Lecture 19
Reinforcement Learning

Lei Li, Yu-Xiang Wang

An RL agent learns interactively through
the feedbacks of an environment.

action
A

- Learning how the world works (dynamics) and how to
maximize the long-term reward (control) at the same time.

Reinforcement learning problem
setup

e State, Action, Reward and Observation
S; €S A, e A R, eR 0O,€0
* Policy: .S —> A

 When the state is observable:
 Or when the state is not observable

T (Ox AxR)I™H = A
* Learn the best policy that maximizes the expected reward

* Finite horizon (episodic) RL: 7™ = = arg maXE Z Rt
mell T: horizon

* |nfinite horizon RL:
" = ar max]E t= 1R
g na Z 8 t

v discount factor

RL for robot control
=

ﬁ.].\ -7
— [- - | ..
[m “ ’I;TV,"E

o

® States: The physical world, e.g., location/speed/acceleration and so on.

® Observations: camera images, joint angles
® Actions: joint torques

® Rewards: stay balanced, navigate to target locations, serve and protect
humans, etc.

® State: Inventory level, customer demand, competitor’s inventory
® Observations: current inventory levels and sales history
® Actions: amount of each item to purchase

® Rewards: profit

RL for Adaptive medical treatment

e State: diagnosis
e Action: treatment
* Reward: progress in recovery

state features x

(example / illustration due to Nan Jiang)

Example: Supervised learning vs
RL in movie recommendation

* Bob is described by a feature vector
* s =[Previous movies watched / Rating / Written reviews]

* Supervised learning predicts how likely Bob will
click on “aliens vs predators”

* Reinforcement learning aims at controlling Bob

* Soin the future, Bob will develop a taste for “aliens vs
predators” (e.g., from having watched “aliens” and
“predators” both).

A broader view:
few other machi

Let’s consider a
ne learning tasks

* Hospitals need to decide who to
test based on symptoms and other
patient attributes

* Train a classifier on historic records
to predict the test outcome.

* The accuracy is high on a holdout
set!

* Large tech wants to improve user
experience on their popular email
service

i Taco Tuesday

2 Jacqueline Bruzek

. Taco Tuesday

Hey Jacqueline,
Haven't seen you in a while and | hope you're doing well.

Let's get together soon for tacos. If you bring 1

* Train a large language model with
user data to complete sentences

* It seems to work great!

What could go wrong? :

Every machine learning problem is
secretly a control (or RL) problem

* |f | test patients using the
new rule, the distribution
of patients receiving the
test will be different!

e Should I still trust my
classifier?

* If | deploy the new “Guess

what you will write”
prompt, what users will

enter may change!

* |s the model fulfilling its
own prophecy?

The ultimate goal is NOT prediction, but to:
minimize disease transmission / maximize user experience!

Reinforcement learning is very

challenging
* The agent needs to:
* Learn the state-transitions ----- How the world works
* Learning the costs / rewards ----- Cost of actions
* Learning how to search ----- Come up with a good
strategy

e All at the same time

Let us tackle different aspects of
the RL problem one at a time

 Markov Decision Processes: (this lecture)
* Dynamics are given no need to learn. planning only.

* RL algorithms (this lecture and the next)
* Model-based RL vs Model-free RL
* Temporal difference learning
* Function approximation

e Exploration (final lecture if time permits)
* Bandits: Explore-Exploit in simple settings
e RL: Explore-Exploit in Learning MDPs

Online RL vs Offline RL

Online Reinforcement Learning Offline Reinforcement Learning
@ ‘

Agent Environment Agent Logged data
Exploration is often expensive, Can we learn a policy from
unsafe, unethical or illegal in already logged interaction
practice, e.g., in self-driving data?

cars, or in medical applications.

*Offline RL won’t be covered, but it’s an important problem

12

_et’s start by formulating Markov
Decision processes (MDP).

* Infinite horizon / discounted setting

M(S7A7P7r7/y7u)

f 3 / N / _ A/ \ - I AT)
o, . J { “ /) ,"’ \ | | 7/ — - N y]
Transition kernel: |/ S A AL T2 ZA S) e TS 12 0)

(

(Expected) v Ox A R
reward function: * - > vV L 7 U /

Initial state distribution)(i‘

Discounting factor:

~ - | p— ,"‘ TN yn /7 . P
) [/ | |= | 7 { — (/| g
< . A "/ o /4 /N
/ ! N |

Example: Frozen lake.

