Lecture 18 Online Learning (Part II) and Intro to Reinforcement Learning

Lei Li, Yu-Xiang Wang

Recap: Online Learning

- Learning with expert advice
 - A summary of regret bound: # mistakes Oracle # of mistakes

	Consistency	Halfing	Weighted Majority	Randomized WM
Realizable setting	$\min(T, \mathcal{H})$	$\min(T, \log \mathcal{H})$	$\min(T, \log \mathcal{H})$	$\min(T, \log \mathcal{H})$
Agnostic setting	n.a.	n.a.	$(1+\epsilon)m$ + $\log \mathcal{H} /\epsilon$	$\sqrt{m\log \mathcal{H} } = O(\sqrt{T\log \mathcal{H} })$

Recap: Hedge (aka Exponential weighted average) algorithm

```
EXPONENTIAL-WEIGHTED-AVERAGE (N)

1 for i \leftarrow 1 to N do

2 w_{1,i} \leftarrow 1

3 for t \leftarrow 1 to T do

4 RECEIVE(x_t)

5 \widehat{y}_t \leftarrow \frac{\sum_{i=1}^N w_{t,i}y_{t,i}}{\sum_{i=1}^N w_{t,i}}

6 RECEIVE(y_t)

7 for i \leftarrow 1 to N do

8 w_{t+1,i} \leftarrow w_{t,i} e^{-\eta L(\widehat{y}_{t,i},y_t)}
```

return \mathbf{w}_{T+1}

- Works for linear loss function in its first argument
 - That is bounded
- Also works for any convex loss function in its first argument
 - Why?

This lecture

- Online Learning (Part II)
 - Online Gradient Descent

- Reinforcement Learning
 - Problem setup
 - Markov Decision Processes

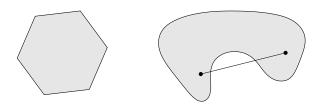
Recap: Convex functions / sets and subgradient

Convex function: $f:\mathbb{R}^n\to\mathbb{R}$ such that $\mathrm{dom}(f)\subseteq\mathbb{R}^n$ convex, and $f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)\quad\text{for all }0\leq t\leq 1$ and all $x,y\in\mathrm{dom}(f)$

First order definition / subgradient

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x,y\in C \implies tx+(1-t)y\in C \text{ for all } 0\leq t\leq 1$$

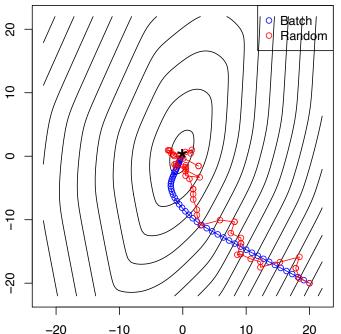


Recap: Gradient Descent and SGD (from Lecture 4)

- Problem: $\min_{\theta} f(\theta)$
- GD alg.: $\theta_{t+1} = \theta_t \eta_t \nabla f(\theta_t)$
- SGD alg.: $\theta_{t+1} = \theta_t \eta_t \hat{\nabla} f(\theta_t)$
- Example when solving ERM:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\theta, (x_i, y_i))$$

$$\nabla_{\theta} \ell(\theta, (x_i, y_i))$$



(Projected) Subgradient "Descent"

- When we have constraints and non-differentiable convex functions, we can use
 - Projected Subgradient method

Projected Stochastic subgradient method

The problem of Online Convex Optimization

Problem setup:

Performance metric --- regret

Examples of OCO problems

• Example 1: Prediction with Expert Advice

Example 2: Online Linear models

Example 3: Portfolio Selection

Algorithm: OGD, i.e., Online (projected) (sub)Gradient Descent

 Standard projected subgradient updates

- Assumptions needed:
 - Bounded domain
 - Lipschitz loss functions

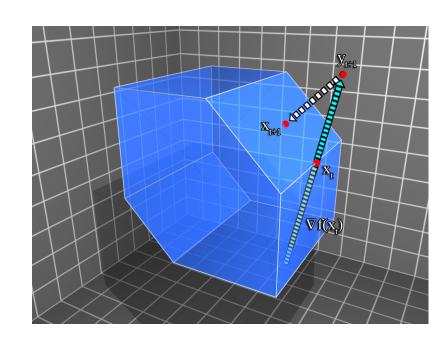


Figure 3.1: Online gradient descent: the iterate \mathbf{x}_{t+1} is derived by advancing \mathbf{x}_t in the direction of the current gradient ∇_t , and projecting back into \mathcal{K} .

