Lecture 18 Online Learning
(Part Il) and Intro to
Reinforcement Learning
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Recap: Online Learning

* Learning with expert advice

* A summary of regret bound: # mistakes - Oracle # of
mistakes
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Recap: Hedge (aka Exponential
weighted average) algorithm

 Works for linear loss
function in its first

EXPONENTIAL- WEIGHTED-AVERAGE (V)

1 fori<+1to N do

argument

2 W1, < 1 .
3 fort+« 1to T do * That is bounded
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This lecture

* Online Learning (Part Il)
* Online Gradient Descent

* Reinforcement Learning
* Problem setup
* Markov Decision Processes



Recap: Convex functions / sets
and subgradient

Convex function: f: R™ — R such that dom(f) C R™ convex, and
flx+ (1 —t)y) <tf(r)+(1—t)f(y) forall 0 <t <1
and all z,y € dom(f)

(v, f(v))
(z, f ()

* First order definition / subgradient

Convex set: ' C R" such that
r,yeC = te+(1—t)yeC forall 0 <t <1

O &=



Recap: Gradient Descent and SGD

(from Lecture 4)

* Problem: m@in 1 (0)

*GDalg.: 0,1 =0, —n:Vf(0;)
*SGD alg.: 4., =0, — m@f(ﬁt)

* Example when solving ERM:
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* Pick a single data point i uniformly at random

Vol(0, (i, yi))




(Projected) Subgradient “Descent”

* When we have constraints and non-differentiable
convex functions, we can use

* Projected Subgradient method

* Projected Stochastic subgradient method



The problem of Online Convex
Optimization

* Problem setup:

* Performance metric --- regret



Examples of OCO problems

 Example 1: Prediction with Expert Advice

* Example 2: Online Linear models

* Example 3: Portfolio Selection



Algorithm: OGD, i.e., Online
(projected) (sub)Gradient Descent

e Standard projected
subgradient updates

* Assumptions needed:
* Bounded domain

Figure 3.1: Online gradient descent: the iterate x;+1 is derived by advancing x; in

the direction of the current gradient V;, and projecting back into K.

* Lipschitz loss functions
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Analysis of OGD

* By convex functions

e By the update rule (and property of projection)

* Put them together!



Analysis of OGD (continues)

* Telescoping



Regret bound for OGD

Theorem 3.1. Online gradient descent with step sizes {n; = GL\/%, t e
T]} guarantees the following for all 7" > 1:

T T
3
regretT = tz:; ft(xt) — )g}érllC; ft(X*) < §GD\/T

* “Any-time” algorithm with a decreasing learning
rate schedule

* Learning rate depends on t. (exercise to prove that
this works.)



Online to Batch conversion: How
do | use OGD to solve ERM?



Checkpoint

* Online learning
* Operates in an adversarial environment
* Almost no assumptions. Do not even use probability theory

* The idea of regret and no-regret learning algorithms

e Useful algorithmic ideas:
* Hedge / Exponential Weighted Averages
* Online gradient descent



What we did not cover

e The strongly convex case

* Adapting to the geometry
 AdaGrad / ADAM

» Adaptive regret / dynamic regret

* Modern applications to Ensemble learning, AutoML

poF] Hyperband: A novel bandit-based approach to hyperparameter optimization
L Li, K Jamieson, G DeSalvo, A Rostamizadeh... - The Journal of Machine ..., 2017 - jmlr.org

Performance of machine learning algorithms depends critically on identifying a good set of
hyperparameters. While recent approaches use Bayesian optimization to adaptively select ...

vr Save 99 Cite Cited by 1612 Related articles Import into BibTeX 99
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This lecture

* Reinforcement Learning
* Problem setup
* Markov Decision Processes



An RL agent learns interactively through
the feedbacks of an environment.

action
A

- Learning how the world works (dynamics) and how to
maximize the long-term reward (control) at the same time.
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Reinforcement learning is among
the hottest area of research in ML!

: | DEEPMIND Al
LEARNED HOW TO WALK

“RL” is Top 1 Keyword at NeurlPS’2021, appearing 199 times
“Deep Learning” only 129 times [source] 5


https://guoqiangwei.xyz/neurips2021_stats/neurips2021_submissions.html

Applications of RL in the real life

* RL for robotics.

* RL for dialogue systems.

* RL for personalized medicine.

e RL for self-driving cars.

* RL for new material discovery.

e RL for sustainable energy.

* RL for feature-based dynamic pricing.
* RL for maximizing user satisfaction.

