Lecture 18 Online Learning (Part II) and Intro to Reinforcement Learning

Lei Li, Yu-Xiang Wang

Recap: Online Learning

- Learning with expert advice
 - A summary of regret bound: # mistakes Oracle # of mistakes

	Consistency	Halfing	Weighted Majority	Randomized WM
Realizable setting	$\min(T, \mathcal{H})$	$\min(T, \log \mathcal{H})$	$\min(T, \log \mathcal{H})$	$\min(T, \log \mathcal{H})$
Agnostic setting	n.a.	n.a.	$(1+\epsilon)m$ + $\log \mathcal{H} /\epsilon$	$\sqrt{m\log \mathcal{H} } = O(\sqrt{T\log \mathcal{H} })$

Recap: Hedge (aka Exponential weighted average) algorithm

```
EXPONENTIAL-WEIGHTED-AVERAGE (N)

1 for i \leftarrow 1 to N do

2 w_{1,i} \leftarrow 1

3 for t \leftarrow 1 to T do

4 RECEIVE(x_t)

5 \widehat{y}_t \leftarrow \frac{\sum_{i=1}^N w_{t,i}y_{t,i}}{\sum_{i=1}^N w_{t,i}}

6 RECEIVE(y_t)

7 for i \leftarrow 1 to N do

8 w_{t+1,i} \leftarrow w_{t,i} e^{-\eta L(\widehat{y}_{t,i},y_t)}
```

return \mathbf{w}_{T+1}

- Works for linear loss function in its first argument
 - That is bounded
- Also works for any convex loss function in its first argument
 - Why?

This lecture

- Online Learning (Part II)
 - Online Gradient Descent

- Reinforcement Learning
 - Problem setup
 - Markov Decision Processes

Recap: Convex functions / sets and subgradient

Convex function: $f: \mathbb{R}^n \to \mathbb{R}$ such that $dom(f) \subseteq \mathbb{R}^n$ convex, and $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$ for all $0 \le t \le 1$ and all $x, y \in dom(f)$

First order definition / subgradient

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x,y\in C \implies tx+(1-t)y\in C \text{ for all } 0\leq t\leq 1$$

Recap: Gradient Descent and SGD

(from Lecture 4)

• Problem: $\min_{\theta} f(\theta)$

• GD alg.: $\theta_{t+1} = \theta_t - \underline{\eta_t} \nabla f(\theta_t)$

• SGD alg.: $\theta_{t+1} = \theta_t - \eta_t \hat{\nabla} f(\theta_t)$

Example when solving ERM:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\theta, (x_i, y_i))$$

• Pick a single data point i uniformly at random

$$\nabla_{\theta}\ell(\theta,(x_i,y_i))$$

(Projected) Subgradient "Descent"

 When we have constraints and non-differentiable convex functions, we can use It is a Subgrafient of f

Projected Subgradient method

Projected Stochastic subgradient method

$$\frac{x_{t+1} = T_{1} (x_{t} - y_{t} \hat{g}_{t})}{E[g_{t}] = g_{t}}$$

$$[E[g_{t} - g_{t}]^{2}] = g_{t}$$

The problem of Online Convex Optimization

Problem setup:

Performance metric --- regret

Examples of OCO problems

Example 1: Prediction with Expert Advice

$$f_t = Cl_{t,0} \times t$$

$$||l_t||_{\infty} \leq 1$$

$$||l_t||_{\infty} \leq 1$$

Example 2: Online Linear models

ple 2: Online Linear models

$$f_{t}(x) = \mathcal{L}(x) + \mathcal{L}$$

Example 3: Portfolio Selection

Algorithm: OGD, i.e., Online (projected) (sub)Gradient Descent

 Standard projected subgradient updates

$$\begin{array}{c|c} x_{t+1} = 1 & x_t - y_t \underbrace{\nabla f_t(x_t)} \\ g_{t,x_t} \end{array}$$

Assumptions needed:

Bounded domain
 ||x-x|| | ≤ D ∀ xx∈x

Figure 3.1: Online gradient descent: the iterate \mathbf{x}_{t+1} is derived by advancing \mathbf{x}_t in the direction of the current gradient ∇_t , and projecting back into \mathcal{K} .

