Lecture 19 Reinforcement Learning

Lei Li, Yu-Xiang Wang

An RL agent learns interactively through the feedbacks of an environment.

- Learning how the world works (dynamics) and how to maximize the long-term reward (control) at the same time.

Reinforcement learning problem setup

State, Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

• Policy:

- $\pi:\mathcal{S} o\mathcal{A}$
- When the state is observable:
- Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

Learn the best policy that maximizes the expected reward

• Finite horizon (episodic) RL:
$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{T} R_t]$$

T: horizon

Infinite horizon RL:

$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} R_t]$$

RL for robot control

- States: The physical world, e.g., location/speed/acceleration and so on.
- Observations: camera images, joint angles
- Actions: joint torques
- Rewards: stay balanced, navigate to target locations, serve and protect humans, etc.

RL for Inventory Management

- State: Inventory level, customer demand, competitor's inventory
- Observations: current inventory levels and sales history
- Actions: amount of each item to purchase
- Rewards: profit

RL for Adaptive medical treatment

(example / illustration due to Nan Jiang)

Example: Supervised learning vs RL in movie recommendation

- Bob is described by a feature vector
 - s = [Previous movies watched / Rating / Written reviews]
- Supervised learning predicts how likely Bob will click on "aliens vs predators"
- Reinforcement learning aims at controlling Bob
 - So in the future, Bob will develop a taste for "aliens vs predators" (e.g., from having watched "aliens" and "predators" both).

A broader view: Let's consider a few other machine learning tasks

 Hospitals need to decide who to test based on symptoms and other patient attributes

- Train a classifier on historic records to predict the test outcome.
- The accuracy is high on a holdout set!

 Large tech wants to improve user experience on their popular email service

- Train a large language model with user data to complete sentences
- It seems to work great!

Every machine learning problem is secretly a control (or RL) problem

- If I test patients using the new rule, the distribution of patients receiving the test will be different!
- Should I still trust my classifier?

- If I deploy the new "Guess what you will write" prompt, what users will enter may change!
- Is the model fulfilling its own prophecy?

The ultimate goal is NOT prediction, but to: minimize disease transmission / maximize user experience!

Reinforcement learning is very challenging

- The agent needs to:
 - Learn the state-transitions ----- How the world works
 - Learning the costs / rewards ----- Cost of actions
 - Learning how to search ---- Come up with a good strategy

All at the same time

Let us tackle different aspects of the RL problem one at a time

- Markov Decision Processes: (this lecture)
 - Dynamics are given no need to learn. planning only.
- RL algorithms (this lecture and the next)
 - Model-based RL vs Model-free RL
 - Temporal difference learning
 - Function approximation
- Exploration (final lecture if time permits)
 - Bandits: Explore-Exploit in simple settings
 - RL: Explore-Exploit in Learning MDPs

Online RL vs Offline RL

Online Reinforcement Learning

Agent

Exploration is often expensive, unsafe, unethical or illegal in practice, e.g., in self-driving cars, or in medical applications.

Can we learn a policy from already **logged interaction** data?

*Offline RL won't be covered, but it's an important problem

Let's start by formulating Markov Decision processes (MDP).

Infinite horizon / discounted setting

$$\mathcal{M}(\mathcal{S}, \mathcal{A}, P, r, \gamma, \mu)$$

Transition kernel:
$$P: S \times A \rightarrow \Delta(S)$$
 i.e. $P(S'|S,a)$

(Expected) reward function:
$$V: SXA \rightarrow [R/[0,R_{rew}]]$$
 $IE[R_t|S_{t=S},A_{t=a}]=:r(s_a)$

Discounting factor: \(\gamma\)

Example: Frozen lake.

actions: UP, DOWN, LEFT, RIGHT

UP e.g.,

State-transitions with action **UP**:

80% move up 10% move left 10% move right

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- Finite horizon or infinite horizon?
- What is a good policy?

Parameters of an MDP are factorizations of the joint distribution

- Initial state distribution
- Transition dynamics
- Reward distribution

State-space diagram representation of an MDP: An example with 3 states and 2 actions.

^{*} The reward can be associated with only the state s' you transition into.