Analysis of OGD

By convex functions

By the update rule (and property of projection)

Put them together!

Analysis of OGD (continues)

Telescoping

Regret bound for OGD

Theorem 3.1. Online gradient descent with step sizes $\{\eta_t = \frac{D}{G\sqrt{t}}, t \in [T]\}$ guarantees the following for all $T \geq 1$:

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \min_{\mathbf{x}^{\star} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x}^{\star}) \leq \frac{3}{2} GD\sqrt{T}$$

 "Any-time" algorithm with a decreasing learning rate schedule

 Learning rate depends on t. (exercise to prove that this works.)

Online to Batch conversion: How do I use OGD to solve ERM?

Checkpoint

- Online learning
 - Operates in an adversarial environment
 - Almost no assumptions. Do not even use probability theory
- The idea of regret and no-regret learning algorithms
- Useful algorithmic ideas:
 - Hedge / Exponential Weighted Averages
 - Online gradient descent

What we did not cover

- The strongly convex case
- Adapting to the geometry
 - AdaGrad / ADAM
- Adaptive regret / dynamic regret

Modern applications to Ensemble learning, AutoML

```
[PDF] Hyperband: A novel bandit-based approach to hyperparameter optimization

L Li, K Jamieson, G DeSalvo, A Rostamizadeh... - The Journal of Machine ..., 2017 - jmlr.org

Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select ...

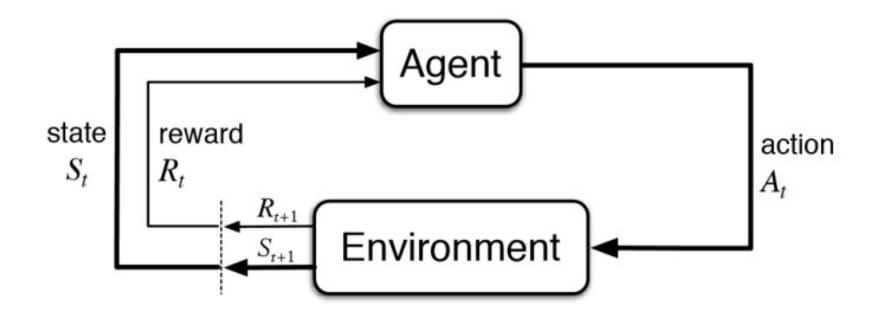
☆ Save 切 Cite Cited by 1612 Related articles Import into BibTeX ≫
```

This lecture

- Online Learning (Part II)
 - Online Gradient Descent

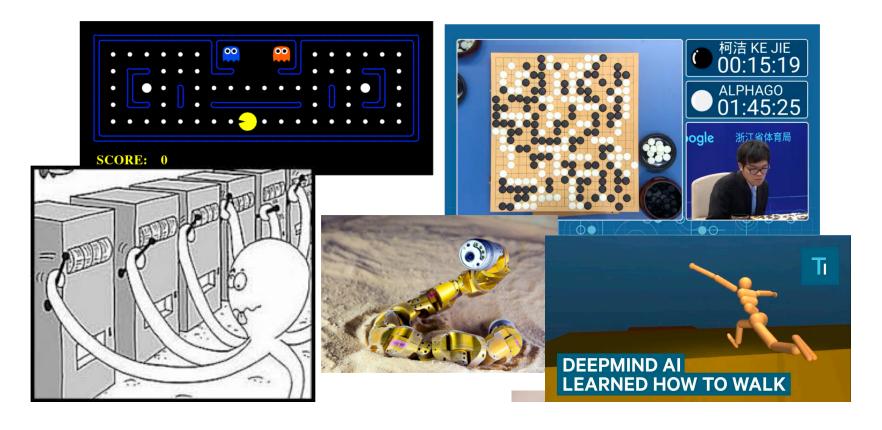
- Reinforcement Learning
 - Problem setup
 - Markov Decision Processes

An RL agent learns interactively through the feedbacks of an environment.



