Lecture 20
Reinforcement Learning

(Part I1)

Lei Li, Yu-Xiang Wang

Announcements

1. Poster printing: See the poster printing
instructions from edstem.

2. Project Presentation day: Small prizes will be
given to the best poster presentations. You can
invite your friends to come !

3. Course evaluation: Please complete you ESCI
surveys if you haven’t yet. It takes only a few
minutes.

Optional HW4

* For practice problems in convex optimization
* For a simple coding problem with cvx: Q4 of here with data here
* For practices on convex analysis: Q1,2,3 here

Theory / concept practices for RL:
* Problem 3 and 4 here
* Problem 1 and 2 here

Coding practice for MDP / RL: Here

For more advanced problems in RL:
* see HW1,2,3 from my RL theory course.
* These are only useful if you are hoping to do RL research.

https://sites.cs.ucsb.edu/~yuxiangw/classes/CS292F-2020Spring/Assignments/HW1.pdf
https://sites.cs.ucsb.edu/~yuxiangw/classes/CS292F-2020Spring/Assignments/HW1_data.zip
https://sites.cs.ucsb.edu/~yuxiangw/classes/CS292F-2020Spring/Assignments/HW1.pdf
https://sites.cs.ucsb.edu/~yuxiangw/classes/AICourse-2022Spring/Assignments/HW3.pdf
https://sites.cs.ucsb.edu/~yuxiangw/classes/AICourse-2022Spring/Assignments/HW4.pdf
https://sites.cs.ucsb.edu/~yuxiangw/classes/AICourse-2022Spring/Assignments/Project3_RL.html
https://sites.cs.ucsb.edu/~yuxiangw/classes/RLCourse-2021Spring/

Recap: Markov Decision processes
(infinite horizon / discounted)

* Infinite horizon / discounted setting

M(S,A,P’T’W,M)

— A rl . , |
Transition kernel: l SAAT7AD) b T2/l '
(Expected) \—~ ANNN P/~ o It B Y WA
reward function: - 7V L —U |

Initial state distribution ’(<

Discounting factor:

Stationary Policy m: mapping from state to an action (possibly a random action).

Recap: Value functions

e state value function: V*(s)

* expected long-term return when starting in s and
following 7

V™(s) = Er[Ri + YRy + ... + ¥ 'Ry + ...|S1 = 5]

e state-action value function: Q%(s,a)

* expected long-term return when starting in s,
performing a, and following ©t

Q™ (s,a) =E [Ry +vRy + ... + ¥ 'R, + ...|S1 = 5, A1 = a

Recap: Bellman equations

* Bellman consistency equation
ZT{' als) ZP "Is,a)[r(s,a,s") +~yV7™(s")]

VT = 7“7T + fyP”VW

* Bellman optimality equation

= max Z P(s'|s,a)[r(s,a,s") +~yV*(s")]

Q — r + PVQ where VQ() = maXQ(S a)

ac A

Recap: MDP planning and Value
iterations
* MDP planning:
Find 7* such that V™ (s) = V*(s) Vs
7 is e-optimal if V™ > V*(s) — el

* Policy evaluation
* Solving Bellman consistency equation

* Value iteration
* Solving Bellman optimality equation

Recap: RL agent needs to learn
the underlying MDP model

* Model-based algorithm
e Estimates the MDP then do MDP planning

* Model-free algorithms
 Monte Carlo Policy evaluation + Policy improvement
* Temporal difference learning = MC + Bellman equations

Recap: TD Learning

* TD-Policy evaluation
V(Si) < V(S) + | Bepr + 9V (Si1) = V(Sy)

* TD-Policy optimization
* SARSA (on-policy)

Q(S, A) + Q(S,A) + a|R+yQ(S', A") — Q(S, A)]

Then choose the next A’ using Q, e.g., eps-greedy.
* Q-Learning (off-policy)

Q(S, A) < Q(S, A) + a|R + ymax, Q(S',a) — Q(S, A)|

Then choose the next action in your favorite way.

Recap: The problem of large-state
space

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

(From Dan Klein and Pieter Abbeel)

This lecture

* Solve the problem of large state space with
function approximation

e Other RL algorithms: Policy gradient

* Exploration in RL

Video of Demo Q-Learning Pacman — Tiny — Watch
All

12

Video of Demo Q-Learning Pacman — Tiny — Silent
Train

13

Video of Demo Q-Learning Pacman — Tricky —
Watch All

14

Why not use an evaluation function?
A Feature-Based Representations

* Solution: describe a state using a
vector of features (properties)

e Features are functions from states to real
numbers (often 0/1) that capture
important properties of the state

 Example features:

e Distance to closest ghost

e Distance to closest dot

* Number of ghosts

« 1/ (dist to dot)?

* |Is Pacman in a tunnel? (0/1)

* |s it the exact state on this slide?

e Can also describe a g-state (s, a) with
features (e.g. action moves closer to
food)

Linear Value Functions

* Using a feature representation, we can write a g function (or value

function) for any state using a few weights:

oV, (s)=wifi(s) + wofs(s) + ... + w,f(s)

e Q,fs,a) =w;fi(s,a) + wyfy(s,a) + ... + w,f.(s,a)
» Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but actually be very
different in value!