* RL for QoE optimization in networking



Reinforcement learning problem
setup

e State, Action, Reward and Observation
S; €S A, e A R, eR 0O,€0
* Policy: .S —> A

 When the state is observable:
 Or when the state is not observable

T (Ox AxR)I™H = A
* Learn the best policy that maximizes the expected reward

* Finite horizon (episodic) RL: 7™ = = arg maXE Z Rt
mell T: horizon

* |nfinite horizon RL:
" = ar max]E t= 1R
g na Z 8 t

v discount factor



RL for robot control
=

o P/
™ o F - 7/ ;
Ty

o

® States: The physical world, e.g., location/speed/acceleration and so on.

® Observations: camera images, joint angles

® Actions: joint torques

® Rewards: stay balanced, navigate to target locations, serve and protect
humans, etc.
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® State: Inventory level, customer demand, competitor’s inventory
® Observations: current inventory levels and sales history
® Actions: amount of each item to purchase

® Rewards: profit
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RL for Adaptive medical treatment

e State: diagnosis
e Action: treatment
* Reward: progress in recovery

state features x

(example / illustration due to Nan Jiang)
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Example: Supervised learning vs
RL in movie recommendation

* Bob is described by a feature vector
* s =[Previous movies watched / Rating / Written reviews]

* Supervised learning predicts how likely Bob will
click on “aliens vs predators”

* Reinforcement learning aims at controlling Bob

* Soin the future, Bob will develop a taste for “aliens vs
predators” (e.g., from having watched “aliens” and
“predators” both).



A broader view:
few other machi

Let’s consider a
ne learning tasks

* Hospitals need to decide who to
test based on symptoms and other
patient attributes

* Train a classifier on historic records
to predict the test outcome.

* The accuracy is high on a holdout
set!

* Large tech wants to improve user
experience on their popular email
service

i Taco Tuesday

2 Jacqueline Bruzek

. Taco Tuesday

Hey Jacqueline,
Haven't seen you in a while and | hope you're doing well.

Let's get together soon for tacos. If you bring 1

* Train a large language model with
user data to complete sentences

* It seems to work great!

What could go wrong?
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Every machine learning problem is
secretly a control (or RL) problem

* |f | test patients using the
new rule, the distribution
of patients receiving the
test will be different!

e Should I still trust my
classifier?

* If | deploy the new “Guess

what you will write”
prompt, what users will

enter may change!

* |s the model fulfilling its
own prophecy?

The ultimate goal is NOT prediction, but to:
minimize disease transmission / maximize user experience!
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Reinforcement learning is very

challenging
* The agent needs to:
* Learn the state-transitions ----- How the world works
* Learning the costs / rewards ----- Cost of actions
* Learning how to search ----- Come up with a good
strategy

e All at the same time



Let us tackle different aspects of
the RL problem one at a time

* Markov Decision Processes: (remainder of this lecture)
* Dynamics are given no need to learn. planning only.

e RL algorithms (next lecture)
* Model-based RL vs Model-free RL
* Temporal difference learning
* Function approximation

* Exploration (final lecture)
* Bandits: Explore-Exploit in simple settings
e RL: Explore-Exploit in Learning MDPs



Online RL vs Offline RL

Online Reinforcement Learning Offline Reinforcement Learning
@ ‘

Agent Environment Agent Logged data
Exploration is often expensive, Can we learn a policy from
unsafe, unethical or illegal in already logged interaction
practice, e.g., in self-driving data?

cars, or in medical applications.

*Offline RL won’t be covered, but it’s an important problem
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_et’s start by formulating Markov
Decision processes (MDP).

* Infinite horizon / discounted setting
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Example: Frozen lake.

START

e reward +1 at [4,3], -1 at [4,2]
* reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

upP e.g.

State-transitions with action UP:

80% move up
10% move left
10% move right

*If you bump into a wall,
you stay where you are.

* Finite horizon or infinite horizon?

 What is a good policy?