- Learning how the world works (dynamics) and how to maximize the long-term reward (control) at the same time.

Reinforcement learning is among the hottest area of research in ML!



"RL" is Top 1 Keyword at NeurIPS'2021, appearing 199 times "Deep Learning" only 129 times [source]

Applications of RL in the real life

- RL for robotics.
- RL for dialogue systems.
- RL for personalized medicine.
- RL for self-driving cars.
- RL for new material discovery.
- RL for sustainable energy.
- RL for feature-based dynamic pricing.
- RL for maximizing user satisfaction.
- RL for QoE optimization in networking

• ...

Reinforcement learning problem setup

State, Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

• Policy:

- $\pi:\mathcal{S} o\mathcal{A}$
- When the state is observable:
- Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

Learn the best policy that maximizes the expected reward

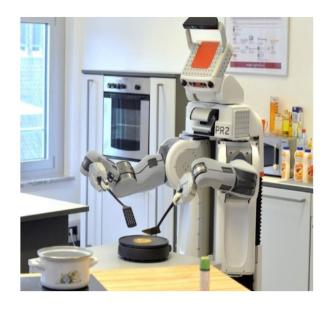
• Finite horizon (episodic) RL:
$$\pi^* = rg \max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} R_t]$$

T: horizon

Infinite horizon RL:

$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} R_t]$$

RL for robot control

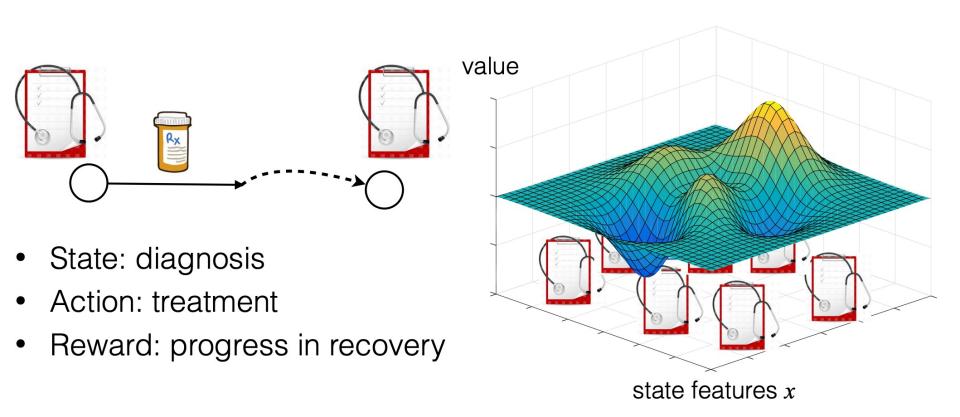


- States: The physical world, e.g., location/speed/acceleration and so on.
- Observations: camera images, joint angles
- Actions: joint torques
- Rewards: stay balanced, navigate to target locations, serve and protect humans, etc.

RL for Inventory Management

- State: Inventory level, customer demand, competitor's inventory
- Observations: current inventory levels and sales history
- Actions: amount of each item to purchase
- Rewards: profit

RL for Adaptive medical treatment



(example / illustration due to Nan Jiang)

Example: Supervised learning vs RL in movie recommendation

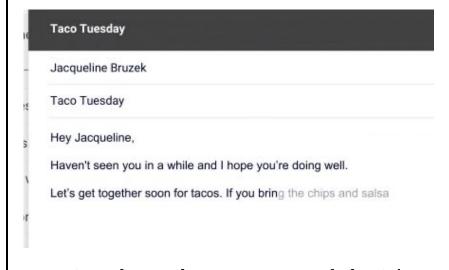
- Bob is described by a feature vector
 - s = [Previous movies watched / Rating / Written reviews]
- Supervised learning predicts how likely Bob will click on "aliens vs predators"
- Reinforcement learning aims at controlling Bob
 - So in the future, Bob will develop a taste for "aliens vs predators" (e.g., from having watched "aliens" and "predators" both).

