Lecture 17 SVM (Part II) and Online Learning

Lei Li, Yu-Xiang Wang

Recap: Support Vector Machines

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$ having rows $x_1, \dots x_n$, recall the support vector machine or SVM problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$

subject to $\xi_i \ge 0, \ i = 1, \dots n$
$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

This is a quadratic program

Recap: Lagrange dual problem

Given a minimization problem

$$\min_{x} f(x)$$
subject to $h_{i}(x) \leq 0, i = 1, \dots m$

$$\ell_{j}(x) = 0, j = 1, \dots r$$

we defined the Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

and Lagrange dual function:

$$g(u,v) = \min_{x} L(x,u,v)$$

Recap: Lagrange dual problem

The subsequent dual problem is:

$$\max_{u,v} g(u,v)$$

subject to $u \ge 0$

Important properties:

- Dual problem is always convex, i.e., g is always concave (even if primal problem is not convex)
- The primal and dual optimal values, f^{\star} and g^{\star} , always satisfy weak duality: $f^{\star} \geq g^{\star}$
- Slater's condition: for convex primal, if there is an x such that

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and $\ell_1(x) = 0, \dots \ell_r(x) = 0$

then strong duality holds: $f^* = g^*$. Can be further refined to strict inequalities over the nonaffine h_i , i = 1, ... m

Recap: Deriving the dual of SVM

Introducing dual variables $v, w \geq 0$, we form the Lagrangian:

$$L(\beta, \beta_0, \xi, v, w) = \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n v_i \xi_i + \sum_{i=1}^n w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0))$$

Recap: Dual SVM

Minimizing over β , β_0 , ξ gives Lagrange dual function:

$$g(v,w) = \begin{cases} -\frac{1}{2}w^T \tilde{X} \tilde{X}^T w + 1^T w & \text{if } w = C1-v, \ w^T y = 0 \\ -\infty & \text{otherwise} \end{cases}$$

where $\tilde{X} = \mathrm{diag}(y)X$. Thus SVM dual problem, eliminating slack variable v, becomes

$$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$
subject to $0 \le w \le C1, \ w^{T}y = 0$

Check: Slater's condition is satisfied, and we have strong duality. Further, from study of SVMs, might recall that at optimality

$$\beta = \tilde{X}^T w$$

This is not a coincidence, as we'll later via the KKT conditions

"Kernel trick" in SVM

The dual SVM depends only on inner products

$$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$

subject to $0 \le w \le C1, \ w^{T}y = 0$

How to make predictions?

This lecture

- KKT conditions
 - SVM as an example

Online Learning

Optimality conditions: the conditions that characterizes the optimal solutions

What you learned in high school

$$\min_{x \in \mathbb{R}} x^2 - 4x + 9$$

• Slight generalization: For convex and differentiable objective function $\min_{x \in \mathbb{R}^d} f(x)$

Handling constraints with firstorder optimality conditions

For a convex problem

$$\min_{x} f(x)$$
 subject to $x \in C$

and differentiable f, a feasible point x is optimal if and only if

$$\nabla f(x)^T (y - x) \ge 0 \quad \text{for all } y \in C$$

This is called the first-order condition for optimality

In words: all feasible directions from x are aligned with gradient $\nabla f(x)$

Important special case: if $C = \mathbb{R}^n$ (unconstrained optimization), then optimality condition reduces to familiar $\nabla f(x) = 0$

Handling non-differentiable functions with "subgradient"

Recall that for convex and differentiable f,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all x, y

I.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any $g \in \mathbb{R}^n$ such that

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

- Always exists¹
- If f differentiable at x, then $g = \nabla f(x)$ uniquely
- Same definition works for nonconvex f (however, subgradients need not exist)

¹On the relative interior of dom(f)

Examples of subgradients

Consider $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|

- For $x \neq 0$, unique subgradient g = sign(x)
- For x = 0, subgradient g is any element of [-1, 1]

