kw1</latexit>

Recap: Bellman equations

• Bellman consistency equation

• Bellman optimality equation

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)[r(s, a, s0) + �V ⇡(s0)] =
X

a

⇡(a|s)Q⇡(s, a)
<latexit sha1_base64="hvEuyL2OJMOnjnmOQF8BsJqf44E=">AAACWHicbZFNaxsxEIa1my/HzYeTHnsZaoptEsJuKSSXgGkvOTpQOwHvxszKsiMs7S4abcBs/CcDObR/pZfI9lLSpAOCl+fVjKRXSa4k2SD45fkbm1vbO7Xd+oe9/YPDxtHxgLLCcNHnmcrMbYIklExF30qrxG1uBOpEiZtk9mPp3zwIQzJLf9p5LmKN01ROJEfr0KiRDe6iXLapA5cQUaFHJS5gSfDRsTWh1gJ6bWo90il2YAim7cQptTpwAtEUtUaopjgUvxr0d8712nbto0YzOAtWBe9FWIkmq6o3ajxF44wXWqSWKyQahkFu4xKNlVyJRT0qSOTIZzgVQydT1ILichXMAr44MoZJZtxKLazo644SNdFcJ26nRntPb70l/J83LOzkIi5lmhdWpHx90KRQYDNYpgxjaQS3au4EciPdXYHfo0Fu3V/UXQjh2ye/F4OvZ6HT19+a3e9VHDX2iX1mbRayc9ZlV6zH+oyzZ/bH2/S2vN8+83f83fVW36t6PrJ/yj9+AaMprpk=</latexit><latexit sha1_base64="hvEuyL2OJMOnjnmOQF8BsJqf44E=">AAACWHicbZFNaxsxEIa1my/HzYeTHnsZaoptEsJuKSSXgGkvOTpQOwHvxszKsiMs7S4abcBs/CcDObR/pZfI9lLSpAOCl+fVjKRXSa4k2SD45fkbm1vbO7Xd+oe9/YPDxtHxgLLCcNHnmcrMbYIklExF30qrxG1uBOpEiZtk9mPp3zwIQzJLf9p5LmKN01ROJEfr0KiRDe6iXLapA5cQUaFHJS5gSfDRsTWh1gJ6bWo90il2YAim7cQptTpwAtEUtUaopjgUvxr0d8712nbto0YzOAtWBe9FWIkmq6o3ajxF44wXWqSWKyQahkFu4xKNlVyJRT0qSOTIZzgVQydT1ILichXMAr44MoZJZtxKLazo644SNdFcJ26nRntPb70l/J83LOzkIi5lmhdWpHx90KRQYDNYpgxjaQS3au4EciPdXYHfo0Fu3V/UXQjh2ye/F4OvZ6HT19+a3e9VHDX2iX1mbRayc9ZlV6zH+oyzZ/bH2/S2vN8+83f83fVW36t6PrJ/yj9+AaMprpk=</latexit><latexit sha1_base64="hvEuyL2OJMOnjnmOQF8BsJqf44E=">AAACWHicbZFNaxsxEIa1my/HzYeTHnsZaoptEsJuKSSXgGkvOTpQOwHvxszKsiMs7S4abcBs/CcDObR/pZfI9lLSpAOCl+fVjKRXSa4k2SD45fkbm1vbO7Xd+oe9/YPDxtHxgLLCcNHnmcrMbYIklExF30qrxG1uBOpEiZtk9mPp3zwIQzJLf9p5LmKN01ROJEfr0KiRDe6iXLapA5cQUaFHJS5gSfDRsTWh1gJ6bWo90il2YAim7cQptTpwAtEUtUaopjgUvxr0d8712nbto0YzOAtWBe9FWIkmq6o3ajxF44wXWqSWKyQahkFu4xKNlVyJRT0qSOTIZzgVQydT1ILichXMAr44MoZJZtxKLazo644SNdFcJ26nRntPb70l/J83LOzkIi5lmhdWpHx90KRQYDNYpgxjaQS3au4EciPdXYHfo0Fu3V/UXQjh2ye/F4OvZ6HT19+a3e9VHDX2iX1mbRayc9ZlV6zH+oyzZ/bH2/S2vN8+83f83fVW36t6PrJ/yj9+AaMprpk=</latexit><latexit sha1_base64="hvEuyL2OJMOnjnmOQF8BsJqf44E=">AAACWHicbZFNaxsxEIa1my/HzYeTHnsZaoptEsJuKSSXgGkvOTpQOwHvxszKsiMs7S4abcBs/CcDObR/pZfI9lLSpAOCl+fVjKRXSa4k2SD45fkbm1vbO7Xd+oe9/YPDxtHxgLLCcNHnmcrMbYIklExF30qrxG1uBOpEiZtk9mPp3zwIQzJLf9p5LmKN01ROJEfr0KiRDe6iXLapA5cQUaFHJS5gSfDRsTWh1gJ6bWo90il2YAim7cQptTpwAtEUtUaopjgUvxr0d8712nbto0YzOAtWBe9FWIkmq6o3ajxF44wXWqSWKyQahkFu4xKNlVyJRT0qSOTIZzgVQydT1ILichXMAr44MoZJZtxKLazo644SNdFcJ26nRntPb70l/J83LOzkIi5lmhdWpHx90KRQYDNYpgxjaQS3au4EciPdXYHfo0Fu3V/UXQjh2ye/F4OvZ6HT19+a3e9VHDX2iX1mbRayc9ZlV6zH+oyzZ/bH2/S2vN8+83f83fVW36t6PrJ/yj9+AaMprpk=</latexit>

V ⇤(s) = max
a

X

s0

P (s0|s, a)[r(s, a, s0) + �V ⇤(s0)]
<latexit sha1_base64="BurMntF5zkBG9ECm8Q/4xRsE96g=">AAACLXicbZBNS8NAEIY3flu/qh69LBZpqyKJCHoRRD14rGCr0MQw2W7r4m4SdjZiif1DXvwrInhQxKt/w23twa8XFh7emWF23iiVAo3rvjgjo2PjE5NT04WZ2bn5heLiUgOTTDNeZ4lM9EUEyKWIed0II/lFqjmoSPLz6PqoXz+/4RpFEp+ZbsoDBZ1YtAUDY62weNy4XK9gle5TX8FtmEPPx0yFOZZ7tFbB8h1uQpU2qa5Y2MRylW5QvwNKAR1MWiMohMWSu+UORP+CN4QSGaoWFp/8VsIyxWPDJCA2PTc1QQ7aCCZ5r+BnyFNg19DhTYsxKI5BPri2R9es06LtRNsXGzpwv0/koBC7KrKdCswV/q71zf9qzcy094JcxGlmeMy+FrUzSU1C+9HRltCcGdm1AEwL+1fKrkADMzbgfgje75P/QmN7y7N8ulM6OBzGMUVWyCqpEI/skgNyQmqkThi5J4/khbw6D86z8+a8f7WOOMOZZfJDzscnA7+jow==</latexit><latexit sha1_base64="BurMntF5zkBG9ECm8Q/4xRsE96g=">AAACLXicbZBNS8NAEIY3flu/qh69LBZpqyKJCHoRRD14rGCr0MQw2W7r4m4SdjZiif1DXvwrInhQxKt/w23twa8XFh7emWF23iiVAo3rvjgjo2PjE5NT04WZ2bn5heLiUgOTTDNeZ4lM9EUEyKWIed0II/lFqjmoSPLz6PqoXz+/4RpFEp+ZbsoDBZ1YtAUDY62weNy4XK9gle5TX8FtmEPPx0yFOZZ7tFbB8h1uQpU2qa5Y2MRylW5QvwNKAR1MWiMohMWSu+UORP+CN4QSGaoWFp/8VsIyxWPDJCA2PTc1QQ7aCCZ5r+BnyFNg19DhTYsxKI5BPri2R9es06LtRNsXGzpwv0/koBC7KrKdCswV/q71zf9qzcy094JcxGlmeMy+FrUzSU1C+9HRltCcGdm1AEwL+1fKrkADMzbgfgje75P/QmN7y7N8ulM6OBzGMUVWyCqpEI/skgNyQmqkThi5J4/khbw6D86z8+a8f7WOOMOZZfJDzscnA7+jow==</latexit><latexit sha1_base64="BurMntF5zkBG9ECm8Q/4xRsE96g=">AAACLXicbZBNS8NAEIY3flu/qh69LBZpqyKJCHoRRD14rGCr0MQw2W7r4m4SdjZiif1DXvwrInhQxKt/w23twa8XFh7emWF23iiVAo3rvjgjo2PjE5NT04WZ2bn5heLiUgOTTDNeZ4lM9EUEyKWIed0II/lFqjmoSPLz6PqoXz+/4RpFEp+ZbsoDBZ1YtAUDY62weNy4XK9gle5TX8FtmEPPx0yFOZZ7tFbB8h1uQpU2qa5Y2MRylW5QvwNKAR1MWiMohMWSu+UORP+CN4QSGaoWFp/8VsIyxWPDJCA2PTc1QQ7aCCZ5r+BnyFNg19DhTYsxKI5BPri2R9es06LtRNsXGzpwv0/koBC7KrKdCswV/q71zf9qzcy094JcxGlmeMy+FrUzSU1C+9HRltCcGdm1AEwL+1fKrkADMzbgfgje75P/QmN7y7N8ulM6OBzGMUVWyCqpEI/skgNyQmqkThi5J4/khbw6D86z8+a8f7WOOMOZZfJDzscnA7+jow==</latexit><latexit sha1_base64="BurMntF5zkBG9ECm8Q/4xRsE96g=">AAACLXicbZBNS8NAEIY3flu/qh69LBZpqyKJCHoRRD14rGCr0MQw2W7r4m4SdjZiif1DXvwrInhQxKt/w23twa8XFh7emWF23iiVAo3rvjgjo2PjE5NT04WZ2bn5heLiUgOTTDNeZ4lM9EUEyKWIed0II/lFqjmoSPLz6PqoXz+/4RpFEp+ZbsoDBZ1YtAUDY62weNy4XK9gle5TX8FtmEPPx0yFOZZ7tFbB8h1uQpU2qa5Y2MRylW5QvwNKAR1MWiMohMWSu+UORP+CN4QSGaoWFp/8VsIyxWPDJCA2PTc1QQ7aCCZ5r+BnyFNg19DhTYsxKI5BPri2R9es06LtRNsXGzpwv0/koBC7KrKdCswV/q71zf9qzcy094JcxGlmeMy+FrUzSU1C+9HRltCcGdm1AEwL+1fKrkADMzbgfgje75P/QmN7y7N8ulM6OBzGMUVWyCqpEI/skgNyQmqkThi5J4/khbw6D86z8+a8f7WOOMOZZfJDzscnA7+jow==</latexit>