A broader view: Let's consider a few other machine learning tasks

 Hospitals need to decide who to test based on symptoms and other patient attributes

- Train a classifier on historic records to predict the test outcome.
- The accuracy is high on a holdout set!

 Large tech wants to improve user experience on their popular email service



- Train a large language model with user data to complete sentences
- It seems to work great!

Every machine learning problem is secretly a control (or RL) problem

 If I test patients using the new rule, the distribution of patients receiving the test will be different!

 Should I still trust my classifier?

- If I deploy the new "Guess what you will write" prompt, what users will enter may change!
- Is the model fulfilling its own prophecy?

The ultimate goal is NOT prediction, but to: minimize disease transmission / maximize user experience!

Reinforcement learning is very challenging

- The agent needs to:
 - Learn the state-transitions ----- How the world works
 - Learning the costs / rewards ----- Cost of actions
 - Learning how to search ---- Come up with a good strategy

All at the same time

Let us tackle different aspects of the RL problem one at a time

- Markov Decision Processes: (remainder of this lecture)
 - Dynamics are given no need to learn. planning only.
- RL algorithms (next lecture)
 - Model-based RL vs Model-free RL
 - Temporal difference learning
 - Function approximation
- Exploration (final lecture)
 - Bandits: Explore-Exploit in simple settings
 - RL: Explore-Exploit in Learning MDPs

Online RL vs Offline RL

Online Reinforcement Learning

Exploration is often expensive, unsafe, unethical or illegal in practice, e.g., in self-driving cars, or in medical applications.

Can we learn a policy from already **logged interaction** data?

Offline Reinforcement Learning

*Offline RL won't be covered, but it's an important problem

Let's start by formulating Markov Decision processes (MDP).

Infinite horizon / discounted setting

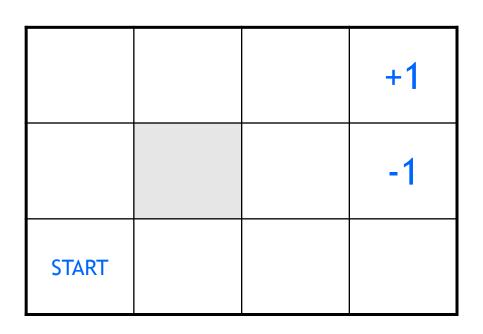
$$\mathcal{M}(\mathcal{S}, \mathcal{A}, P, r, \gamma, \mu)$$

Transition kernel:
$$P: S \times A \rightarrow \Delta(S)$$
 i.e. $P(S'|S,a)$

(Expected) reward function:
$$V: SXA \rightarrow [R/[0,R_{rew}]]$$
 $IE[R_t|S_{t=S},A_{t=a}]=:r(s_a)$

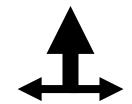
Discounting factor: \(\gamma\)

Example: Frozen lake.



actions: UP, DOWN, LEFT, RIGHT

UP e.g.,



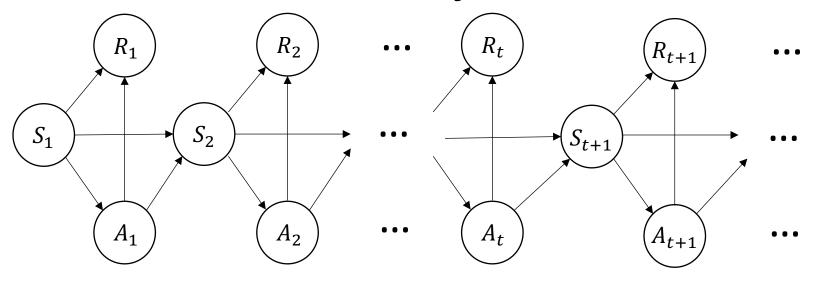
State-transitions with action **UP**:

80% move up 10% move left 10% move right

*If you bump into a wall, you stay where you are.