^{*} Or the state that you transition from s and the action a you take.

^{*} Or all three at the same time.

Reward function and Value functions

- Immediate reward function r(s,a)
 - expected immediate reward

$$r(s,a) = \mathbb{E}[R_1|S_1 = s, A_1 = a]$$

 $r^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1|S_1 = s]$

- state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s]$$

- state-action value function: $Q^{\pi}(s,a)$
 - expected long-term return when starting in s, performing a, and following π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s, A_1 = a]$$

Optimal value function and the MDP planning problem

$$V^{\star}(s) := \sup_{\pi \in \Pi} V^{\pi}(s)$$
$$Q^{\star}(s, a) := \sup_{\pi \in \Pi} Q^{\pi}(s, a).$$

Goal of MDP planning:

Find
$$\pi^*$$
 such that $V^{\pi}(s) = V^*(s) \quad \forall s$

Approximate solution:

$$\pi$$
 is ϵ -optimal if $V^{\pi} \geq V^*(s) - \epsilon \mathbf{1}$

General policy, Stationary policy, Deterministic policy

General policy could depend on the entire history

$$\pi: (\mathcal{S} imes \mathcal{A} imes \mathbb{R})^* imes \mathcal{S} o \Delta(\mathcal{A})$$

Stationary policy

$$\pi: \mathcal{S} \to \Delta(\mathcal{A})$$

Stationary, Deterministic policy

$$\pi:\mathcal{S}\to\mathcal{A}$$

Two surprising facts about MDPs

1. It suffices to consider stationary / deterministic policies.

2. There exists a stationary / deterministic policy that is optimal simultaneously for all initial state distributions.

Bellman equations – the fundamental equations of MDP and RL

 An alternative, recursive and more useful way of defining the V-function and Q function

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

• Exercise:

- Prove Bellman equation from the definition.
- Write down the Bellman equation using Q function alone.

$$Q^{\pi}(s,a) = ?$$

Bellman optimality equations characterizes the optimal policy

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

- system of n non-linear equations
- solve for V*(s)
- easy to extract the optimal policy
- having Q*(s,a) makes it even simpler

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Bellman equations in matrix forms

 Lemma (Bellman consistency): For stationary policies, we have

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s)).$$

$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^{\pi}(s')].$$

In matrix forms:

$$V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$$

$$Q^{\pi} = r + \gamma P V^{\pi}$$

$$Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}$$

Value iterations for MDP planning

Recall: Bellman optimality equations

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

$$Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\max_{a' \in \mathcal{A}} Q(s', a') \right].$$

$$\mathcal{T}Q = r + PV_Q$$
 where $V_Q(s) := \max_{a \in \mathcal{A}} Q(s, a).$

Theorem: $Q = Q^*$ if and only if Q satisfies the Bellman optimality equations.

Value iterations for MDP planning

- The value iteration algorithm iteratively applies the Bellman operator until it converges.
 - 1. Initialize Q₀ arbitrarily
 - 2. for i in 1,2,3,..., k, update $\ Q_i = \mathcal{T} Q_{i-1}$
 - 3. Return Q_k
- What is the right question to ask here?

Convergence of value iteration for solving MDPs

• Lemma 1. The Bellman operator is a γ-contraction.

For any two vectors
$$Q, Q' \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$$
,

$$\|\mathcal{T}Q - \mathcal{T}Q'\|_{\infty} \le \gamma \|Q - Q'\|_{\infty}$$

- Prove this in the optional HW4.
- Fast convergence of value iterations to Q*:

k = 10

k=11

k=12

k = 100

Demo: grid worlds

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 ♦ R-1.0		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 R -1.0	0.00 ♦ R -1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 ♦	0.00	0.00 ★ R-1.0	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 R -1.0	0.00
0.00	0.00	0.00	0.00 ♦ R-1.0		0.00 R -1.0	0.00 ♠ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

https://cs.stanford.edu/people/karpathy/reinf orcejs/gridworld_dp.html

Checkpoint

What is RL? What are its motivating applications?