16

Updating a linear value function

* Original Q learning rule tries to reduce prediction
error at s, a:

Q(s,a) « Qfs,a) + a-[R(s,a,s’) +y max, Q(s’,a’) - Q(s,a)]

* Instead, we update the weights to try to reduce the
error at s, a:

w, <— w;+ o - [R(s,a,s’) +y max,; Q(s’,a’) - Q(s,a)] 0Q,(s,a)/ow;
= w;+ o - [R(s,a,5") +y max, Q(s’,a’) - Q(s,a)]fi(s,a)

17

Updating a linear value function

* Original Q learning rule tries to reduce prediction error at s, a:

Q(s,a) « Qfs,a) + a - [R(s,a,s’) +y maxy, Q(s’,a’) - Q(s,a)]

* Instead, we update the weights to try to reduce the error at s, a:

wi <— w;+ a - [R(s,a,s") +y maxy Q(s,a’) - Qs,a)] 0Qu(s,a)/ow;
= w;+ a - [R(s,a,s") + vy maxy Q(s’,a’) - Q(s,a)] fi(s,a)

e Qualitative justification:

* Pleasant surprise: increase weights on positive features, decrease on negative
ones

* Unpleasant surprise: decrease weights on positive features, increase on negative
ones

18

PACMAN Q-Learning (Linear function
approx.)

Deriving the TD via incremental optimization
that minimizes Bellman errors

* Mean Square Error and Mean Square Bellman error

So far, in RL algorithms

 Model-based approaches

e Estimate the MDP parameters.
* Then use policy-iterations, value iterations.

* Monte Carlo methods:
» estimating the rewards by empirical averages

* Temporal Difference methods:
* Combine Monte Carlo methods with Dynamic Programming

* Linear function approximation in Q-learning

e Similar to SGD
e Learning heuristic function

Policy class and policy gradient
methods

* Policy + < 1]

e Parametric policy class:

Il = {ﬂ'@‘@ - Rd}

e Goal: optimize the value

* Policy gradient methods
* aim at learning the policy parameter by SGD.

Policy gradient

* Objective function to maximize: J(0) = v,,(so),

/\

* Do SGD: 9t—|—1 — Ht -+ CVVJ(Ht),
* Policy gradient theorem:

VJ(0)=) d"(s)) Q(s,a)Ven(als,b)

*Note how this theorem is non-trivial... The first two terms
depends on m, but we did not take the gradient w.r.t. them.

23

Stochastic approximation in policy

gradients
=) d"(s)) _ Q"(s,a)Ver(als,)
e Sample from running policy
° (51,141, Rl)' neny (STIATJ RT)

* |[dea: Sample s, then the following is an unbiased
estimator (finite horizon episodic case)

?(W)V@”Aj;‘f“))

t=1 (=t

GV log At|st7(9))

||M'ﬂ

*Show that this is an unbiased estimator of the gradient.

Checkpoint for RL

* Model-based methods

* Model-free methods
 Monte Carlo methods
* TD-learning: Q-Learning and Sarsa

* Function approximation in RL
* Approximate the MDP: Model-based
e Approximate the value function

* Policy gradients
* Parametrize the policy and run SGD

Elements of State-of-the-Art
Reinforcement Learning

e Use a deep neural network to parameterize Q-function

Use a deep neural network to parameterize the policy \pi

Run a combination of Q-learning and Policy Gradient.
* Actor-Critics, A3C, etc...

Heuristic-based exploration: curiosity, reward shaping, etc..

* Experience replay to generate more data from existing data.

Multi-agent RL: modeling your opponents

Alpha-Go and Alpha-Zero

P
: % Roll li
* Parameterize the policy 0 W ollout policy
oS

networks with CNN
e Superw ing 2

142 H O pu
Ization
0,
2 m SL policy network

* RL using Policy gradient

Policy
gradient

f' m RL policy network

: > | v,
https://www.youtube.com/watch? <%
v=4D5yGiYe8p4 Self-play positions
Value network

D. Silver. Mastering the game of Go with Deep Neural Networks and Tree Search. Nature, vol. 529 issue 7587

* Fit Value Network (This is a
value function approximation) @
P,

e Monte-Carlo Tree Search

27
D. Silver, et al. "Mastering the game of go without human knowledge." Nature 550.7676 (2017): 354-359.

What | did not cover

Useful results in RL for both theory and alg design
e Simulation lemma
* Advantage function and performance difference lemma

Exploration
e “Optimism in the face of uncertainty”

Offline RL

e “Pessimism in the face of uncertainty”

How to start research in RL ?
e Take my RL course (email me to ask for the videos)
* Solve homework problems, implement RL algorithms from scratch.

Final words to students

* If you are doing theoretical research
* It’s useful have an empirical mind set

e implement your algorithm, try it on examples (even toy
examples would work)

* These help you to challenge your assumptions and
define theoretical problems that are useful

* If you are doing empirical research
* Don’t just chase SOTA in benchmarks
* Think deeply about the problems you are working on

* ML theory helps you to avoid pitfalls and design better
algorithms.

Thank you! Looking forward to
your project presentations!