We now show the deterministic and stationary policy ⇡(s) = argmax
a2A

sup
⇡02⇧ Q⇡

0
(s, a) satisfies V ⇡(s) =

sup
⇡02⇧ V ⇡

0
(s). For this, we have that:

V ?(s0) = sup
⇡2⇧

E
h
r(s0, a0) +

1X

t=1

�tr(st, at)
i

= sup
⇡2⇧

E
h
r(s0, a0) + E

h 1X

t=1

�tr(st, at)
�� ⇡, (s0, a0, r0, s1)

ii

 sup
⇡2⇧

E
h
r(s0, a0) + sup

⇡02⇧
E
h 1X

t=1

�tr(st, at)
�� ⇡0, (s0, a0, r0, s1)

ii

= sup
⇡2⇧

E
h
r(s0, a0) + �V ?(s1)

i

= E
h
r(s0, a0) + �V ?(s1)

�� ⇡
i
.

where the second equality is by the tower property of conditional expectations, and the last equality follows from the
definition of ⇡. Now, by recursion,

V ?(s0)  E
h
r(s0, a0) + �V ?(s1)

�� ⇡
i
 E

h
r(s0, a0) + �r(s1, a1) + �2V ?(s2)

�� ⇡
i
 . . .  V ⇡(s0).

Since V ⇡(s)  sup
⇡02⇧ V ⇡

0
(s) = V ?(s), we have that V ⇡ = V ?, which completes the proof of the first claim.

For the same policy ⇡, an analogous argument can be used prove the second claim.

This shows that we may restrict ourselves to using stationary and deterministic policies without any loss in perfor-
mance. The following theorem, also due to [Bellman, 1956], gives a precise characterization of the optimal value
function.

Let us say that a vector Q 2 R|S||A| satisfies the Bellman optimality equations if:

Q(s, a) = r(s, a) + �Es0⇠P (·|s,a)


max
a02A

Q(s0, a0)

�
.

Theorem 1.8 (Bellman Optimality Equations). For any Q 2 R|S||A|, we have that Q = Q? if and only if Q satisfies
the Bellman optimality equations. Furthermore, the deterministic policy ⇡(s) 2 Q?(s, a) is an optimal policy (where
ties are broken in some arbitrary and deterministic manner).

Before we prove this claim, we will provide a few definitions. Let ⇡Q denote the greedy policy with respect to a vector
Q 2 R|S||A|, i.e

⇡Q(s) := argmax
a2A

Q(s, a) .

where ties are broken in some arbitrary (and deterministic) manner. With this notation, by the above theorem, the
optimal policy ⇡? is given by:

⇡? = ⇡Q? .

Let us also use the following notation to turn a vector Q 2 R|S||A| into a vector of length |S|.

VQ(s) := max
a2A

Q(s, a).

The Bellman optimality operator TM : R|S||A| ! R|S||A| is defined as:

T Q := r + �PVQ . (0.3)

9

where

Recap: MDP planning and Value
iterations
• MDP planning:

• Policy evaluation
• Solving Bellman consistency equation

• Value iteration
• Solving Bellman optimality equation

Recap: RL agent needs to learn
the underlying MDP model
• Model-based algorithm
• Estimates the MDP then do MDP planning

• Model-free algorithms
• Monte Carlo Policy evaluation + Policy improvement
• Temporal difference learning = MC + Bellman equations

Recap: TD Learning
• TD-Policy evaluation

• TD-Policy optimization
• SARSA (on-policy)

Then choose the next A’ using Q, e.g., eps-greedy.
• Q-Learning (off-policy)

Then choose the next action in your favorite way.

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be
temporal-di↵erence (TD) learning. TD learning is a combination of Monte Carlo ideas and dynamic
programming (DP) ideas. Like Monte Carlo methods, TD methods can learn directly from raw expe-
rience without a model of the environment’s dynamics. Like DP, TD methods update estimates based
in part on other learned estimates, without waiting for a final outcome (they bootstrap). The relation-
ship between TD, DP, and Monte Carlo methods is a recurring theme in the theory of reinforcement
learning; this chapter is the beginning of our exploration of it. Before we are done, we will see that
these ideas and methods blend into each other and can be combined in many ways. In particular, in
Chapter 7 we introduce n-step algorithms, which provide a bridge from TD to Monte Carlo methods,
and in Chapter 12 we introduce the TD(�) algorithm, which seamlessly unifies them.

As usual, we start by focusing on the policy evaluation or prediction problem, the problem of esti-
mating the value function v⇡ for a given policy ⇡. For the control problem (finding an optimal policy),
DP, TD, and Monte Carlo methods all use some variation of generalized policy iteration (GPI). The
di↵erences in the methods are primarily di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem. Given some
experience following a policy ⇡, both methods update their estimate V of v⇡ for the nonterminal states
St occurring in that experience. Roughly speaking, Monte Carlo methods wait until the return following
the visit is known, then use that return as a target for V (St). A simple every-visit Monte Carlo method
suitable for nonstationary environments is

V (St) V (St) + ↵
h
Gt � V (St)

i
, (6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f., Equation
2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods must wait until the end
of the episode to determine the increment to V (St) (only then is Gt known), TD methods need to wait
only until the next time step. At time t + 1 they immediately form a target and make a useful update
using the observed reward Rt+1 and the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte Carlo update
is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD method is called TD(0), or

97

106 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Exercise 6.8 Show that an action-value version of (6.6) holds for the action-value form of the TD
error �t = Rt+1 + �Q(St+1, At+1 � Q(St, At), again assuming that the values don’t change from step to
step. ⇤

It is straightforward to design an on-policy control algorithm based on the Sarsa prediction method.
As in all on-policy methods, we continually estimate q⇡ for the behavior policy ⇡, and at the same time
change ⇡ toward greediness with respect to q⇡. The general form of the Sarsa control algorithm is given
in the box below.

Sarsa (on-policy TD control) for estimating Q ⇡ q⇤

Initialize Q(s, a), for all s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Repeat (for each step of episode):

Take action A, observe R, S
0

Choose A
0 from S

0 using policy derived from Q (e.g., ✏-greedy)
Q(S, A) Q(S, A) + ↵

⇥
R + �Q(S0

, A
0)�Q(S, A)

⇤

S S
0; A A

0;
until S is terminal

The convergence properties of the Sarsa algorithm depend on the nature of the policy’s dependence
on Q. For example, one could use "-greedy or "-soft policies. Sarsa converges with probability 1 to an
optimal policy and action-value function as long as all state–action pairs are visited an infinite number
of times and the policy converges in the limit to the greedy policy (which can be arranged, for example,
with "-greedy policies by setting " = 1/t).

Example 6.5: Windy Gridworld Shown inset in Figure 6.3 is a standard gridworld, with start and
goal states, but with one di↵erence: there is a crosswind upward through the middle of the grid. The
actions are the standard four—up, down, right, and left—but in the middle region the resultant
next states are shifted upward by a “wind,” the strength of which varies from column to column. The
strength of the wind is given below each column, in number of cells shifted upward. For example, if
you are one cell to the right of the goal, then the action left takes you to the cell just above the goal.
Let us treat this as an undiscounted episodic task, with constant rewards of �1 until the goal state is
reached.

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

170

Episodes

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Figure 6.3: Results of Sarsa applied to a gridworld (shown inset) in which movement is altered by a location-
dependent, upward “wind.” A trajectory under the optimal policy is also shown.