START

e reward +1 at [4,3], -1 at [4,2]
* reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

upP e.g.

State-transitions with action UP:

80% move up
10% move left
10% move right

*If you bump into a wall,
you stay where you are.

* Finite horizon or infinite horizon?

 What is a good policy?

Parameters of an MDP are
factorizations of the joint distribution

- /Q@ /C@ f/@;

g St+1

 Initial state distribution
* Transition dynamics
e Reward distribution

State-space diagram representation of
an MDP: An example with 3 states
and 2 actions.

r(s,,a4,5,) =50

* The reward can be associated with only the state s’ you transition into.
* Or the state that you transition from s and the action a you take.
* Or all three at the same time. 16

Reward function and Value functions

* Immediate reward function r(s,a)
* expected immediate reward

r(s,a) = E[R1[51 = s, A1 = a
1" (5) = Egon(als) F21]51 = 8]

e state value function: V*(s)
» expected long-term return when starting in s and following ©

V™(s) = E.[Ri + YRy + ... + Y 'Ry + ...|S1 = 5]

e state-action value function: Q%(s,a)

» expected long-term return when starting in s, performing a,
and following &

Q™ (s,a) =E [Ry +vRy + ... + ¥ 'R, + ...|S1 = 5,41 = a

Optimal value function and the
MDP planning problem

V*(s) :=sup V" (s)
mell

Q*(s,a) :=sup Q" (s, a).
mell
Goal of MDP planning:
Find 7* such that V™ (s) = V*(s) Vs

Approximate solution:

7 is e-optimal if V™ > V*(s) — el

General policy, Stationary policy,
Deterministic policy

* General policy could depend on the entire history

T:(ESXAXR)* xS — A(A)

* Stationary policy
T:S — A(A)

 Stationary, Deterministic policy

mT:S—> A

Two surprising facts about MDPs

1. It suffices to consider stationary / deterministic
policies.

2. There exists a stationary / deterministic policy
that is optimal simultaneously for all initial state
distributions.

Bellman equations — the fundamental
equations of MDP and RL

* An alternative, recursive and more useful way of
defining the V-function and Q function

— Zw(a\s)zp(sﬂs,a)[’r(s,a s')+ V™ (s Zw als)Q™ (s, a)

* Exercise:
* Prove Bellman equation from the definition.

e Write down the Bellman equation using Q function alone.

Q" (s,a) ="

Bellman optimality equations
characterizes the optimal policy

V*(s) = mc?xz P(s'|s,a)[r(s,a,s") +~yV*(s")]

e system of n non-linear equations
 solve for V*(s)
e easy to extract the optimal policy

* having Q*(s,a) makes it even simpler

7 (s) = arg max Q*(s,a)

Bellman equations in matrix forms

* Lemma (Bellman consistency): For stationary
policies, we have

V7(s) = Q" (s, m(s)).
QW(Sv a) — ’I“(S, CL) - /YES’NPHS,CL) [VW(S/)] .

* [n matrix forms:
V’T(' — ,’47'(' _I_ ,YPT('VT('
QF =r+~yPVT™
Qﬂ' — 7 _|_ /YPT('QT(' .

Value iterations for MDP planning

* Recall: Bellman optimality equations
V*(s) =max Y P(s'|s,a)[r(s,a,s") +yV*(s')]

Q(Sa CL) — T(S7 (1,) + /YES/NP(°|S,G) [H/lgj Q(Slv CL/)] ¥

TQ =r+ PVgy where Vo(s) :=max Q(s,a).

acA

Theorem: Q = Q* if and only if Q satisfies the Bellman optimality
equations.

Value iterations for MDP planning

* The value iteration algorithm iteratively applies the
Bellman operator until it converges.

1. Initialize Qg arbitrarily

2. foriin1,2,3,..,k update (), = T ();_1

3. Return Q

 What is the right question to ask here?

25

Convergence of value iteration for
solving MDPs

* Lemma 1. The Bellman operator is a y-contraction.
For any two vectors Q, Q" € RISIIAL

ITQ = TQ oo <7Q — Q'

* Prove this in the optional HWA4.

