Lecture 17 SVM (Part II) and Online Learning Lei Li, Yu-Xiang Wang ### Recap: Support Vector Machines Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$ having rows $x_1, \dots x_n$, recall the support vector machine or SVM problem: $$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$ subject to $\xi_i \ge 0, \ i = 1, \dots n$ $$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$ This is a quadratic program ### Recap: Lagrange dual problem Given a minimization problem $$\min_{x} f(x)$$ subject to $h_{i}(x) \leq 0, i = 1, \dots m$ $$\ell_{j}(x) = 0, j = 1, \dots r$$ we defined the Lagrangian: $$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$ and Lagrange dual function: $$g(u,v) = \min_{x} L(x,u,v)$$ ### Recap: Lagrange dual problem The subsequent dual problem is: $$\max_{u,v} g(u,v)$$ subject to $u \ge 0$ #### Important properties: - Dual problem is always convex, i.e., g is always concave (even if primal problem is not convex) - The primal and dual optimal values, f^{\star} and g^{\star} , always satisfy weak duality: $f^{\star} \geq g^{\star}$ - Slater's condition: for convex primal, if there is an x such that $$h_1(x) < 0, \dots h_m(x) < 0$$ and $\ell_1(x) = 0, \dots \ell_r(x) = 0$ then strong duality holds: $f^* = g^*$. Can be further refined to strict inequalities over the nonaffine h_i , i = 1, ... m ### Recap: Deriving the dual of SVM Introducing dual variables $v, w \geq 0$, we form the Lagrangian: $$L(\beta, \beta_0, \xi, v, w) = \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n v_i \xi_i + \sum_{i=1}^n w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0))$$ ### Recap: Dual SVM Minimizing over β , β_0 , ξ gives Lagrange dual function: $$g(v,w) = \begin{cases} -\frac{1}{2}w^T \tilde{X} \tilde{X}^T w + 1^T w & \text{if } w = C1-v, \ w^T y = 0 \\ -\infty & \text{otherwise} \end{cases}$$ where $\tilde{X} = \mathrm{diag}(y)X$. Thus SVM dual problem, eliminating slack variable v, becomes $$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$ subject to $0 \le w \le C1, \ w^{T}y = 0$ Check: Slater's condition is satisfied, and we have strong duality. Further, from study of SVMs, might recall that at optimality $$\beta = \tilde{X}^T w$$ This is not a coincidence, as we'll later via the KKT conditions #### "Kernel trick" in SVM The dual SVM depends only on inner products $$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$ subject to $0 \le w \le C1, \ w^{T}y = 0$ How to make predictions? ### This lecture - KKT conditions - SVM as an example Online Learning ## Optimality conditions: the conditions that characterizes the optimal solutions What you learned in high school $$\min_{x \in \mathbb{R}} x^2 - 4x + 9$$ • Slight generalization: For convex and differentiable objective function $\min_{x \in \mathbb{R}^d} f(x)$ ## Handling constraints with firstorder optimality conditions For a convex problem $$\min_{x} f(x)$$ subject to $x \in C$ and differentiable f, a feasible point x is optimal if and only if $$\nabla f(x)^T (y - x) \ge 0 \quad \text{for all } y \in C$$ This is called the first-order condition for optimality In words: all feasible directions from x are aligned with gradient $\nabla f(x)$ Important special case: if $C = \mathbb{R}^n$ (unconstrained optimization), then optimality condition reduces to familiar $\nabla f(x) = 0$ ## Handling non-differentiable functions with "subgradient" Recall that for convex and differentiable f, $$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$ for all x, y I.e., linear approximation always underestimates f A subgradient of a convex function f at x is any $g \in \mathbb{R}^n$ such that $$f(y) \ge f(x) + g^T(y - x)$$ for all y - Always exists¹ - If f differentiable at x, then $g = \nabla f(x)$ uniquely - Same definition works for nonconvex f (however, subgradients need not exist) ¹On the relative interior of dom(f) #### Examples of subgradients Consider $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| - For $x \neq 0$, unique subgradient g = sign(x) - For x = 0, subgradient g is any element of [-1, 1] #### Consider $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||x||_2$ - For $x \neq 0$, unique subgradient $g = x/\|x\|_2$ - For x=0, subgradient g is any element of $\{z: \|z\|_2 \le 1\}$ #### Subdifferential Set of all subgradients of convex f is called the subdifferential: $$\partial f(x) = \{g \in \mathbb{R}^n : g \text{ is a subgradient of } f \text{ at } x\}$$ - Nonempty (only for convex f) - $\partial f(x)$ is closed and convex (even for nonconvex f) - If f is differentiable at x, then $\partial f(x) = {\nabla f(x)}$ - If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$ ## First order optimality condition with subgradient For any f (convex or not), $$f(x^*) = \min_{x} f(x) \iff 0 \in \partial f(x^*)$$ I.e., x^* is a minimizer if and only if 0 is a subgradient of f at x^* . This is called the subgradient optimality condition Why? Easy: g=0 being a subgradient means that for all y $$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$ Note the implication for a convex and differentiable function f, with $\partial f(x) = {\nabla f(x)}$ #### Karush-Kuhn-Tucker conditions #### Given general problem $$\min_{x} f(x)$$ subject to $h_i(x) \le 0, i = 1, \dots m$ $$\ell_j(x) = 0, j = 1, \dots r$$ The Karush-Kuhn-Tucker conditions or KKT conditions are: • $$0 \in \partial \left(f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \right)$$ (stationarity) - $u_i \cdot h_i(x) = 0$ for all i - (complementary slackness) - $h_i(x) \leq 0$, $\ell_j(x) = 0$ for all i, j (primal feasibility) • $u_i \ge 0$ for all i (dual feasibility) #### **Necessity** Let x^* and u^*, v^* be primal and dual solutions with zero duality gap (strong duality holds, e.g., under Slater's condition). Then $$f(x^*) = g(u^*, v^*)$$ $$= \min_{x} f(x) + \sum_{i=1}^{m} u_i^* h_i(x) + \sum_{j=1}^{r} v_j^* \ell_j(x)$$ $$\leq f(x^*) + \sum_{i=1}^{m} u_i^* h_i(x^*) + \sum_{j=1}^{r} v_j^* \ell_j(x^*)$$ $$\leq f(x^*)$$ In other words, all these inequalities are actually equalities Two things to learn from this: - The point x^* minimizes $L(x, u^*, v^*)$ over $x \in \mathbb{R}^n$. Hence the subdifferential of $L(x, u^*, v^*)$ must contain 0 at $x = x^*$ —this is exactly the stationarity condition - We must have $\sum_{i=1}^{m} u_i^{\star} h_i(x^{\star}) = 0$, and since each term here is ≤ 0 , this implies $u_i^{\star} h_i(x^{\star}) = 0$ for every i—this is exactly complementary slackness Primal and dual feasibility hold by virtue of optimality. Therefore: If x^\star and u^\star, v^\star are primal and dual solutions, with zero duality gap, then $x^\star, u^\star, v^\star$ satisfy the KKT conditions (Note that this statement assumes nothing a priori about convexity of our problem, i.e., of f, h_i, ℓ_j) #### Sufficiency If there exists $x^\star, u^\star, v^\star$ that satisfy the KKT conditions, then $$g(u^*, v^*) = f(x^*) + \sum_{i=1}^m u_i^* h_i(x^*) + \sum_{j=1}^r v_j^* \ell_j(x^*)$$ $$= f(x^*)$$ where the first equality holds from stationarity, and the second holds from complementary slackness Therefore the duality gap is zero (and x^* and u^*, v^* are primal and dual feasible) so x^* and u^*, v^* are primal and dual optimal. Hence, we've shown: If x^* and u^*, v^* satisfy the KKT conditions, then x^* and