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 107

The graph in Figure 6.3 shows the results of applying "-greedy Sarsa to this task, with " = 0.1,
↵ = 0.5, and the initial values Q(s, a) = 0 for all s, a. The increasing slope of the graph shows
that the goal is reached more and more quickly over time. By 8000 time steps, the greedy policy
was long since optimal (a trajectory from it is shown inset); continued "-greedy exploration kept the
average episode length at about 17 steps, two more than the minimum of 15. Note that Monte Carlo
methods cannot easily be used on this task because termination is not guaranteed for all policies.
If a policy was ever found that caused the agent to stay in the same state, then the next episode
would never end. Step-by-step learning methods such as Sarsa do not have this problem because
they quickly learn during the episode that such policies are poor, and switch to something else.

Exercise 6.9: Windy Gridworld with King’s Moves Re-solve the windy gridworld task assuming eight
possible actions, including the diagonal moves, rather than the usual four. How much better can you do
with the extra actions? Can you do even better by including a ninth action that causes no movement
at all other than that caused by the wind? ⇤
Exercise 6.10: Stochastic Wind Re-solve the windy gridworld task with King’s moves, assuming
that the e↵ect of the wind, if there is any, is stochastic, sometimes varying by 1 from the mean values
given for each column. That is, a third of the time you move exactly according to these values, as in
the previous exercise, but also a third of the time you move one cell above that, and another third of
the time you move one cell below that. For example, if you are one cell to the right of the goal and
you move left, then one-third of the time you move one cell above the goal, one-third of the time you
move two cells above the goal, and one-third of the time you move to the goal. ⇤

6.5 Q-learning: O↵-policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an o↵-policy TD
control algorithm known as Q-learning (Watkins, 1989), defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a

Q(St+1, a)�Q(St, At)
i
. (6.8)

In this case, the learned action-value function, Q, directly approximates q⇤, the optimal action-value
function, independent of the policy being followed. This dramatically simplifies the analysis of the
algorithm and enabled early convergence proofs. The policy still has an e↵ect in that it determines
which state–action pairs are visited and updated. However, all that is required for correct convergence
is that all pairs continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case must require it.
Under this assumption and a variant of the usual stochastic approximation conditions on the sequence
of step-size parameters, Q has been shown to converge with probability 1 to q⇤.

Q-learning (o↵-policy TD control) for estimating ⇡ ⇡ ⇡⇤

Initialize Q(s, a), for all s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S

0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0

, a)�Q(S, A)
⇤

S S
0

until S is terminal

Recap: The problem of large-state
space
Let’s say we discover
through experience

that this state is bad:

(From Dan Klein and Pieter Abbeel)
10

Recap: The problem of large-state
space
Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

(From Dan Klein and Pieter Abbeel)
10

Recap: The problem of large-state
space
Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

(From Dan Klein and Pieter Abbeel)
10

This lecture

• Solve the problem of large state space with
function approximation

• Other RL algorithms: Policy gradient

• Exploration in RL

Video of Demo Q-Learning Pacman – Tiny – Watch
All

12

Video of Demo Q-Learning Pacman – Tiny – Silent
Train

13

Video of Demo Q-Learning Pacman – Tricky –
Watch All

14

Why not use an evaluation function?
A Feature-Based Representations

• Solution: describe a state using a
vector of features (properties)
• Features are functions from states to real

numbers (often 0/1) that capture
important properties of the state

• Example features:
• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with
features (e.g. action moves closer to
food)

15

Linear Value Functions

• Using a feature representation, we can write a q function (or value
function) for any state using a few weights:

• Vw(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

• Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wnfn(s,a)

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very
different in value!

16

Updating a linear value function

17

Updating a linear value function

• Original Q learning rule tries to reduce prediction
error at s, a:

Q(s,a) � Q(s,a) + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)]

17

Updating a linear value function

• Original Q learning rule tries to reduce prediction
error at s, a:

Q(s,a) � Q(s,a) + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)]

• Instead, we update the weights to try to reduce the
error at s, a:

17

Updating a linear value function

• Original Q learning rule tries to reduce prediction
error at s, a:

Q(s,a) � Q(s,a) + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)]

• Instead, we update the weights to try to reduce the
error at s, a:

wi � wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] �Qw(s,a)/¶wi

= wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] fi(s,a)

17

Updating a linear value function

• Original Q learning rule tries to reduce prediction error at s, a:

Q(s,a) ¬ Q(s,a) + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)]

• Instead, we update the weights to try to reduce the error at s, a:
wi¬ wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] ¶Qw(s,a)/¶wi

= wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] fi(s,a)

• Qualitative justification:
• Pleasant surprise: increase weights on positive features, decrease on negative

ones
• Unpleasant surprise: decrease weights on positive features, increase on negative

ones

18

PACMAN Q-Learning (Linear function
approx.)

19

Deriving the TD via incremental optimization
that minimizes Bellman errors

• Mean Square Error and Mean Square Bellman error

20

So far, in RL algorithms

• Model-based approaches
• Estimate the MDP parameters.
• Then use policy-iterations, value iterations.

• Monte Carlo methods:
• estimating the rewards by empirical averages

• Temporal Difference methods:
• Combine Monte Carlo methods with Dynamic Programming

• Linear function approximation in Q-learning
• Similar to SGD
• Learning heuristic function

21

Policy class and policy gradient
methods
• Policy

• Parametric policy class:

• Goal: optimize the value

• Policy gradient methods
• aim at learning the policy parameter by SGD.

22

⇡ 2 ⇧
<latexit sha1_base64="uaG9Bc4KEiTfe9jgZpZAJvl4ku0=">AAAB8nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgq2FJJTNdtMu3WzC7kQooT/DiwdFvPprvPlv3LY5aOsLCw/vzLAzb5RJYdB1v53K2vrG5lZ1u7azu7d/UD886po014x3WCpT3Yuo4VIo3kGBkvcyzWkSSf4YjW9n9ccnro1I1QNOMh4mdKhELBhFa/lBJkggFAnaol9vuE13LrIKXgkNKNXu17+CQcryhCtkkhrje26GYUE1Cib5tBbkhmeUjemQ+xYVTbgJi/nKU3JmnQGJU22fQjJ3f08UNDFmkkS2M6E4Msu1mflfzc8xvg4LobIcuWKLj+JcEkzJ7H4yEJozlBMLlGlhdyVsRDVlaFOq2RC85ZNXoXvR9CzfXzZaN2UcVTiBUzgHD66gBXfQhg4wSOEZXuHNQefFeXc+Fq0Vp5w5hj9yPn8AX3+QpQ==</latexit><latexit sha1_base64="uaG9Bc4KEiTfe9jgZpZAJvl4ku0=">AAAB8nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgq2FJJTNdtMu3WzC7kQooT/DiwdFvPprvPlv3LY5aOsLCw/vzLAzb5RJYdB1v53K2vrG5lZ1u7azu7d/UD886po014x3WCpT3Yuo4VIo3kGBkvcyzWkSSf4YjW9n9ccnro1I1QNOMh4mdKhELBhFa/lBJkggFAnaol9vuE13LrIKXgkNKNXu17+CQcryhCtkkhrje26GYUE1Cib5tBbkhmeUjemQ+xYVTbgJi/nKU3JmnQGJU22fQjJ3f08UNDFmkkS2M6E4Msu1mflfzc8xvg4LobIcuWKLj+JcEkzJ7H4yEJozlBMLlGlhdyVsRDVlaFOq2RC85ZNXoXvR9CzfXzZaN2UcVTiBUzgHD66gBXfQhg4wSOEZXuHNQefFeXc+Fq0Vp5w5hj9yPn8AX3+QpQ==</latexit><latexit sha1_base64="uaG9Bc4KEiTfe9jgZpZAJvl4ku0=">AAAB8nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgq2FJJTNdtMu3WzC7kQooT/DiwdFvPprvPlv3LY5aOsLCw/vzLAzb5RJYdB1v53K2vrG5lZ1u7azu7d/UD886po014x3WCpT3Yuo4VIo3kGBkvcyzWkSSf4YjW9n9ccnro1I1QNOMh4mdKhELBhFa/lBJkggFAnaol9vuE13LrIKXgkNKNXu17+CQcryhCtkkhrje26GYUE1Cib5tBbkhmeUjemQ+xYVTbgJi/nKU3JmnQGJU22fQjJ3f08UNDFmkkS2M6E4Msu1mflfzc8xvg4LobIcuWKLj+JcEkzJ7H4yEJozlBMLlGlhdyVsRDVlaFOq2RC85ZNXoXvR9CzfXzZaN2UcVTiBUzgHD66gBXfQhg4wSOEZXuHNQefFeXc+Fq0Vp5w5hj9yPn8AX3+QpQ==</latexit><latexit sha1_base64="uaG9Bc4KEiTfe9jgZpZAJvl4ku0=">AAAB8nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgq2FJJTNdtMu3WzC7kQooT/DiwdFvPprvPlv3LY5aOsLCw/vzLAzb5RJYdB1v53K2vrG5lZ1u7azu7d/UD886po014x3WCpT3Yuo4VIo3kGBkvcyzWkSSf4YjW9n9ccnro1I1QNOMh4mdKhELBhFa/lBJkggFAnaol9vuE13LrIKXgkNKNXu17+CQcryhCtkkhrje26GYUE1Cib5tBbkhmeUjemQ+xYVTbgJi/nKU3JmnQGJU22fQjJ3f08UNDFmkkS2M6E4Msu1mflfzc8xvg4LobIcuWKLj+JcEkzJ7H4yEJozlBMLlGlhdyVsRDVlaFOq2RC85ZNXoXvR9CzfXzZaN2UcVTiBUzgHD66gBXfQhg4wSOEZXuHNQefFeXc+Fq0Vp5w5hj9yPn8AX3+QpQ==</latexit>

