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Recap: Online Learning

* Learning with expert advice

* A summary of regret bound: # mistakes - Oracle # of
mistakes
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Recap: Hedge (aka Exponential
weighted average) algorithm

 Works for linear loss
function in its first
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This lecture

* Online Learning (Part Il)
* Online Gradient Descent

* Reinforcement Learning
* Problem setup
* Markov Decision Processes



Recap: Convex functions / sets
and subgradient

Convex function: f: R™ — R such that dom(f) C R™ convex, and
flltz+ (1 —-t)y) <tf(x)+(1—1t)f(y) forall 0 <t <1
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Recap: Gradient Descent and SGD

(from Lecture 4)

* Problem: m@inf(@)

*GDalg: 41 =0, — 'V f(6)
*SGD alg.: 4., =0, — m@f(@t)

* Example when solving ERM:
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* Pick a single data point i uniformly at random
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(Projected) Subgradient “Descent”

* When we have constraints and non-differentiable
convex functions, we can use

* Projected Subgradient method gk * Sl #]ﬂ
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The problem of Online Convex
Optimization

* Problem setup:
for = L2 T
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Examples of OCO problems

 Example 1: Prediction with Expert Advice
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* Example 2: Online Linear models
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Algorithm: OGD, i.e., Online
(projected) (sub)Gradient Descent

e Standard projected
subgradient updates

* Assumptions needed:
* Bounded domain

Figure 3.1: Online gradient descent: the iterate x;+1 is derived by advancing x; in

{\X . K/ ” 2 g D \7 >< X 6 Kthe direction of the current gradient V., and projecting back into K.
* Lipschitz loss functions
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Analysis of OGD
* By convex fu nC’:t)ns \L(w\ RUSSNORT] S ———
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* By the update rule (and property of projection)
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Analysis of OGD (continues)
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Regret bound for OGD

Theorem 3.1. Online gradient descent with step sizes {n; = NG
. Y
T]} guarantees the following for all 7" > 1:
_ - 3
regretp = ; fr(x¢) — r{lér,lcz fr(x*) < 5 DVT

* “Any-time” algorithm with a decreasing learning
rate schedule

* Learning rate depends on t. (exercise to prove that
this works.)



O?nline to Batch conversion: How
do | use OGD to solve ERM?
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Checkpoint

* Online learning
* Operates in an adversarial environment
* Almost no assumptions. Do not even use probability theory

* The idea of regret and no-regret learning algorithms

e Useful algorithmic ideas:
* Hedge / Exponential Weighted Averages
* Online gradient descent




What we did not cover

e The strongly convex case

* Adapting to the geometry

 AdaGrad / ADAM
=

» Adaptive regret / dynamic regret

* Modern applications to Ensemble learning, AutoML

poF] Hyperband: A novel bandit-based approach to hyperparameter optimization
L Li, K Jamieson, G DeSalvo, A Rostamizadeh... - The Journal of Machine ..., 2017 - jmlr.org

Performance of machine learning algorithms depends critically on identifying a good set of
hyperparameters. While recent approaches use Bayesian optimization to adaptively select ...
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This lecture

* Reinforcement Learning
* Problem setup
* Markov Decision Processes



An RL agent learns interactively through
the feedbacks of an environment.

action
A

- Learning how the world works (dynamics) and how to
maximize the long-term reward (control) at the same time.
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Reinforcement learning is among
the hottest area of research in ML!

: | DEEPMIND Al
LEARNED HOW TO WALK

“RL” is Top 1 Keyword at NeurlPS’2021, appearing 199 times
“Deep Learning” only 129 times [source] 5



Applications of RL in the real life

* RL for robotics.

* RL for dialogue systems.

* RL for personalized medicine.

e RL for self-driving cars.

* RL for new material discovery.

e RL for sustainable energy.

* RL for feature-based dynamic pricing.
* RL for maximizing user satisfaction.

* RL for QoE optimization in networking



Reinforcement learning problem
setup

e State, Action, Reward and Observation
S; €S A, e A Rte]@ QtEO
* Policy: .S —> A

 When the state is observable:
 Or when the state is not observable

e (O x AxR)'™H = A
* Learn the best policy that maximizes the expected reward

* Finite horizon (episodic) RL: 7™ = = arg maXE Z Rt

""//_\— .
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* Infinite horizon RL: —
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v discount factor



RL for robot control
=
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® States: The physical world, e.g., location/speed/acceleration and so on.

® Observations: camera images, joint angles

® Actions: joint torques

® Rewards: stay balanced, navigate to target locations, serve and protect
humans, etc.
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® State: Inventory level, customer demand, competitor’s inventory
® Observations: current inventory levels and sales history
® Actions: amount of each item to purchase

® Rewards: profit
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RL for Adaptive medical treatment

e State: diagnosis
e Action: treatment
* Reward: progress in recovery

state features x

(example / illustration due to Nan Jiang)
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Example: Supervised learning vs
RL in movie recommendation

* Bob is described by a feature vector
* s =[Previous movies watched / Rating / Written reviews]

* Supervised learning predicts how likely Bob will
click on “aliens vs predators”

* Reinforcement learning aims at controlling Bob

* Soin the future, Bob will develop a taste for “aliens vs
predators” (e.g., from having watched “aliens” and
“predators” both).