• Lipschitz loss functions

ft is G-Lipschitz Y

f(x)-f(x) & G | (x-x) | 2

10

Analysis of OGD

- By convex functions $f_{t}(x) = f_{t}(x) = g_{t}(x_{t} x_{t})$ $f_{t}(x) = f_{t}(x_{t}) + g_{t}(x_{t} x_{t})$
- By the update rule (and property of projection)

$$||X_{t+1}-X^*||^2 = ||T_{|c}(x_t - y_t g_t) - X^*||^2 \le ||X_t - y_t g_t - X^*||^2 = ||X_t - X^*||^2 + ||Y_t ||^2 + ||Y_t$$

• Put them together!

$$f_t(x_t) - f_t(x^*) \in g_t(x_t - x^*) \leq \frac{1}{2!} (||x_t - x^*||^2 - ||x_{t+1} - x^*||^2) + \frac{1}{2!} ||g_{t+1}||^2$$

Analysis of OGD (continues)

Regret bound for OGD

Theorem 3.1. Online gradient descent with step sizes $\{\eta_t = \frac{D}{G\sqrt{t}}, t \in [T]\}$ guarantees the following for all $T \geq 1$:

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \min_{\mathbf{x}^{\star} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x}^{\star}) \leq \frac{3}{2} GD\sqrt{T}$$

"Any-time" algorithm with a decreasing learning rate schedule

 Learning rate depends on t. (exercise to prove that this works.)

Online to Batch conversion: How do I use OGD to solve ERM?

$$f_{t} \stackrel{\text{in}}{\Rightarrow} P \qquad \text{[E[f_{1}] = f, min } f(x) \leftarrow PHC}$$

$$X = \frac{1}{4} \stackrel{\text{in}}{\Rightarrow} f(x)$$

$$E[f(x)] - f(x) = |E[\frac{1}{4} \stackrel{\text{in}}{\Rightarrow} f(x)| - f^{*}$$

$$E[f(x)] - f(x) = |E[\frac{1}{4} \stackrel{\text{in}}{\Rightarrow} f(x)| - f^{*}$$

$$E[f(x)] - f(x) = |E[\frac{1}{4} \stackrel{\text{in}}{\Rightarrow} f(x)| - f^{*}$$

$$E[f(x)] - f(x) = |E[\frac{1}{4} \stackrel{\text{in}}{\Rightarrow} f(x)| - f^{*}$$

$$E[f(x)] - f(x) = |E[\frac{1}{4} \stackrel{\text{in}}{\Rightarrow} f(x)| - f^{*}$$

$$E[f(x)] - f(x) = |E[\frac{1}{4} \stackrel{\text{in}}{\Rightarrow} f(x)| - f^{*}$$

$$E[f(x)] - f^{*}$$

Checkpoint

- Online learning
 - Operates in an adversarial environment
 - Almost no assumptions. Do not even use probability theory
- The idea of regret and no-regret learning algorithms
- Useful algorithmic ideas:
 - Hedge / Exponential Weighted Averages
 - Online gradient descent

What we did not cover

- The strongly convex case
- Adapting to the geometry
 - AdaGrad / ADAM
- Adaptive regret / dynamic regret

Modern applications to Ensemble learning, AutoML

```
[PDF] Hyperband: A novel bandit-based approach to hyperparameter optimization

L Li, K Jamieson, G DeSalvo, A Rostamizadeh... - The Journal of Machine ..., 2017 - jmlr.org

Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select ...

☆ Save 切 Cite Cited by 1612 Related articles Import into BibTeX ≫
```

This lecture

- Online Learning (Part II)
 - Online Gradient Descent

- Reinforcement Learning
 - Problem setup
 - Markov Decision Processes

An RL agent learns interactively through the feedbacks of an environment.

- Learning how the world works (dynamics) and how to maximize the long-term reward (control) at the same time.

Reinforcement learning is among the hottest area of research in ML!

"RL" is Top 1 Keyword at NeurIPS'2021, appearing 199 times "Deep Learning" only 129 times [source]

Applications of RL in the real life

- RL for robotics.
- RL for dialogue systems.
- RL for personalized medicine.
- RL for self-driving cars.
- RL for new material discovery.
- RL for sustainable energy.
- RL for feature-based dynamic pricing.
- RL for maximizing user satisfaction.
- RL for QoE optimization in networking

• ...

Reinforcement learning problem setup

State, Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

Policy:

- $\pi:\mathcal{S}\to\mathcal{A}$
- When the state is observable:
- Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

Learn the best policy that maximizes the expected reward

• Finite horizon (episodic) RL:
$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} R_t]$$

Infinite horizon RL:

$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1} \gamma^{t-1} R_t]$$

RL for robot control

- States: The physical world, e.g., location/speed/acceleration and so on.
- Observations: camera images, joint angles
- Actions: joint torques
- Rewards: stay balanced, navigate to target locations, serve and protect humans, etc.

RL for Inventory Management

- State: Inventory level, customer demand, competitor's inventory
- Observations: current inventory levels and sales history
- Actions: amount of each item to purchase
- Rewards: profit

RL for Adaptive medical treatment

(example / illustration due to Nan Jiang)

Example: Supervised learning vs RL in movie recommendation

- Bob is described by a feature vector
 - s = [Previous movies watched / Rating / Written reviews]
- Supervised learning predicts how likely Bob will click on "aliens vs predators"
- Reinforcement learning aims at controlling Bob
 - So in the future, Bob will develop a taste for "aliens vs predators" (e.g., from having watched "aliens" and "predators" both).