⇧ = {⇡✓|✓ 2 Rd}
<latexit sha1_base64="Amat6ZIjQd9YlYjHmNTW/xnvYn4=">AAACF3icbVDLSgMxFM34rPU16tJNsAiuyowIuhGKblxWsQ9oasmkaRuayQzJHaGM8xdu/BU3LhRxqzv/xkzbhbYeCDmccy/33hPEUhjwvG9nYXFpeWW1sFZc39jc2nZ3dusmSjTjNRbJSDcDargUitdAgOTNWHMaBpI3guFl7jfuuTYiUrcwink7pH0leoJRsFLHLZOqwOeYpCQWHQIDDvQBT36MiVCYhBQGQZDeZHddknXcklf2xsDzxJ+SEpqi2nG/SDdiScgVMEmNafleDO2UahBM8qxIEsNjyoa0z1uWKhpy007Hd2X40Cpd3Iu0fQrwWP3dkdLQmFEY2Mp8SzPr5eJ/XiuB3lk7FSpOgCs2GdRLJIYI5yHhrtCcgRxZQpkWdlfMBlRTBjbKog3Bnz15ntSPy77l1yelysU0jgLaRwfoCPnoFFXQFaqiGmLoET2jV/TmPDkvzrvzMSldcKY9e+gPnM8f/tCfNg==</latexit><latexit sha1_base64="Amat6ZIjQd9YlYjHmNTW/xnvYn4=">AAACF3icbVDLSgMxFM34rPU16tJNsAiuyowIuhGKblxWsQ9oasmkaRuayQzJHaGM8xdu/BU3LhRxqzv/xkzbhbYeCDmccy/33hPEUhjwvG9nYXFpeWW1sFZc39jc2nZ3dusmSjTjNRbJSDcDargUitdAgOTNWHMaBpI3guFl7jfuuTYiUrcwink7pH0leoJRsFLHLZOqwOeYpCQWHQIDDvQBT36MiVCYhBQGQZDeZHddknXcklf2xsDzxJ+SEpqi2nG/SDdiScgVMEmNafleDO2UahBM8qxIEsNjyoa0z1uWKhpy007Hd2X40Cpd3Iu0fQrwWP3dkdLQmFEY2Mp8SzPr5eJ/XiuB3lk7FSpOgCs2GdRLJIYI5yHhrtCcgRxZQpkWdlfMBlRTBjbKog3Bnz15ntSPy77l1yelysU0jgLaRwfoCPnoFFXQFaqiGmLoET2jV/TmPDkvzrvzMSldcKY9e+gPnM8f/tCfNg==</latexit><latexit sha1_base64="Amat6ZIjQd9YlYjHmNTW/xnvYn4=">AAACF3icbVDLSgMxFM34rPU16tJNsAiuyowIuhGKblxWsQ9oasmkaRuayQzJHaGM8xdu/BU3LhRxqzv/xkzbhbYeCDmccy/33hPEUhjwvG9nYXFpeWW1sFZc39jc2nZ3dusmSjTjNRbJSDcDargUitdAgOTNWHMaBpI3guFl7jfuuTYiUrcwink7pH0leoJRsFLHLZOqwOeYpCQWHQIDDvQBT36MiVCYhBQGQZDeZHddknXcklf2xsDzxJ+SEpqi2nG/SDdiScgVMEmNafleDO2UahBM8qxIEsNjyoa0z1uWKhpy007Hd2X40Cpd3Iu0fQrwWP3dkdLQmFEY2Mp8SzPr5eJ/XiuB3lk7FSpOgCs2GdRLJIYI5yHhrtCcgRxZQpkWdlfMBlRTBjbKog3Bnz15ntSPy77l1yelysU0jgLaRwfoCPnoFFXQFaqiGmLoET2jV/TmPDkvzrvzMSldcKY9e+gPnM8f/tCfNg==</latexit><latexit sha1_base64="Amat6ZIjQd9YlYjHmNTW/xnvYn4=">AAACF3icbVDLSgMxFM34rPU16tJNsAiuyowIuhGKblxWsQ9oasmkaRuayQzJHaGM8xdu/BU3LhRxqzv/xkzbhbYeCDmccy/33hPEUhjwvG9nYXFpeWW1sFZc39jc2nZ3dusmSjTjNRbJSDcDargUitdAgOTNWHMaBpI3guFl7jfuuTYiUrcwink7pH0leoJRsFLHLZOqwOeYpCQWHQIDDvQBT36MiVCYhBQGQZDeZHddknXcklf2xsDzxJ+SEpqi2nG/SDdiScgVMEmNafleDO2UahBM8qxIEsNjyoa0z1uWKhpy007Hd2X40Cpd3Iu0fQrwWP3dkdLQmFEY2Mp8SzPr5eJ/XiuB3lk7FSpOgCs2GdRLJIYI5yHhrtCcgRxZQpkWdlfMBlRTBjbKog3Bnz15ntSPy77l1yelysU0jgLaRwfoCPnoFFXQFaqiGmLoET2jV/TmPDkvzrvzMSldcKY9e+gPnM8f/tCfNg==</latexit>

Policy gradient

• Objective function to maximize:

23

268 CHAPTER 13. POLICY GRADIENT METHODS

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over "-greedy action selection, there
is also an important theoretical advantage. With continuous policy parameterization the action proba-
bilities change smoothly as a function of the learned parameter, whereas in "-greedy selection the action
probabilities may change dramatically for an arbitrarily small change in the estimated action values,
if that change results in a di↵erent action having the maximal value. Largely because of this stronger
convergence guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables policy-gradient
methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(✓), di↵erently and thus have to
be treated separately to some extent. Nevertheless, we will try to present both cases uniformly, and we
develop a notation so that the major theoretical results can be decribed with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure as the value
of the start state of the episode. We can simplify the notation without losing any meaningful generality
by assuming that every episode starts in some particular (non-random) state s0. Then, in the episodic
case we define performance as

J(✓)
.
= v⇡✓ (s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓. From here on in our discussion
we will assume no discounting (� = 1) for the episodic case, although for completeness we do include
the possibility of discounting in the boxed algorithms.

With function approximation, it may seem challenging to change the policy parameter in a way that
ensures improvement. The problem is that performance depends on both the action selections and the
distribution of states in which those selections are made, and that both of these are a↵ected by the
policy parameter. Given a state, the e↵ect of the policy parameter on the actions, and thus on reward,
can be computed in a relatively straightforward way from knowledge of the parameterization. But the
e↵ect of the policy on the state distribution is a function of the environment and is typically unknown.
How can we estimate the performance gradient with respect to the policy parameter when the gradient
depends on the unknown e↵ect of policy changes on the state distribution?

Fortunately, there is an excellent theoretical answer to this challenge in the form of the policy gradient
theorem, which provides us an analytic expression for the gradient of performance with respect to the
policy parameter (which is what we need to approximate for gradient ascent (13.1)) that does not
involve the derivative of the state distribution. The policy gradient theorem establishes that

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

where the gradients are column vectors of partial derivatives with respect to the components of ✓, and
⇡ denotes the policy corresponding to parameter vector ✓. The symbol / here means “proportional
to”. In the episodic case, the constant of proportionality is the average length of an episode, and in the
continuing case it is 1, so that the relationship is actually an equality. The distribution µ here (as in
Chapters 9 and 10) is the on-policy distribution under ⇡ (see page 163). The policy gradient theorem
is proved for the episodic case in the box on the next page.

*Note how this theorem is non-trivial… The first two terms
depends on 𝜋, but we did not take the gradient w.r.t. them.

Policy gradient

• Objective function to maximize:

• Do SGD:

23

Chapter 13

Policy Gradient Methods

In this chapter we consider something new. So far in this book almost all the methods have learned the
values of actions and then selected actions based on their estimated action values1; their policies would
not even exist without the action-value estimates. In this chapter we consider methods that instead
learn a parameterized policy that can select actions without consulting a value function. A value function
may still be used to learn the policy parameter, but is not required for action selection. We use the
notation ✓ 2 Rd

0
for the policy’s parameter vector. Thus we write ⇡(a|s, ✓) = Pr{At =a | St =s, ✓t =✓}

for the probability that action a is taken at time t given that the environment is in state s at time t
with parameter ✓. If a method uses a learned value function as well, then the value function’s weight
vector is denoted w 2 Rd as usual, as in v̂(s,w).

In this chapter we consider methods for learning the policy parameter based on the gradient of some
performance measure J(✓) with respect to the policy parameter. These methods seek to maximize
performance, so their updates approximate gradient ascent in J :

✓t+1 = ✓t + ↵ \rJ(✓t), (13.1)

where \rJ(✓t) is a stochastic estimate whose expectation approximates the gradient of the performance
measure with respect to its argument ✓t. All methods that follow this general schema we call policy
gradient methods, whether or not they also learn an approximate value function. Methods that learn
approximations to both policy and value functions are often called actor–critic methods, where ‘actor’
is a reference to the learned policy, and ‘critic’ refers to the learned value function, usually a state-value
function. First we treat the episodic case, in which performance is defined as the value of the start state
under the parameterized policy, before going on to consider the continuing case, in which performance is
defined as the average reward rate, as in Section 10.3. In the end we are able to express the algorithms
for both cases in very similar terms.