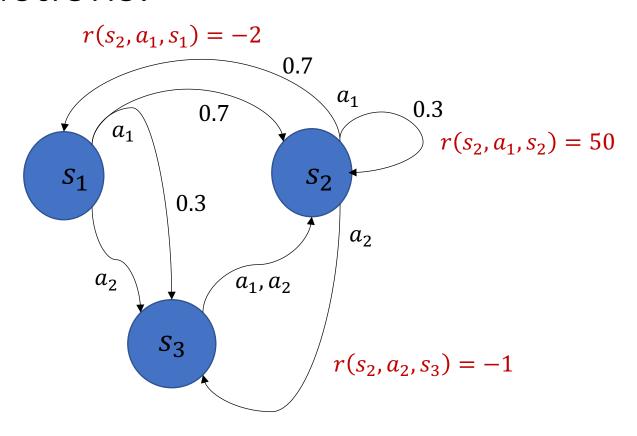
- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- Finite horizon or infinite horizon?
- What is a good policy?

Parameters of an MDP are factorizations of the joint distribution



- Initial state distribution
- Transition dynamics
- Reward distribution

State-space diagram representation of an MDP: An example with 3 states and 2 actions.



^{*} The reward can be associated with only the state s' you transition into.

^{*} Or the state that you transition from s and the action a you take.

^{*} Or all three at the same time.

Reward function and Value functions

- Immediate reward function r(s,a)
 - expected immediate reward

$$r(s,a) = \mathbb{E}[R_1|S_1 = s, A_1 = a]$$

 $r^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1|S_1 = s]$

- state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s]$$

- state-action value function: $Q^{\pi}(s,a)$
 - expected long-term return when starting in s, performing a, and following π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s, A_1 = a]$$

Optimal value function and the MDP planning problem

$$V^{\star}(s) := \sup_{\pi \in \Pi} V^{\pi}(s)$$
$$Q^{\star}(s, a) := \sup_{\pi \in \Pi} Q^{\pi}(s, a).$$

Goal of MDP planning:

Find
$$\pi^*$$
 such that $V^{\pi}(s) = V^*(s) \quad \forall s$

Approximate solution:

$$\pi$$
 is ϵ -optimal if $V^{\pi} \geq V^*(s) - \epsilon \mathbf{1}$

General policy, Stationary policy, Deterministic policy

General policy could depend on the entire history

$$\pi: (\mathcal{S} imes \mathcal{A} imes \mathbb{R})^* imes \mathcal{S} o \Delta(\mathcal{A})$$

Stationary policy

$$\pi: \mathcal{S} \to \Delta(\mathcal{A})$$

Stationary, Deterministic policy

$$\pi:\mathcal{S}\to\mathcal{A}$$

Two surprising facts about MDPs

1. It suffices to consider stationary / deterministic policies.

2. There exists a stationary / deterministic policy that is optimal simultaneously for all initial state distributions.

Bellman equations – the fundamental equations of MDP and RL

 An alternative, recursive and more useful way of defining the V-function and Q function

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

• Exercise:

- Prove Bellman equation from the definition.
- Write down the Bellman equation using Q function alone.

$$Q^{\pi}(s,a) = ?$$

Bellman optimality equations characterizes the optimal policy

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

- system of n non-linear equations
- solve for V*(s)
- easy to extract the optimal policy
- having Q*(s,a) makes it even simpler

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Bellman equations in matrix forms

 Lemma 1.4 (Bellman consistency): For stationary policies, we have

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s)).$$

$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^{\pi}(s')].$$

In matrix forms:

$$V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi}$$

$$Q^{\pi} = r + \gamma P V^{\pi}$$

$$Q^{\pi} = r + \gamma P^{\pi} Q^{\pi}$$

Value iterations for MDP planning

Recall: Bellman optimality equations

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

$$Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\max_{a' \in \mathcal{A}} Q(s', a') \right].$$

$$\mathcal{T}Q = r + PV_Q$$
 where $V_Q(s) := \max_{a \in \mathcal{A}} Q(s, a).$

Theorem: $Q = Q^*$ if and only if Q satisfies the Bellman optimality equations.

Value iterations for MDP planning

- The value iteration algorithm iteratively applies the Bellman operator until it converges.
 - 1. Initialize Q₀ arbitrarily
 - 2. for i in 1,2,3,..., k, update $\ Q_i = \mathcal{T} Q_{i-1}$
 - 3. Return Q_k
- What is the right question to ask here?