* Fast convergence of value iterations to Q*:

K

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

30

K

0.37 »| 0.66)»

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

31

K

Cridworld Display

.H
A

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

32

K

GCridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

33

K

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

34

K

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

35

K

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

36

GCridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

37

Gridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

38

Gridworld Display

VALUES AFTER

12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

39

k=100

Gridworld Display

AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =0

40

Demo: grid worlds

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pl | ¢ | 9|9 |9 v | ¢ | ¢ |9
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b + + + + + + + + 4
0.00 0.00 0.00
> + 4
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b + + + + + + + 4
R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 + + + + + + + 4
R-1.0 R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> + + + + + + + 4
R10 R-1.0 R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b + + + 4
R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 + + + + + + + 4
R-1.0 R-1.0 R-1.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+ + + + + + + + 4

0.0& 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.P_p

p. e & & p e & p. e & &

https://cs.stanford.edu/people/karpathy/reinf

orcejs/gridworld dp.html

41

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Checkpoint

 What is RL? What are its motivating applications?

e A model of RL --- Markov Decision Processes
e Value functions: Q functions and V functions
* Bellman equations

 MDP planning / inference problem
* Value iterations

Remainder of this lecture

* RL algorithms
* Model-based RL vs Model-free RL
* Monte Carlo
* Temporal Difference Learning
* Linear function approximation

Recap: Policy Iterations and Value
terations

 What are these algorithms for?

» Algorithms of computing the V* and Q* functions from MDP
parameters

 Policy Iterations
0 N V70 1 T _ b V1 _>I”. I ¥ _E Vv
e Value iterations

Via1(s) < mc?xz P(s'|s,a)[r(s,a,s") +vVi(s')]

* How do we make sense of them?
* Recursively applying the Bellman equations until convergence.

*These methods are called “Dynamic Programming” approaches in Chap 4 of
Sutton and Barto.

They are no longer valid in RL

* Policy Evaluation

Via(s)) _m(als)) PtsHea) Mtsmarsl) + Vi (s)

* Policy improvement
7'(s) = arg max Q" (s, a)

— arg mgxz Pl [Thsransl) + YV (8)]

e \Value iterations

Vig1(s) < mf}XZ P4 [T{srevsl) + 7V (7))

*We do not have the MDP parameters in RL!

45

Example: Frozen lake

START

Action 1, Action 2, Action 3, Action 4
actions: UPDOWNRSTEFT, RIGHT—

upP

80% move
10% move LE
10% move RIGHT

e what's the strategy to achieve max reward?

46

Instead, reinforcement learning agents
have “online” access to an environment

e State, Action, Reward
 Unknown reward function, unknown state-transitions.

* Agents can “act” and “experiment”, rather than only doing
offline planning.

’_[Agent}
st s action
S, | |R, vt
54 Rr+1 A
L ¢S] Environment]4

\,

dea 1: Model-based
Reinforcement Learning
* Model-based idea

» Let’s approximate the model based on experiences
* Then solve for the values as if the learned model were correct

e Step 1: Get data by running the agent to explore

 Many data points of the form:
{(s1,a4,52,71), e, (Sns Qn,s Sh1, Tiv) }

e Step 2: Estimate the model parameters

e P(s'|s,a) - plug-in / MLE. We need to observe the
transition many times for each s, a

* 7(s',a,s) --- this is an estimate of the empirical rewards.

Then we can plug in these estimates
and then use dynamic programming
for policy evaluation / improvements.

Vi (s) <) _mlals) Y |P(s']s,a)[7(s, a,8") + Vi (s')]

S/

7' < arg max g P(s'|s,a)[f(s,a,s")
a
8/

+ Vi (s')]

Vk—l—l (3) < Inax Z p(s/‘sa a)[f(sa a, S/) + ’ka(S/)]

a

S/

* As usual, “hat” indicates empirical estimates.

* These iterations will produce V* and Q* functions, and then #*

49

This is OK if we have a generative
model! But there are complications.

* For MDPs

e Often we need to take a carefully chosen sequence of
actions to reach a state

* The chance of randomly running into a state can be
exponentially small, if we decide to take random actions.

* Question: What is an example of this?

*Need to somehow update the “exploration policy” on the fly!

More caveats

* The fitted model is just an approximation of the
environment.

e How does the error in the fitted MDP translate into the
error in the estimated value functions V* and Q*?