- A model of RL --- Markov Decision Processes
 - Value functions: Q functions and V functions
 - Bellman equations

- MDP planning / inference problem
 - Value iterations

Remainder of this lecture

- RL algorithms
 - Model-based RL vs Model-free RL
 - Monte Carlo
 - Temporal Difference Learning
 - Linear function approximation

Recap: Policy Iterations and Value Iterations

- What are these algorithms for?
 - Algorithms of computing the V* and Q* functions from MDP parameters
- Policy Iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k(s')]$$

- How do we make sense of them?
 - Recursively applying the Bellman equations until convergence.

^{*}These methods are called "Dynamic Programming" approaches in Chap 4 of Sutton and Barto.

They are no longer valid in RL

Policy Evaluation

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

Policy improvement

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k^{\pi}(s')]$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k(s')]$$

*We do not have the MDP parameters in RL!

Example: Frozen lake

Action 1, Action 2, Action 3, Action 4 actions: UP, DOWN, LEFT, RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?

Instead, reinforcement learning agents have "online" access to an environment

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents can "act" and "experiment", rather than only doing offline planning.

Idea 1: **Model-based** Reinforcement Learning

- Model-based idea
 - Let's approximate the model based on experiences
 - Then solve for the values as if the learned model were correct
- Step 1: Get data by running the agent to explore
 - Many data points of the form: $\{(s_1, a_1, s_2, r_1), ..., (s_N, a_N, s_{N+1}, r_N)\}$
- Step 2: Estimate the model parameters
 - $\hat{P}(s'|s,a)$ --- plug-in / MLE. We need to observe the transition many times for each s,a
 - $\hat{r}(s', a, s)$ --- this is an estimate of the empirical rewards.

Then we can plug in these estimates and then use dynamic programming for policy evaluation / improvements.

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$\pi' \leftarrow \arg\max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}(s')]$$

^{*} As usual, "hat" indicates empirical estimates.

^{*} These iterations will produce \widehat{V}^* and \widehat{Q}^* functions, and then $\widehat{\pi}^*$

This is OK if we have a generative model! But there are complications.

- For MDPs
 - Often we need to take a carefully chosen sequence of actions to reach a state
 - The chance of randomly running into a state can be **exponentially small,** if we decide to take random actions.
 - Question: What is an example of this?

^{*}Need to somehow update the "exploration policy" on the fly!

More caveats

- The fitted model is just an approximation of the environment.
- How does the error in the fitted MDP translate into the error in the estimated value functions V* and Q*?
- How does the error in the estimated Q* function affect the suboptimality of the policy that maximizes \hat{Q}^* ?
- Answered by "Simulation Lemma" (Kearns and Singh, 2002)
 - Resurgence of research on this more recently: Yin and W. (2020), Yin, Bai and W. (2020)

Idea 2: **Model-free** Reinforcement Learning

- Do we need the model? Can we learn the Q function directly?
 - How many free parameters are there to represent the Q-function?

Recall: Policy iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

 Maybe we can do policy evaluation / value iterations without estimating the model?

Monte Carlo Policy Evaluation (Prediction)

- want to estimate V^π(s)
 - = expected return starting from s and following π
 - estimate as average of observed returns in state s
- We can execute the policy π
- first-visit MC
 - average returns following the first visit to state s

$$V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.5_{53}$$

Monte Carlo Policy Optimization (Control)

- V^{π} not enough for policy improvement
 - need exact model of environment

• estimate $Q^{\pi}(s,a)$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

MC control

$$\pi_0 \to^E Q^{\pi_0} \to^I \pi_1 \to^E Q^{\pi_1} \to^I \dots \to^I \pi^* \to^E Q^*$$

- update after each episode
- Two problems
 - greedy policy won't explore all actions
 eps-greedy, or bonus design.
 - Requires many independent episodes for the estimated value function to be accurate.

Improved Monte-Carlo Q-function estimate using Bellman equations

Recall:

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s', a')]$$
$$Q^{\pi}(s, a) = r^{\pi}(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s, a)} [V^{\pi}(s')]$$

We can use the empirical (Monte Carlo) estimate.

$$\widehat{Q}^{\pi}(s,a) = \widehat{r}^{\pi}(s,a) + \gamma \widehat{\mathbb{E}}_{s' \sim P(s'|s,a)} [\widehat{V}^{\pi}(s')]$$

^{*}No need to estimate $P(s' \mid s,a)$ or r(s,a,s') as intermediate steps.