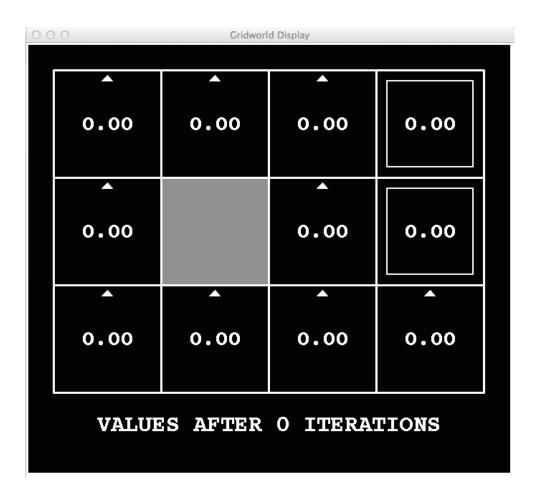
Convergence of value iteration for solving MDPs

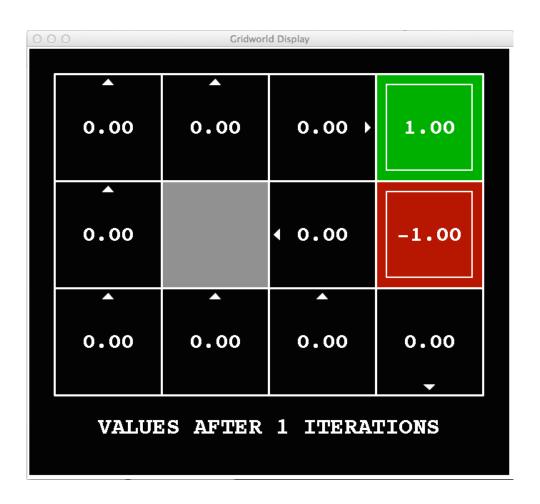
Lemma 1. The Bellman operator is a γ-contraction.

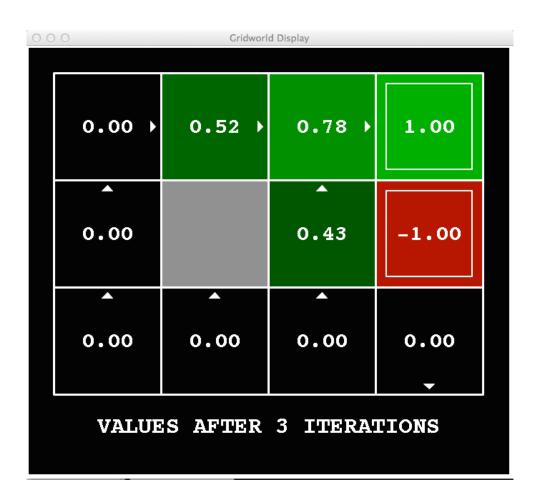
For any two vectors
$$Q, Q' \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$$
,

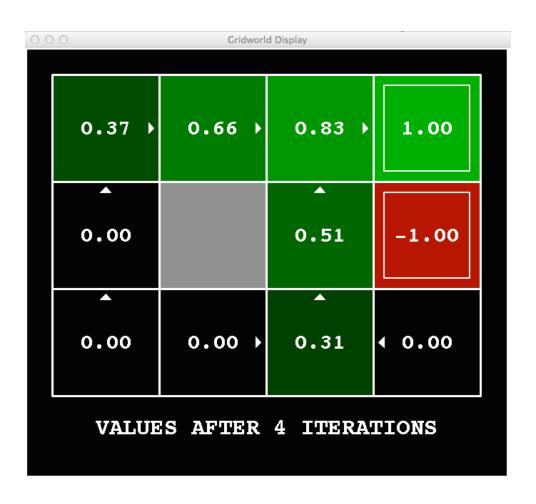
$$\|\mathcal{T}Q - \mathcal{T}Q'\|_{\infty} \le \gamma \|Q - Q'\|_{\infty}$$