* How does the error in the estimated Q* function affect
the suboptimality of the policy that maximizes Q*?

* Answered by “Simulation Lemma” (kearns and Singh, 2002)

e Resurgence of research on this more recently: Yin and W.
(2020%, Yin, Bai and W. (2020)

51

dea 2: Model-free Reinforcement
_earning

e Do we need the model? Can we learn the Q
function directly?

 How many free parameters are there to represent the
Q-function?

e Recall: Policy iterations

7To—>EV7TO—>I7T1—>EV7T1—>I...—>I7T*—>EV*

* Maybe we can do policy evaluation / value iterations
without estimating the model?

52

Monte Carlo Policy Evaluation (Prediction)

e want to estimate V*(s)

= expected return starting from s and following ©
e estimate as average of observed returns in state s

* We can execute the policy T

e first-visit MC

» average returns following the first visit to state s

S S
50000000”0 0_200000”0 0_30 o+l Gq(s) = +2
S O——0——0—0—0—0—0—0—0—0—0—0—0—0—1
Sg O—0—0—o—0—0—@—o—0—o—0—o—@—o—0—o—1l G;,(5) = +1
5; —0—@—o—0—o0—0—o—0—o—0—o—0—o—0—o—1l Gs(s) = -5
S O——@—0—0—0—0—0—0—0—0—0—0—0—0—0—1
S) O——0——0—0—0—0—0— 00— 0—0—0—0—0—l (Gys)=+4

Vi(s) = 2 +1-5+4)/4=0.5

Monte Carlo Policy Optimization (Control)

V™ not enough for policy improvement
* need exact model of environment

estimate Q"(s,a)

7'(s) = arg max Q" (s,a)

MC control
0 _E Qﬂ'o I T _ B le I T * _E Q*

e update after each episode

Two problems
* greedy policy won’t explore all actions eps-greedy, or bonus design.

* Requires many independent episodes for the estimated value function to be
accurate.

54

Improved Monte-Carlo Q-function
estimate using Bellman equations

e Recall:

Q"(s,a) =) P(s'|s,a)lr(s,a,8") +v) _m(a'|s)Q7 (',)]

QW(Sa a) — ’rw(sa a’) + /YES/NP(S’l.S,CL) [Vﬁ(s,)]

* We can use the empirical (Monte Carlo) estimate.
Q™ (s,a) = 77(5,a) + Y By p(sris.a) [V (5)]

*No need to estimate P(s’ | s,a) or r(s,a,s’) as intermediate steps.
*Require only O(SA) space, rather than O(S"2A)

Online averaging representation of MC

S S

So O—o—0—o—@ :10 0_20 00 ® 0+10 0_30 o+5l Gq(s) = +2
So O——0——0—0—0—0—0—0—0—0—0—0o—0—o11

So O——0—o—0—0—0—0—0—0—0—0—0—o— 01 Gy(s) = +1
So O——@——0—0—0—0—0—0—0—0—0—0—0—o—11 Gs(s) =-5
So O——0——0—0—0—0—0—0—0—0—0—0— 01

Sy —— —o— —o— —0—0—0—0—— —0— —o— G4(s) = +4

Va(s) = (2+1-5+4)/4=0.5

* Alternative, online averaging update

V(S,) « V(Sy) +oz[Gt _ V(st)}, where oo = 1/Ng,

56

DP + MC = Temporal Difference Learning

* Monte Carlo V(S:) < V(S:) + Oz[Gt — V(St)]:

Issue: G; can only be obtained after the entire episode!

* The idea of TD learning:
Ex|Gt| = Ex[Re|St] + V™ (St41)

We only need one step before we can plug-in and gstimate the RHS!

* TD-Policy evaluation Bootstrapping!

V(S,) « V(S:) + a [Rt“ AV (Si) — V(St)}

57

Bootstrap’s origin

* “The Surprising Adventures of Baron Munchausen”
* Rudolf Erich Raspe, 1785

coat Pulling’ PULL
/ o/ YOURSELF
UP BY

THE
BOOT
STRAPS!!!

* |In statistics: Brad Efron’s resampling methods
* |[n computing: Booting...
* In RL: It simply means TD learning

58

TD policy optimization (TD-
control)

e SARSA (On-Policy TD-control)
* Update the Q function by bootstrapping Bellman Equation

Q(S,A) « Q(S,A) + a[R+Q(S", A") — Q(S, A)]
* Choose the next A’ using Q, e.g., eps-greedy.