^{*}Require only O(SA) space, rather than O(S^2A)

Online averaging representation of MC

Alternative, online averaging update

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right], \text{ where } \alpha = 1/N_{S_t}$$

DP + MC = Temporal Difference Learning

• Monte Carlo $V(S_t) \leftarrow V(S_t) + \alpha |G_t - V(S_t)|,$

Issue: G_t can only be obtained after the entire episode!

The idea of TD learning:

$$\mathbb{E}_{\pi}[G_t] = \mathbb{E}_{\pi}[R_t|S_t] + \gamma V^{\pi}(S_{t+1})$$

We only need one step before we can plug-in and estimate the RHS!

TD-Policy evaluation

Policy evaluation
$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

Bootstrap's origin

- "The Surprising Adventures of Baron Münchausen"
 - Rudolf Erich Raspe, 1785

- In statistics: Brad Efron's resampling methods
- In computing: Booting...
- In RL: It simply means TD learning

TD policy optimization (TD-control)

- SARSA (On-Policy TD-control)
 - Update the Q function by bootstrapping Bellman Equation

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

- Choose the next A' using Q, e.g., eps-greedy.
- Q-Learning (Off-policy TD-control)
 - Update the Q function by bootstrapping Bellman Optimality Eq.

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$$

Choose the next A' using Q, e.g., eps-greedy, or any other policy.

Remarks:

- These are proven to converge asymptotically.
- Much more data-efficient in practice, than MC.
- Regret analysis is still active area of research.

Advantage of TD over Monte Carlo

- Given a trajectory, a roll-out, of T steps.
 - MC updates the Q function only once
 - TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent to Stochastic Gradient Descent (SGD).

Model-free vs Model-based RL algorithms

Different function approximations

Different space efficiency

- Which one is more statistically efficient?
 - More or less equivalent in the tabular case.
 - Different challenges in their analysis.

The problem of large state-space is still there

- We need to represent and learn SA parameters in Qlearning and SARSA.
- S is often large
 - 9-puzzle, Tic-Tac-Toe: 9! = 362,800, S^2 = 1.3*10^11
 - PACMAN with 20 by 20 grid. $S = O(2^400)$, $S^2 = O(2^800)$
- O(S) is not acceptable in some cases.
- Need to think of ways to "generalize"/share information across states.

Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

(From Dan Klein and Pieter Abbeel)

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All

Why not use an evaluation function? A Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

•
$$V_w(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$$

- $Q_w(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + ... + w_n f_n(s,a)$
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Updating a linear value function

 Original Q learning rule tries to reduce prediction error at s, a:

```
Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]
```

 Instead, we update the weights to try to reduce the error at s, a:

```
w_i \leftarrow w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] \partial Q_w(s,a) / \partial w_i
= w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] f_i(s,a)
```

Updating a linear value function

• Original Q learning rule tries to reduce prediction error at s, a:

```
Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]
```

• Instead, we update the weights to try to reduce the error at s, a:

```
w_i \leftarrow w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] \partial Q_w(s,a) / \partial w_i
= w_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] f_i(s,a)
```

- Qualitative justification:
 - Pleasant surprise: increase weights on positive features, decrease on negative ones
 - Unpleasant surprise: decrease weights on positive features, increase on negative ones

PACMAN Q-Learning (Linear function approx.)

Deriving the TD via incremental optimization that minimizes Bellman errors

Mean Square Error and Mean Square Bellman error

So far, in RL algorithms

- Model-based approaches
 - Estimate the MDP parameters.
 - Then use policy-iterations, value iterations.
- Monte Carlo methods:
 - estimating the rewards by empirical averages
- Temporal Difference methods:
 - Combine Monte Carlo methods with Dynamic Programming
- Linear function approximation in Q-learning
 - Similar to SGD
 - Learning heuristic function

Final lecture

• Wrap up RL algorithm

Exploration