13.1 Policy Approximation and its Advantages

In policy gradient methods, the policy can be parameterized in any way, as long as ⇡(a|s, ✓) is di↵er-
entiable with respect to its parameters, that is, as long as r✓⇡(a|s, ✓) exists and is always finite. In
practice, to ensure exploration we generally require that the policy never becomes deterministic (i.e.,
that ⇡(a|s, ✓) 2 (0, 1), for all s, a, ✓). In this section we introduce the most common parameterization

1
The lone exception is the gradient bandit algorithms of Section 2.8. In fact, that section goes through many of the

same steps, in the single-state bandit case, as we go through here for full MDPs. Reviewing that section would be good

preparation for fully understanding this chapter.

265

268 CHAPTER 13. POLICY GRADIENT METHODS

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over "-greedy action selection, there
is also an important theoretical advantage. With continuous policy parameterization the action proba-
bilities change smoothly as a function of the learned parameter, whereas in "-greedy selection the action
probabilities may change dramatically for an arbitrarily small change in the estimated action values,
if that change results in a di↵erent action having the maximal value. Largely because of this stronger
convergence guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables policy-gradient
methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(✓), di↵erently and thus have to
be treated separately to some extent. Nevertheless, we will try to present both cases uniformly, and we
develop a notation so that the major theoretical results can be decribed with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure as the value
of the start state of the episode. We can simplify the notation without losing any meaningful generality
by assuming that every episode starts in some particular (non-random) state s0. Then, in the episodic
case we define performance as

J(✓)
.
= v⇡✓ (s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓. From here on in our discussion
we will assume no discounting (� = 1) for the episodic case, although for completeness we do include
the possibility of discounting in the boxed algorithms.

With function approximation, it may seem challenging to change the policy parameter in a way that
ensures improvement. The problem is that performance depends on both the action selections and the
distribution of states in which those selections are made, and that both of these are a↵ected by the
policy parameter. Given a state, the e↵ect of the policy parameter on the actions, and thus on reward,
can be computed in a relatively straightforward way from knowledge of the parameterization. But the
e↵ect of the policy on the state distribution is a function of the environment and is typically unknown.
How can we estimate the performance gradient with respect to the policy parameter when the gradient
depends on the unknown e↵ect of policy changes on the state distribution?

Fortunately, there is an excellent theoretical answer to this challenge in the form of the policy gradient
theorem, which provides us an analytic expression for the gradient of performance with respect to the
policy parameter (which is what we need to approximate for gradient ascent (13.1)) that does not
involve the derivative of the state distribution. The policy gradient theorem establishes that

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

where the gradients are column vectors of partial derivatives with respect to the components of ✓, and
⇡ denotes the policy corresponding to parameter vector ✓. The symbol / here means “proportional
to”. In the episodic case, the constant of proportionality is the average length of an episode, and in the
continuing case it is 1, so that the relationship is actually an equality. The distribution µ here (as in
Chapters 9 and 10) is the on-policy distribution under ⇡ (see page 163). The policy gradient theorem
is proved for the episodic case in the box on the next page.

*Note how this theorem is non-trivial… The first two terms
depends on 𝜋, but we did not take the gradient w.r.t. them.

Policy gradient

• Objective function to maximize:

• Do SGD:

• Policy gradient theorem:

23

Chapter 13

Policy Gradient Methods

In this chapter we consider something new. So far in this book almost all the methods have learned the
values of actions and then selected actions based on their estimated action values1; their policies would
not even exist without the action-value estimates. In this chapter we consider methods that instead
learn a parameterized policy that can select actions without consulting a value function. A value function
may still be used to learn the policy parameter, but is not required for action selection. We use the
notation ✓ 2 Rd

0
for the policy’s parameter vector. Thus we write ⇡(a|s, ✓) = Pr{At =a | St =s, ✓t =✓}

for the probability that action a is taken at time t given that the environment is in state s at time t
with parameter ✓. If a method uses a learned value function as well, then the value function’s weight
vector is denoted w 2 Rd as usual, as in v̂(s,w).

In this chapter we consider methods for learning the policy parameter based on the gradient of some
performance measure J(✓) with respect to the policy parameter. These methods seek to maximize
performance, so their updates approximate gradient ascent in J :

✓t+1 = ✓t + ↵ \rJ(✓t), (13.1)

where \rJ(✓t) is a stochastic estimate whose expectation approximates the gradient of the performance
measure with respect to its argument ✓t. All methods that follow this general schema we call policy
gradient methods, whether or not they also learn an approximate value function. Methods that learn
approximations to both policy and value functions are often called actor–critic methods, where ‘actor’
is a reference to the learned policy, and ‘critic’ refers to the learned value function, usually a state-value
function. First we treat the episodic case, in which performance is defined as the value of the start state
under the parameterized policy, before going on to consider the continuing case, in which performance is
defined as the average reward rate, as in Section 10.3. In the end we are able to express the algorithms
for both cases in very similar terms.

13.1 Policy Approximation and its Advantages

In policy gradient methods, the policy can be parameterized in any way, as long as ⇡(a|s, ✓) is di↵er-
entiable with respect to its parameters, that is, as long as r✓⇡(a|s, ✓) exists and is always finite. In
practice, to ensure exploration we generally require that the policy never becomes deterministic (i.e.,
that ⇡(a|s, ✓) 2 (0, 1), for all s, a, ✓). In this section we introduce the most common parameterization

1
The lone exception is the gradient bandit algorithms of Section 2.8. In fact, that section goes through many of the

same steps, in the single-state bandit case, as we go through here for full MDPs. Reviewing that section would be good

preparation for fully understanding this chapter.

265

268 CHAPTER 13. POLICY GRADIENT METHODS

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over "-greedy action selection, there
is also an important theoretical advantage. With continuous policy parameterization the action proba-
bilities change smoothly as a function of the learned parameter, whereas in "-greedy selection the action
probabilities may change dramatically for an arbitrarily small change in the estimated action values,
if that change results in a di↵erent action having the maximal value. Largely because of this stronger
convergence guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables policy-gradient
methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(✓), di↵erently and thus have to
be treated separately to some extent. Nevertheless, we will try to present both cases uniformly, and we
develop a notation so that the major theoretical results can be decribed with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure as the value
of the start state of the episode. We can simplify the notation without losing any meaningful generality
by assuming that every episode starts in some particular (non-random) state s0. Then, in the episodic
case we define performance as

J(✓)
.
= v⇡✓ (s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓. From here on in our discussion
we will assume no discounting (� = 1) for the episodic case, although for completeness we do include
the possibility of discounting in the boxed algorithms.

With function approximation, it may seem challenging to change the policy parameter in a way that
ensures improvement. The problem is that performance depends on both the action selections and the
distribution of states in which those selections are made, and that both of these are a↵ected by the
policy parameter. Given a state, the e↵ect of the policy parameter on the actions, and thus on reward,
can be computed in a relatively straightforward way from knowledge of the parameterization. But the
e↵ect of the policy on the state distribution is a function of the environment and is typically unknown.
How can we estimate the performance gradient with respect to the policy parameter when the gradient
depends on the unknown e↵ect of policy changes on the state distribution?

Fortunately, there is an excellent theoretical answer to this challenge in the form of the policy gradient
theorem, which provides us an analytic expression for the gradient of performance with respect to the
policy parameter (which is what we need to approximate for gradient ascent (13.1)) that does not
involve the derivative of the state distribution. The policy gradient theorem establishes that

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

where the gradients are column vectors of partial derivatives with respect to the components of ✓, and
⇡ denotes the policy corresponding to parameter vector ✓. The symbol / here means “proportional
to”. In the episodic case, the constant of proportionality is the average length of an episode, and in the
continuing case it is 1, so that the relationship is actually an equality. The distribution µ here (as in
Chapters 9 and 10) is the on-policy distribution under ⇡ (see page 163). The policy gradient theorem
is proved for the episodic case in the box on the next page.

*Note how this theorem is non-trivial… The first two terms
depends on 𝜋, but we did not take the gradient w.r.t. them.

Policy gradient

• Objective function to maximize:

• Do SGD:

• Policy gradient theorem:

23

Chapter 13

Policy Gradient Methods

In this chapter we consider something new. So far in this book almost all the methods have learned the
values of actions and then selected actions based on their estimated action values1; their policies would
not even exist without the action-value estimates. In this chapter we consider methods that instead
learn a parameterized policy that can select actions without consulting a value function. A value function
may still be used to learn the policy parameter, but is not required for action selection. We use the
notation ✓ 2 Rd

0
for the policy’s parameter vector. Thus we write ⇡(a|s, ✓) = Pr{At =a | St =s, ✓t =✓}

for the probability that action a is taken at time t given that the environment is in state s at time t
with parameter ✓. If a method uses a learned value function as well, then the value function’s weight
vector is denoted w 2 Rd as usual, as in v̂(s,w).