u^*, v^* are primal and dual solutions #### Putting it together In summary, KKT conditions: - always sufficient - necessary under strong duality #### Putting it together: For a problem with strong duality (e.g., assume Slater's condition: convex problem and there exists \boldsymbol{x} strictly satisfying non-affine inequality contraints), x^* and u^*, v^* are primal and dual solutions $\iff x^*$ and u^*, v^* satisfy the KKT conditions (Warning, concerning the stationarity condition: for a differentiable function f, we cannot use $\partial f(x) = \{\nabla f(x)\}$ unless f is convex! There are other versions of KKT conditions that deal with local optima. #### Example: support vector machines Given $y \in \{-1,1\}^n$, and $X \in \mathbb{R}^{n \times p}$, the support vector machine problem is: $$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$ subject to $\xi_i \ge 0, \ i = 1, \dots n$ $$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$ Introduce dual variables $v, w \geq 0$. KKT stationarity condition: $$0 = \sum_{i=1}^{n} w_i y_i, \quad \beta = \sum_{i=1}^{n} w_i y_i x_i, \quad w = C1 - v$$ Complementary slackness: $$v_i \xi_i = 0, \ w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0)) = 0, \quad i = 1, \dots n$$ Hence at optimality we have $\beta = \sum_{i=1}^{n} w_i y_i x_i$, and w_i is nonzero only if $y_i(x_i^T \beta + \beta_0) = 1 - \xi_i$. Such points i are called the support points - For support point i, if $\xi_i = 0$, then x_i lies on edge of margin, and $w_i \in (0, C]$; - For support point i, if $\xi_i \neq 0$, then x_i lies on wrong side of margin, and $w_i = C$ KKT conditions do not really give us a way to find solution, but gives a better understanding In fact, we can use this to screen away non-support points before performing optimization ## Checkpoint: KKT conditions and SVM - A generalized set of conditions that characterizes the optimal solutions - Stationarity, complementary slackness, primal / dual feasibility - Always sufficient for optimality - Necessary when we have strong duality - Complementary slackness implies - SVM dual solutions are sparse! - The number of "support vector"s is small #### This lecture - KKT conditions - SVM as an example Online Learning ## Recap: Statistical Learning Setting ## (Adversarial) Online Learning Setting Data points show up sequentially (non-iid), learner makes online predictions Performance metric: Mistake bounds ## Algorithm A "Consistency" ## Algorithm B "Halfing" Now let's get rid of "Realizability". The setting is called "Agnostic learning" ## Example: Stock forecasting ## Alg C Weighted Majority How do we fix "weighted majority"? Instead of discounting by 1/2, let's try discounting by $1-\epsilon$ Following the same analysis Fact: For all $$0 \le x \le 0.5$$ $$-x - x^2 \le \log(1 - x) \le -x$$ ## Algorithm D: Randomized Weighted Majority ## Analysis of RWM ## From mistake bounds to loss minimization Loss function Regret • The "Hedge" Algorithm: ## Checkpoint: Online Learning - Learning with expert advice - A summary of regret bound: # mistakes Oracle # of mistakes | | Consistency | Halfing | Weighted
Majority | Randomized
WM | |-----------------------|--------------------------|------------------------------|--|--| | Realizable
setting | $\min(T, \mathcal{H})$ | $\min(T, \log \mathcal{H})$ | $\min(T, \log \mathcal{H})$ | $\min(T, \log \mathcal{H})$ | | Agnostic setting | n.a. | n.a. | $(1+\epsilon)m$
+ $\log \mathcal{H} /\epsilon$ | $\sqrt{m\log \mathcal{H} } = O(\sqrt{T\log \mathcal{H} })$ | #### Next lecture - Online Learning (Part II) - Online Gradient Descent - Reinforcement Learning - Markov Decision Processes