Parameters of an MDP are
factorizations of the joint distribution

- /Q@ /C@ f/@;

g St+1

 Initial state distribution
* Transition dynamics
e Reward distribution



State-space diagram representation of
an MDP: An example with 3 states
and 2 actions.

r(s,,a4,5,) =50

* The reward can be associated with only the state s’ you transition into.
* Or the state that you transition from s and the action a you take.
* Or all three at the same time. 34



Reward function and Value functions

* Immediate reward function r(s,a)
* expected immediate reward

r(s,a) = E[R1[51 = s, A1 = a
1" (5) = Egon(als) F21]51 = 8]

e state value function: V*(s)
» expected long-term return when starting in s and following ©

V™(s) = E.[Ri + YRy + ... + Y 'Ry + ...|S1 = 5]

e state-action value function: Q%(s,a)

» expected long-term return when starting in s, performing a,
and following &

Q™ (s,a) =E [Ry +vRy + ... + ¥ 'R, + ...|S1 = 5,41 = a



Optimal value function and the
MDP planning problem

V*(s) :=sup V" (s)
mell

Q*(s,a) :=sup Q" (s, a).
mell
Goal of MDP planning:
Find 7* such that V™ (s) = V*(s) Vs

Approximate solution:

7 is e-optimal if V™ > V*(s) — el



General policy, Stationary policy,
Deterministic policy

* General policy could depend on the entire history

T:(ESXAXR)* xS — A(A)

* Stationary policy
T:S — A(A)

 Stationary, Deterministic policy

mT:S—> A



Two surprising facts about MDPs

1. It suffices to consider stationary / deterministic
policies.

2. There exists a stationary / deterministic policy
that is optimal simultaneously for all initial state
distributions.



Bellman equations — the fundamental
equations of MDP and RL

* An alternative, recursive and more useful way of
defining the V-function and Q function

— Zw(a\s)zp(sﬂs,a)[’r(s,a s')+ V™ (s Zw als)Q™ (s, a)

* Exercise:
* Prove Bellman equation from the definition.

e Write down the Bellman equation using Q function alone.

Q" (s,a) ="



Bellman optimality equations
characterizes the optimal policy

V*(s) = mc?xz P(s'|s,a)[r(s,a,s") +~yV*(s")]

e system of n non-linear equations
 solve for V*(s)
e easy to extract the optimal policy

* having Q*(s,a) makes it even simpler

7 (s) = arg max Q*(s,a)



Bellman equations in matrix forms

* Lemma 1.4 (Bellman consistency): For stationary
policies, we have

V7(s) = Q" (s, m(s)).
QW(Sv a) — ’I“(S, CL) - /YES’NPHS,CL) [VW(S/)] .

* [n matrix forms:
V’T(' — ,’47'(' _I_ ,YPT('VT('
QF =r+~yPVT™
Qﬂ' — 7 _|_ /YPT('QT(' .



Value iterations for MDP planning

* Recall: Bellman optimality equations
V*(s) =max Y P(s'|s,a)[r(s,a,s") +yV*(s')]

Q(Sa CL) — T(S7 (1,) + /YES/NP(°|S,G) [H/lgj Q(Slv CL/)] ¥

TQ =r+ PVgy where Vo(s) :=max Q(s,a).

acA

Theorem: Q = Q* if and only if Q satisfies the Bellman optimality
equations.




Value iterations for MDP planning

* The value iteration algorithm iteratively applies the
Bellman operator until it converges.

1. Initialize Qg arbitrarily

2. foriin1,2,3,..,k update (), = T ();_1

3. Return Q

 What is the right question to ask here?
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Convergence of value iteration for
solving MDPs

* Lemma 1. The Bellman operator is a y-contraction.
For any two vectors Q, Q" € RISIIAL

ITQ = TQ oo <7Q — Q'

* Prove this in the optional HWA4.

* Fast convergence of value iterations to Q*:



K

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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K

0.37 »| 0.66 )»

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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K

Cridworld Display

.H
A

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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K

GCridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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K

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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K

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

53



K

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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GCridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Gridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

56



Gridworld Display

VALUES AFTER

12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

57



k=100

Gridworld Display

AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =0
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Demo: grid worlds

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pl | ¢ | 9|9 |9 v | ¢ | ¢ |9
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b + + + + + + + + 4
0.00 0.00 0.00
> + 4
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b + + + + + + + 4
R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 + + + + + + + 4
R-1.0 R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> + + + + + + + 4
R10 R-1.0 R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b + + + 4
R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 + + + + + + + 4
R-1.0 R-1.0 R-1.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+ + + + + + + + 4

0.0& 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.P_p

p. e & & p e & p. e & &

https://cs.stanford.edu/people/karpathy/reinf

orcejs/gridworld dp.html
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https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Checkpoint

 What is RL? What are its motivating applications?

e A model of RL --- Markov Decision Processes
e Value functions: Q functions and V functions
* Bellman equations

 MDP planning / inference problem
* Value iterations



Next lecture

* RL algorithms:
* What happens if we don’t know the MDP?