In this chapter we consider methods for learning the policy parameter based on the gradient of some
performance measure J(✓) with respect to the policy parameter. These methods seek to maximize
performance, so their updates approximate gradient ascent in J :

✓t+1 = ✓t + ↵ \rJ(✓t), (13.1)

where \rJ(✓t) is a stochastic estimate whose expectation approximates the gradient of the performance
measure with respect to its argument ✓t. All methods that follow this general schema we call policy
gradient methods, whether or not they also learn an approximate value function. Methods that learn
approximations to both policy and value functions are often called actor–critic methods, where ‘actor’
is a reference to the learned policy, and ‘critic’ refers to the learned value function, usually a state-value
function. First we treat the episodic case, in which performance is defined as the value of the start state
under the parameterized policy, before going on to consider the continuing case, in which performance is
defined as the average reward rate, as in Section 10.3. In the end we are able to express the algorithms
for both cases in very similar terms.

13.1 Policy Approximation and its Advantages

In policy gradient methods, the policy can be parameterized in any way, as long as ⇡(a|s, ✓) is di↵er-
entiable with respect to its parameters, that is, as long as r✓⇡(a|s, ✓) exists and is always finite. In
practice, to ensure exploration we generally require that the policy never becomes deterministic (i.e.,
that ⇡(a|s, ✓) 2 (0, 1), for all s, a, ✓). In this section we introduce the most common parameterization

1
The lone exception is the gradient bandit algorithms of Section 2.8. In fact, that section goes through many of the

same steps, in the single-state bandit case, as we go through here for full MDPs. Reviewing that section would be good

preparation for fully understanding this chapter.

265

268 CHAPTER 13. POLICY GRADIENT METHODS

13.2 The Policy Gradient Theorem

In addition to the practical advantages of policy parameterization over "-greedy action selection, there
is also an important theoretical advantage. With continuous policy parameterization the action proba-
bilities change smoothly as a function of the learned parameter, whereas in "-greedy selection the action
probabilities may change dramatically for an arbitrarily small change in the estimated action values,
if that change results in a di↵erent action having the maximal value. Largely because of this stronger
convergence guarantees are available for policy-gradient methods than for action-value methods. In
particular, it is the continuity of the policy dependence on the parameters that enables policy-gradient
methods to approximate gradient ascent (13.1).

The episodic and continuing cases define the performance measure, J(✓), di↵erently and thus have to
be treated separately to some extent. Nevertheless, we will try to present both cases uniformly, and we
develop a notation so that the major theoretical results can be decribed with a single set of equations.

In this section we treat the episodic case, for which we define the performance measure as the value
of the start state of the episode. We can simplify the notation without losing any meaningful generality
by assuming that every episode starts in some particular (non-random) state s0. Then, in the episodic
case we define performance as

J(✓)
.
= v⇡✓ (s0), (13.4)

where v⇡✓ is the true value function for ⇡✓, the policy determined by ✓. From here on in our discussion
we will assume no discounting (� = 1) for the episodic case, although for completeness we do include
the possibility of discounting in the boxed algorithms.

With function approximation, it may seem challenging to change the policy parameter in a way that
ensures improvement. The problem is that performance depends on both the action selections and the
distribution of states in which those selections are made, and that both of these are a↵ected by the
policy parameter. Given a state, the e↵ect of the policy parameter on the actions, and thus on reward,
can be computed in a relatively straightforward way from knowledge of the parameterization. But the
e↵ect of the policy on the state distribution is a function of the environment and is typically unknown.
How can we estimate the performance gradient with respect to the policy parameter when the gradient
depends on the unknown e↵ect of policy changes on the state distribution?

Fortunately, there is an excellent theoretical answer to this challenge in the form of the policy gradient
theorem, which provides us an analytic expression for the gradient of performance with respect to the
policy parameter (which is what we need to approximate for gradient ascent (13.1)) that does not
involve the derivative of the state distribution. The policy gradient theorem establishes that

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r✓⇡(a|s, ✓), (13.5)

where the gradients are column vectors of partial derivatives with respect to the components of ✓, and
⇡ denotes the policy corresponding to parameter vector ✓. The symbol / here means “proportional
to”. In the episodic case, the constant of proportionality is the average length of an episode, and in the
continuing case it is 1, so that the relationship is actually an equality. The distribution µ here (as in
Chapters 9 and 10) is the on-policy distribution under ⇡ (see page 163). The policy gradient theorem
is proved for the episodic case in the box on the next page.

<latexit sha1_base64="JrLvwP2EIT4p1SoRaROiliCkxEk=">AAACaHicbVFdi9NAFJ1k/VjbXc2uisi+DC0LLZSSiKAvwqIv4tMW7Ac0NdxMpu3QySTM3CyUGPyPvvkDfPFXOGnzoNteGOZwzv2aM3EuhUHf/+W4Jw8ePnp8+qTVPjt/+sy7uJyYrNCMj1kmMz2LwXApFB+jQMlnueaQxpJP482nWp/ecW1Epr7iNueLFFZKLAUDtFTk/QgVxBLol14YZzIx29ReZYhrjlD16QcamiKNSlNRmnwLc9Ez/YaCio72zAAst2sTlUe6VHUSfDeDYxMir+sP/V3QQxA0oEuauI28n2GSsSLlCpkEY+aBn+OiBI2CSV61wsLwHNgGVnxuoYKUm0W5M6qi15ZJ6DLT9iikO/bfihJSUy9oM1PAtbmv1eQxbV7g8v2iFCovkCu2H7QsJMWM1q7TRGjOUG4tAKaF3ZWyNWhgaP+mZU0I7j/5EEzeDAOLR2+7Nx8bO07JFemQHgnIO3JDPpNbMiaM/HbazgvnpfPH9dxX7ut9qus0Nc/Jf+F2/gLzGbpY</latexit>

*Note how this theorem is non-trivial… The first two terms
depends on 𝜋, but we did not take the gradient w.r.t. them.

Stochastic approximation in policy
gradients

• Sample from running policy 𝜋
• 𝑆", 𝐴", 𝑅" , … , (𝑆#, 𝐴#, 𝑅#)

24

<latexit sha1_base64="JrLvwP2EIT4p1SoRaROiliCkxEk=">AAACaHicbVFdi9NAFJ1k/VjbXc2uisi+DC0LLZSSiKAvwqIv4tMW7Ac0NdxMpu3QySTM3CyUGPyPvvkDfPFXOGnzoNteGOZwzv2aM3EuhUHf/+W4Jw8ePnp8+qTVPjt/+sy7uJyYrNCMj1kmMz2LwXApFB+jQMlnueaQxpJP482nWp/ecW1Epr7iNueLFFZKLAUDtFTk/QgVxBLol14YZzIx29ReZYhrjlD16QcamiKNSlNRmnwLc9Ez/YaCio72zAAst2sTlUe6VHUSfDeDYxMir+sP/V3QQxA0oEuauI28n2GSsSLlCpkEY+aBn+OiBI2CSV61wsLwHNgGVnxuoYKUm0W5M6qi15ZJ6DLT9iikO/bfihJSUy9oM1PAtbmv1eQxbV7g8v2iFCovkCu2H7QsJMWM1q7TRGjOUG4tAKaF3ZWyNWhgaP+mZU0I7j/5EEzeDAOLR2+7Nx8bO07JFemQHgnIO3JDPpNbMiaM/HbazgvnpfPH9dxX7ut9qus0Nc/Jf+F2/gLzGbpY</latexit>

Stochastic approximation in policy
gradients

• Sample from running policy 𝜋
• 𝑆", 𝐴", 𝑅" , … , (𝑆#, 𝐴#, 𝑅#)

• Idea: Sample s, then the following is an unbiased
estimator (finite horizon episodic case)

24

<latexit sha1_base64="JrLvwP2EIT4p1SoRaROiliCkxEk=">AAACaHicbVFdi9NAFJ1k/VjbXc2uisi+DC0LLZSSiKAvwqIv4tMW7Ac0NdxMpu3QySTM3CyUGPyPvvkDfPFXOGnzoNteGOZwzv2aM3EuhUHf/+W4Jw8ePnp8+qTVPjt/+sy7uJyYrNCMj1kmMz2LwXApFB+jQMlnueaQxpJP482nWp/ecW1Epr7iNueLFFZKLAUDtFTk/QgVxBLol14YZzIx29ReZYhrjlD16QcamiKNSlNRmnwLc9Ez/YaCio72zAAst2sTlUe6VHUSfDeDYxMir+sP/V3QQxA0oEuauI28n2GSsSLlCpkEY+aBn+OiBI2CSV61wsLwHNgGVnxuoYKUm0W5M6qi15ZJ6DLT9iikO/bfihJSUy9oM1PAtbmv1eQxbV7g8v2iFCovkCu2H7QsJMWM1q7TRGjOUG4tAKaF3ZWyNWhgaP+mZU0I7j/5EEzeDAOLR2+7Nx8bO07JFemQHgnIO3JDPpNbMiaM/HbazgvnpfPH9dxX7ut9qus0Nc/Jf+F2/gLzGbpY</latexit>

TX

t=1

⇣ TX

`=t

R`

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
<latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit>

Stochastic approximation in policy
gradients

• Sample from running policy 𝜋
• 𝑆", 𝐴", 𝑅" , … , (𝑆#, 𝐴#, 𝑅#)

• Idea: Sample s, then the following is an unbiased
estimator (finite horizon episodic case)