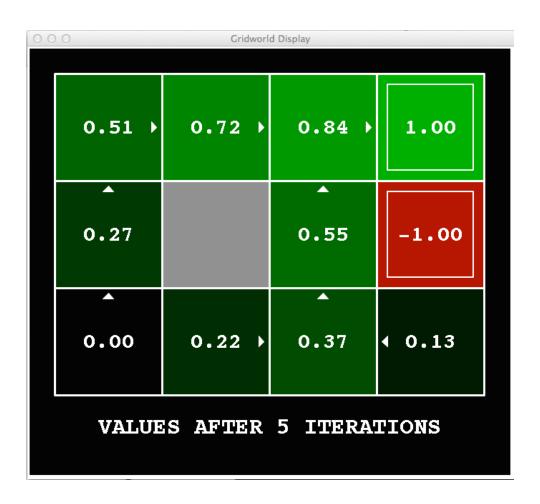
- Prove this in the optional HW4.
- Fast convergence of value iterations to Q*:

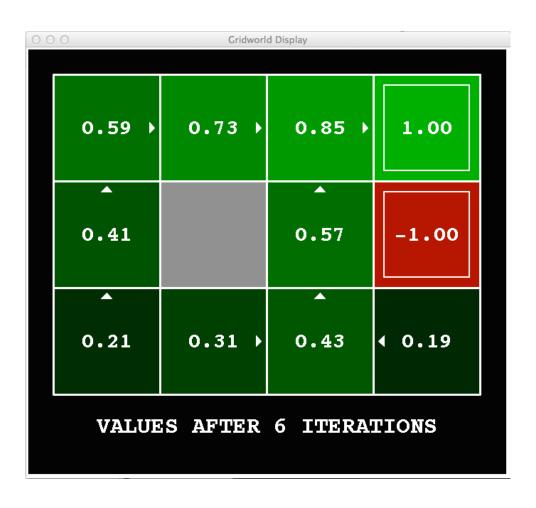


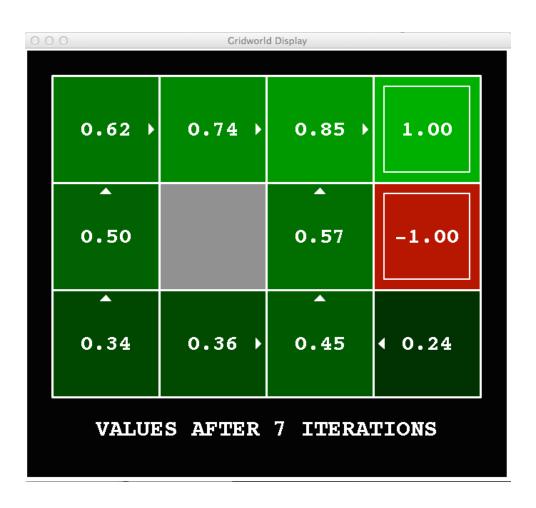


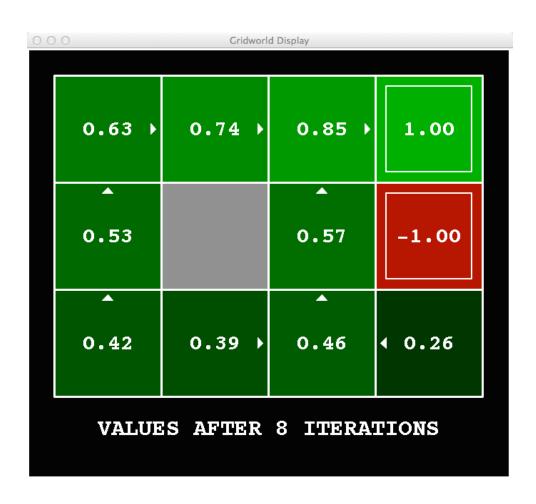






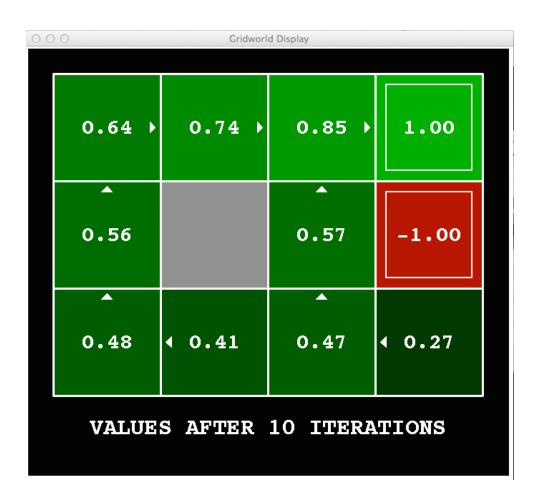


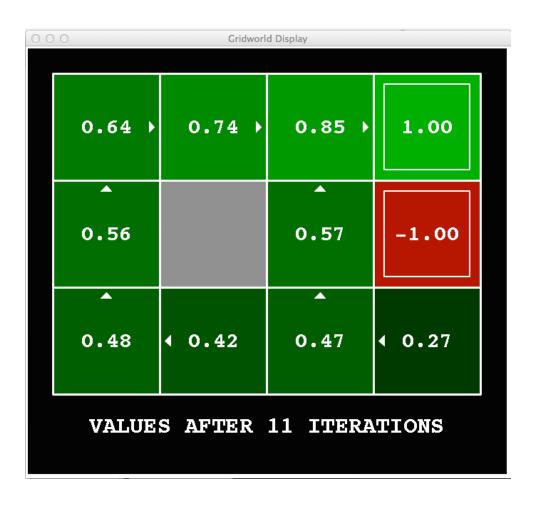


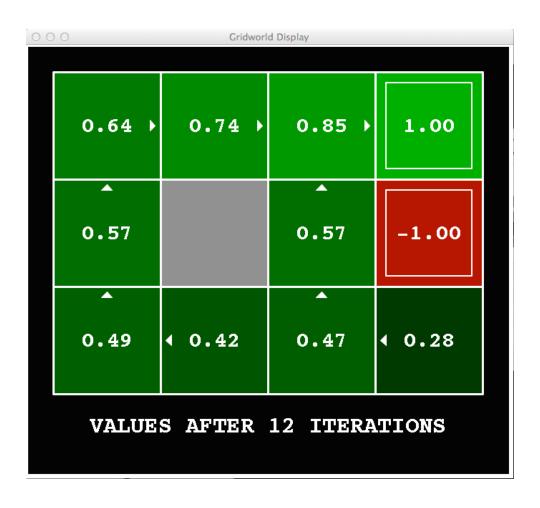




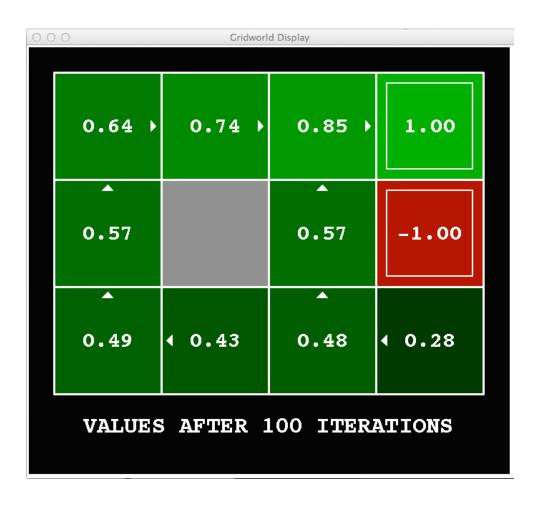
k = 10







k = 100



Demo: grid worlds

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 ♦ R-1.0		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 R -1.0	0.00 ♦ R -1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 ♦	0.00	0.00 ★ R-1.0	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 R -1.0	0.00
0.00	0.00	0.00	0.00 ♦ R-1.0		0.00 R -1.0	0.00 ♠ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

https://cs.stanford.edu/people/karpathy/reinf orcejs/gridworld_dp.html

Checkpoint

What is RL? What are its motivating applications?

- A model of RL --- Markov Decision Processes
 - Value functions: Q functions and V functions
 - Bellman equations

- MDP planning / inference problem
 - Value iterations

Next lecture

- RL algorithms:
 - What happens if we don't know the MDP?