* Q-Learning (Off-policy TD-control)
* Update the Q function by bootstrapping Bellman Optimality Eq.

Q(S, A) « Q(S, A) + a|R + ymax, Q(S', a) — Q(S, A)]

* Choose the next A’ using Q, e.g., eps-greedy, or any other policy.

Remarks:

 These are proven to converge asymptotically.
Much more data-efficient in practice, than MC.
Regret analysis is still active area of research.

Advantage of TD over Monte
Carlo

* Given a trajectory, a roll-out, of T steps.
* MC updates the Q function only once

e TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent to
Stochastic Gradient Descent (SGD).

Model-free vs Model-based RL
algorithms

* Different function approximations

* Different space efficiency

* Which one is more statistically efficient?
* More or less equivalent in the tabular case.
 Different challenges in their analysis.

The problem of large state-space
is still there

* We need to represent and learn SA parametersin Q-
learning and SARSA.

* Sis often large
e 9-puzzle, Tic-Tac-Toe: 9! =362,800, S"2=1.3*10"11
 PACMAN with 20 by 20 grid. S =0(22400), S"2 = 0(27800)

* O(S) is not acceptable in some cases.

* Need to think of ways to “generalize”/share
information across states.

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

(From Dan Klein and Pieter Abbeel)

Video of Demo Q-Learning Pacman — Tiny — Watch
All

64

Video of Demo Q-Learning Pacman — Tiny — Silent
Train

65

Video of Demo Q-Learning Pacman — Tricky —
Watch All

66

Why not use an evaluation function?
A Feature-Based Representations

* Solution: describe a state using a
vector of features (properties)

e Features are functions from states to real
numbers (often 0/1) that capture
important properties of the state

 Example features:

e Distance to closest ghost

e Distance to closest dot

* Number of ghosts

« 1/ (dist to dot)?

* |Is Pacman in a tunnel? (0/1)

* |s it the exact state on this slide?

e Can also describe a g-state (s, a) with
features (e.g. action moves closer to
food)

Linear Value Functions

* Using a feature representation, we can write a g function (or value

function) for any state using a few weights:

oV, (s)=wifi(s) + wofs(s) + ... + w,f(s)

e Q,fs,a) =w;fi(s,a) + wyfy(s,a) + ... + w,f.(s,a)
» Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but actually be very
different in value!

68

Updating a linear value function

* Original Q learning rule tries to reduce prediction
error at s, a:

Q(s,a) « Qfs,a) + a-[R(s,a,s’) +y max, Q(s’,a’) - Q(s,a)]

* Instead, we update the weights to try to reduce the
error at s, a:

w, <— w;+ o - [R(s,a,s’) +y max,; Q(s’,a’) - Q(s,a)] 0Q,(s,a)/ow;
= w;+ o - [R(s,a,5") +y max, Q(s’,a’) - Q(s,a)]fi(s,a)

69

Updating a linear value function

* Original Q learning rule tries to reduce prediction error at s, a:

Q(s,a) « Qfs,a) + a - [R(s,a,s’) +y maxy, Q(s’,a’) - Q(s,a)]

* Instead, we update the weights to try to reduce the error at s, a:

wi <— w;+ a - [R(s,a,s") +y maxy Q(s,a’) - Qs,a)] 0Qu(s,a)/ow;
= w;+ a - [R(s,a,s") + vy maxy Q(s’,a’) - Q(s,a)] fi(s,a)

e Qualitative justification:

* Pleasant surprise: increase weights on positive features, decrease on negative
ones

* Unpleasant surprise: decrease weights on positive features, increase on negative
ones

70

PACMAN Q-Learning (Linear function
approx.)

Deriving the TD via incremental optimization
that minimizes Bellman errors

* Mean Square Error and Mean Square Bellman error

So far, in RL algorithms

 Model-based approaches

e Estimate the MDP parameters.
* Then use policy-iterations, value iterations.

* Monte Carlo methods:
» estimating the rewards by empirical averages

* Temporal Difference methods:
* Combine Monte Carlo methods with Dynamic Programming

* Linear function approximation in Q-learning

e Similar to SGD
e Learning heuristic function

Final lecture
* Wrap up RL algorithm

* Exploration