24

<latexit sha1_base64="JrLvwP2EIT4p1SoRaROiliCkxEk=">AAACaHicbVFdi9NAFJ1k/VjbXc2uisi+DC0LLZSSiKAvwqIv4tMW7Ac0NdxMpu3QySTM3CyUGPyPvvkDfPFXOGnzoNteGOZwzv2aM3EuhUHf/+W4Jw8ePnp8+qTVPjt/+sy7uJyYrNCMj1kmMz2LwXApFB+jQMlnueaQxpJP482nWp/ecW1Epr7iNueLFFZKLAUDtFTk/QgVxBLol14YZzIx29ReZYhrjlD16QcamiKNSlNRmnwLc9Ez/YaCio72zAAst2sTlUe6VHUSfDeDYxMir+sP/V3QQxA0oEuauI28n2GSsSLlCpkEY+aBn+OiBI2CSV61wsLwHNgGVnxuoYKUm0W5M6qi15ZJ6DLT9iikO/bfihJSUy9oM1PAtbmv1eQxbV7g8v2iFCovkCu2H7QsJMWM1q7TRGjOUG4tAKaF3ZWyNWhgaP+mZU0I7j/5EEzeDAOLR2+7Nx8bO07JFemQHgnIO3JDPpNbMiaM/HbazgvnpfPH9dxX7ut9qus0Nc/Jf+F2/gLzGbpY</latexit>

TX

t=1

⇣ TX

`=t

R`

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
<latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit>

=
TX

t=1

Gtr✓ log(⇡(At|St, ✓))
<latexit sha1_base64="4Jy3IbDAdvl6GpfTnd7hxv6iBn0=">AAACKnicbZDLSgMxFIYzXmu9VV26CRahgsiMCLoptLrQZcVWhU4dzqRpG5rJDMkZoYx9Hje+ihsXirj1QUwvC28HAh//fw4n5w8TKQy67rszMzs3v7CYW8ovr6yurRc2Nq9NnGrGGyyWsb4NwXApFG+gQMlvE80hCiW/CftnI//mnmsjYlXHQcJbEXSV6AgGaKWgUC1T6ps0CjIse8O7Oj0PkPoKQglB5mOPIwypL+NuyU9EqWrNB3oV4D6deHt7+aBQdA/ccdG/4E2hSKZVCwovfjtmacQVMgnGND03wVYGGgWTfJj3U8MTYH3o8qZFBRE3rWx86pDuWqVNO7G2TyEdq98nMoiMGUSh7YwAe+a3NxL/85opdk5amVBJilyxyaJOKinGdJQbbQvNGcqBBWBa2L9S1gMNDG26oxC83yf/hevDA8/y5VGxcjqNI0e2yQ4pEY8ckwq5IDXSIIw8kmfySt6cJ+fFeXc+Jq0zznRmi/wo5/ML/ESlHg==</latexit><latexit sha1_base64="4Jy3IbDAdvl6GpfTnd7hxv6iBn0=">AAACKnicbZDLSgMxFIYzXmu9VV26CRahgsiMCLoptLrQZcVWhU4dzqRpG5rJDMkZoYx9Hje+ihsXirj1QUwvC28HAh//fw4n5w8TKQy67rszMzs3v7CYW8ovr6yurRc2Nq9NnGrGGyyWsb4NwXApFG+gQMlvE80hCiW/CftnI//mnmsjYlXHQcJbEXSV6AgGaKWgUC1T6ps0CjIse8O7Oj0PkPoKQglB5mOPIwypL+NuyU9EqWrNB3oV4D6deHt7+aBQdA/ccdG/4E2hSKZVCwovfjtmacQVMgnGND03wVYGGgWTfJj3U8MTYH3o8qZFBRE3rWx86pDuWqVNO7G2TyEdq98nMoiMGUSh7YwAe+a3NxL/85opdk5amVBJilyxyaJOKinGdJQbbQvNGcqBBWBa2L9S1gMNDG26oxC83yf/hevDA8/y5VGxcjqNI0e2yQ4pEY8ckwq5IDXSIIw8kmfySt6cJ+fFeXc+Jq0zznRmi/wo5/ML/ESlHg==</latexit><latexit sha1_base64="4Jy3IbDAdvl6GpfTnd7hxv6iBn0=">AAACKnicbZDLSgMxFIYzXmu9VV26CRahgsiMCLoptLrQZcVWhU4dzqRpG5rJDMkZoYx9Hje+ihsXirj1QUwvC28HAh//fw4n5w8TKQy67rszMzs3v7CYW8ovr6yurRc2Nq9NnGrGGyyWsb4NwXApFG+gQMlvE80hCiW/CftnI//mnmsjYlXHQcJbEXSV6AgGaKWgUC1T6ps0CjIse8O7Oj0PkPoKQglB5mOPIwypL+NuyU9EqWrNB3oV4D6deHt7+aBQdA/ccdG/4E2hSKZVCwovfjtmacQVMgnGND03wVYGGgWTfJj3U8MTYH3o8qZFBRE3rWx86pDuWqVNO7G2TyEdq98nMoiMGUSh7YwAe+a3NxL/85opdk5amVBJilyxyaJOKinGdJQbbQvNGcqBBWBa2L9S1gMNDG26oxC83yf/hevDA8/y5VGxcjqNI0e2yQ4pEY8ckwq5IDXSIIw8kmfySt6cJ+fFeXc+Jq0zznRmi/wo5/ML/ESlHg==</latexit><latexit sha1_base64="4Jy3IbDAdvl6GpfTnd7hxv6iBn0=">AAACKnicbZDLSgMxFIYzXmu9VV26CRahgsiMCLoptLrQZcVWhU4dzqRpG5rJDMkZoYx9Hje+ihsXirj1QUwvC28HAh//fw4n5w8TKQy67rszMzs3v7CYW8ovr6yurRc2Nq9NnGrGGyyWsb4NwXApFG+gQMlvE80hCiW/CftnI//mnmsjYlXHQcJbEXSV6AgGaKWgUC1T6ps0CjIse8O7Oj0PkPoKQglB5mOPIwypL+NuyU9EqWrNB3oV4D6deHt7+aBQdA/ccdG/4E2hSKZVCwovfjtmacQVMgnGND03wVYGGgWTfJj3U8MTYH3o8qZFBRE3rWx86pDuWqVNO7G2TyEdq98nMoiMGUSh7YwAe+a3NxL/85opdk5amVBJilyxyaJOKinGdJQbbQvNGcqBBWBa2L9S1gMNDG26oxC83yf/hevDA8/y5VGxcjqNI0e2yQ4pEY8ckwq5IDXSIIw8kmfySt6cJ+fFeXc+Jq0zznRmi/wo5/ML/ESlHg==</latexit>

Stochastic approximation in policy
gradients

• Sample from running policy 𝜋
• 𝑆", 𝐴", 𝑅" , … , (𝑆#, 𝐴#, 𝑅#)

• Idea: Sample s, then the following is an unbiased
estimator (finite horizon episodic case)

24

<latexit sha1_base64="JrLvwP2EIT4p1SoRaROiliCkxEk=">AAACaHicbVFdi9NAFJ1k/VjbXc2uisi+DC0LLZSSiKAvwqIv4tMW7Ac0NdxMpu3QySTM3CyUGPyPvvkDfPFXOGnzoNteGOZwzv2aM3EuhUHf/+W4Jw8ePnp8+qTVPjt/+sy7uJyYrNCMj1kmMz2LwXApFB+jQMlnueaQxpJP482nWp/ecW1Epr7iNueLFFZKLAUDtFTk/QgVxBLol14YZzIx29ReZYhrjlD16QcamiKNSlNRmnwLc9Ez/YaCio72zAAst2sTlUe6VHUSfDeDYxMir+sP/V3QQxA0oEuauI28n2GSsSLlCpkEY+aBn+OiBI2CSV61wsLwHNgGVnxuoYKUm0W5M6qi15ZJ6DLT9iikO/bfihJSUy9oM1PAtbmv1eQxbV7g8v2iFCovkCu2H7QsJMWM1q7TRGjOUG4tAKaF3ZWyNWhgaP+mZU0I7j/5EEzeDAOLR2+7Nx8bO07JFemQHgnIO3JDPpNbMiaM/HbazgvnpfPH9dxX7ut9qus0Nc/Jf+F2/gLzGbpY</latexit>

TX

t=1

⇣ TX

`=t

R`

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
<latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit><latexit sha1_base64="AZtWTZBfUduPNrIx+xnhLXNdSXs=">AAACXHicbZFdS9xAFIYn0bbrqnWr4E1vhi6FFYokIrQ3gh83Xmp1Vdis4WT2ZHdwMgkzJ4UlzZ/0zhv/ik52t1A/Dgy8PO85nJl3kkJJS0Hw4PlLyx8+fmqttFfX1j9vdL5sXtm8NAL7Ile5uUnAopIa+yRJ4U1hELJE4XVyd9L413/QWJnrS5oWOMxgrGUqBZBDccdGtsziig7C+vaSR8dy3JuTCJU6oAb+jhvdWDs8Sg2IKtKQKHA9NEGCmkeF7B3FxP/yi5h+8DneqauX/B9ux51usBvMir8V4UJ02aLO4s59NMpFmaEmocDaQRgUNKzAkBQK63ZUWixA3MEYB05qyNAOq1k4Nf/uyIinuXFHE5/R/ycqyKydZonrzIAm9rXXwPe8QUnpr2EldVESajFflJaKU86bpPlIGhSkpk6AMNLdlYsJuPzI/UcTQvj6yW/F1d5u6PT5fvfweBFHi31l31iPhewnO2Sn7Iz1mWAP7MlreSveo7/sr/rr81bfW8xssRflbz8DEJa0Lw==</latexit>

=
TX

t=1

Gtr✓ log(⇡(At|St, ✓))
<latexit sha1_base64="4Jy3IbDAdvl6GpfTnd7hxv6iBn0=">AAACKnicbZDLSgMxFIYzXmu9VV26CRahgsiMCLoptLrQZcVWhU4dzqRpG5rJDMkZoYx9Hje+ihsXirj1QUwvC28HAh//fw4n5w8TKQy67rszMzs3v7CYW8ovr6yurRc2Nq9NnGrGGyyWsb4NwXApFG+gQMlvE80hCiW/CftnI//mnmsjYlXHQcJbEXSV6AgGaKWgUC1T6ps0CjIse8O7Oj0PkPoKQglB5mOPIwypL+NuyU9EqWrNB3oV4D6deHt7+aBQdA/ccdG/4E2hSKZVCwovfjtmacQVMgnGND03wVYGGgWTfJj3U8MTYH3o8qZFBRE3rWx86pDuWqVNO7G2TyEdq98nMoiMGUSh7YwAe+a3NxL/85opdk5amVBJilyxyaJOKinGdJQbbQvNGcqBBWBa2L9S1gMNDG26oxC83yf/hevDA8/y5VGxcjqNI0e2yQ4pEY8ckwq5IDXSIIw8kmfySt6cJ+fFeXc+Jq0zznRmi/wo5/ML/ESlHg==</latexit><latexit sha1_base64="4Jy3IbDAdvl6GpfTnd7hxv6iBn0=">AAACKnicbZDLSgMxFIYzXmu9VV26CRahgsiMCLoptLrQZcVWhU4dzqRpG5rJDMkZoYx9Hje+ihsXirj1QUwvC28HAh//fw4n5w8TKQy67rszMzs3v7CYW8ovr6yurRc2Nq9NnGrGGyyWsb4NwXApFG+gQMlvE80hCiW/CftnI//mnmsjYlXHQcJbEXSV6AgGaKWgUC1T6ps0CjIse8O7Oj0PkPoKQglB5mOPIwypL+NuyU9EqWrNB3oV4D6deHt7+aBQdA/ccdG/4E2hSKZVCwovfjtmacQVMgnGND03wVYGGgWTfJj3U8MTYH3o8qZFBRE3rWx86pDuWqVNO7G2TyEdq98nMoiMGUSh7YwAe+a3NxL/85opdk5amVBJilyxyaJOKinGdJQbbQvNGcqBBWBa2L9S1gMNDG26oxC83yf/hevDA8/y5VGxcjqNI0e2yQ4pEY8ckwq5IDXSIIw8kmfySt6cJ+fFeXc+Jq0zznRmi/wo5/ML/ESlHg==</latexit><latexit sha1_base64="4Jy3IbDAdvl6GpfTnd7hxv6iBn0=">AAACKnicbZDLSgMxFIYzXmu9VV26CRahgsiMCLoptLrQZcVWhU4dzqRpG5rJDMkZoYx9Hje+ihsXirj1QUwvC28HAh//fw4n5w8TKQy67rszMzs3v7CYW8ovr6yurRc2Nq9NnGrGGyyWsb4NwXApFG+gQMlvE80hCiW/CftnI//mnmsjYlXHQcJbEXSV6AgGaKWgUC1T6ps0CjIse8O7Oj0PkPoKQglB5mOPIwypL+NuyU9EqWrNB3oV4D6deHt7+aBQdA/ccdG/4E2hSKZVCwovfjtmacQVMgnGND03wVYGGgWTfJj3U8MTYH3o8qZFBRE3rWx86pDuWqVNO7G2TyEdq98nMoiMGUSh7YwAe+a3NxL/85opdk5amVBJilyxyaJOKinGdJQbbQvNGcqBBWBa2L9S1gMNDG26oxC83yf/hevDA8/y5VGxcjqNI0e2yQ4pEY8ckwq5IDXSIIw8kmfySt6cJ+fFeXc+Jq0zznRmi/wo5/ML/ESlHg==</latexit><latexit sha1_base64="4Jy3IbDAdvl6GpfTnd7hxv6iBn0=">AAACKnicbZDLSgMxFIYzXmu9VV26CRahgsiMCLoptLrQZcVWhU4dzqRpG5rJDMkZoYx9Hje+ihsXirj1QUwvC28HAh//fw4n5w8TKQy67rszMzs3v7CYW8ovr6yurRc2Nq9NnGrGGyyWsb4NwXApFG+gQMlvE80hCiW/CftnI//mnmsjYlXHQcJbEXSV6AgGaKWgUC1T6ps0CjIse8O7Oj0PkPoKQglB5mOPIwypL+NuyU9EqWrNB3oV4D6deHt7+aBQdA/ccdG/4E2hSKZVCwovfjtmacQVMgnGND03wVYGGgWTfJj3U8MTYH3o8qZFBRE3rWx86pDuWqVNO7G2TyEdq98nMoiMGUSh7YwAe+a3NxL/85opdk5amVBJilyxyaJOKinGdJQbbQvNGcqBBWBa2L9S1gMNDG26oxC83yf/hevDA8/y5VGxcjqNI0e2yQ4pEY8ckwq5IDXSIIw8kmfySt6cJ+fFeXc+Jq0zznRmi/wo5/ML/ESlHg==</latexit>

*Show that this is an unbiased estimator of the gradient.

Checkpoint for RL

• Model-based methods
• Model-free methods
• Monte Carlo methods
• TD-learning: Q-Learning and Sarsa

• Function approximation in RL
• Approximate the MDP: Model-based
• Approximate the value function

• Policy gradients
• Parametrize the policy and run SGD

Elements of State-of-the-Art
Reinforcement Learning
• Use a deep neural network to parameterize Q-function

• Use a deep neural network to parameterize the policy \pi

• Run a combination of Q-learning and Policy Gradient.
• Actor-Critics, A3C, etc…

• Heuristic-based exploration: curiosity, reward shaping, etc..

• Experience replay to generate more data from existing data.

• Multi-agent RL: modeling your opponents

26

Alpha-Go and Alpha-Zero
• Parameterize the policy

networks with CNN

• Supervised learning
initialization

• RL using Policy gradient
• Fit Value Network (This is a

value function approximation)

• Monte-Carlo Tree Search

27

https://www.youtube.com/watch?
v=4D5yGiYe8p4

'��6LOYHU��0DVWHULQJ�WKH�JDPH�RI�*R�ZLWK�'HHS�1HXUDO�1HWZRUNV�DQG�7UHH�6HDUFK��1DWXUH��YRO������LVVXH�����

$OSKD*R�PRGHOV�RYHUYLHZ

3ROLF\�
JUDGLHQW

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

Alpha-Go and Alpha-Zero
• Parameterize the policy

networks with CNN

• Supervised learning
initialization

• RL using Policy gradient
• Fit Value Network (This is a

value function approximation)

• Monte-Carlo Tree Search

27

https://www.youtube.com/watch?
v=4D5yGiYe8p4

'��6LOYHU��0DVWHULQJ�WKH�JDPH�RI�*R�ZLWK�'HHS�1HXUDO�1HWZRUNV�DQG�7UHH�6HDUFK��1DWXUH��YRO������LVVXH�����

$OSKD*R�PRGHOV�RYHUYLHZ

3ROLF\�
JUDGLHQW

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

Alpha-Go and Alpha-Zero
• Parameterize the policy

networks with CNN

• Supervised learning
initialization

• RL using Policy gradient
• Fit Value Network (This is a

value function approximation)

• Monte-Carlo Tree Search

27

https://www.youtube.com/watch?
v=4D5yGiYe8p4

'��6LOYHU��0DVWHULQJ�WKH�JDPH�RI�*R�ZLWK�'HHS�1HXUDO�1HWZRUNV�DQG�7UHH�6HDUFK��1DWXUH��YRO������LVVXH�����

$OSKD*R�PRGHOV�RYHUYLHZ

3ROLF\�
JUDGLHQW

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

D. Silver, et al. "Mastering the game of go without human knowledge." Nature 550.7676 (2017): 354-359.

What I did not cover

• Useful results in RL for both theory and alg design
• Simulation lemma
• Advantage function and performance difference lemma

• Exploration
• “Optimism in the face of uncertainty”

• Offline RL
• “Pessimism in the face of uncertainty”

• How to start research in RL？
• Take my RL course (email me to ask for the videos)
• Solve homework problems, implement RL algorithms from scratch.

Final words to students
• If you are doing theoretical research
• It’s useful have an empirical mind set
• implement your algorithm, try it on examples (even toy

examples would work)
• These help you to challenge your assumptions and

define theoretical problems that are useful

• If you are doing empirical research
• Don’t just chase SOTA in benchmarks
• Think deeply about the problems you are working on
• ML theory helps you to avoid pitfalls and design better

algorithms.

Thank you! Looking forward to
your project presentations!