Consider $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||x||_2$

- For $x \neq 0$, unique subgradient $g = x/\|x\|_2$
- For x=0, subgradient g is any element of $\{z: \|z\|_2 \le 1\}$

Subdifferential

Set of all subgradients of convex f is called the subdifferential:

$$\partial f(x) = \{g \in \mathbb{R}^n : g \text{ is a subgradient of } f \text{ at } x\}$$

- Nonempty (only for convex f)
- $\partial f(x)$ is closed and convex (even for nonconvex f)
- If f is differentiable at x, then $\partial f(x) = {\nabla f(x)}$
- If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$

First order optimality condition with subgradient

For any f (convex or not),

$$f(x^*) = \min_{x} f(x) \iff 0 \in \partial f(x^*)$$

I.e., x^* is a minimizer if and only if 0 is a subgradient of f at x^* . This is called the subgradient optimality condition

Why? Easy: g=0 being a subgradient means that for all y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Note the implication for a convex and differentiable function f, with $\partial f(x) = {\nabla f(x)}$

Karush-Kuhn-Tucker conditions

Given general problem

$$\min_{x} f(x)$$
subject to $h_i(x) \le 0, i = 1, \dots m$

$$\ell_j(x) = 0, j = 1, \dots r$$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

•
$$0 \in \partial \left(f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \right)$$
 (stationarity)

- $u_i \cdot h_i(x) = 0$ for all i
- (complementary slackness)
- $h_i(x) \leq 0$, $\ell_j(x) = 0$ for all i, j

(primal feasibility)

• $u_i \ge 0$ for all i

(dual feasibility)

Necessity

Let x^* and u^*, v^* be primal and dual solutions with zero duality gap (strong duality holds, e.g., under Slater's condition). Then

$$f(x^*) = g(u^*, v^*)$$

$$= \min_{x} f(x) + \sum_{i=1}^{m} u_i^* h_i(x) + \sum_{j=1}^{r} v_j^* \ell_j(x)$$

$$\leq f(x^*) + \sum_{i=1}^{m} u_i^* h_i(x^*) + \sum_{j=1}^{r} v_j^* \ell_j(x^*)$$

$$\leq f(x^*)$$

In other words, all these inequalities are actually equalities

Two things to learn from this:

- The point x^* minimizes $L(x, u^*, v^*)$ over $x \in \mathbb{R}^n$. Hence the subdifferential of $L(x, u^*, v^*)$ must contain 0 at $x = x^*$ —this is exactly the stationarity condition
- We must have $\sum_{i=1}^{m} u_i^{\star} h_i(x^{\star}) = 0$, and since each term here is ≤ 0 , this implies $u_i^{\star} h_i(x^{\star}) = 0$ for every i—this is exactly complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If x^\star and u^\star, v^\star are primal and dual solutions, with zero duality gap, then $x^\star, u^\star, v^\star$ satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity of our problem, i.e., of f, h_i, ℓ_j)

Sufficiency

If there exists $x^\star, u^\star, v^\star$ that satisfy the KKT conditions, then

$$g(u^*, v^*) = f(x^*) + \sum_{i=1}^m u_i^* h_i(x^*) + \sum_{j=1}^r v_j^* \ell_j(x^*)$$
$$= f(x^*)$$

where the first equality holds from stationarity, and the second holds from complementary slackness

Therefore the duality gap is zero (and x^* and u^*, v^* are primal and dual feasible) so x^* and u^*, v^* are primal and dual optimal. Hence, we've shown:

If x^* and u^*, v^* satisfy the KKT conditions, then x^* and u^*, v^* are primal and dual solutions

Putting it together

In summary, KKT conditions:

- always sufficient
- necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater's condition: convex problem and there exists \boldsymbol{x} strictly satisfying non-affine inequality contraints),

 x^* and u^*, v^* are primal and dual solutions $\iff x^*$ and u^*, v^* satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable function f, we cannot use $\partial f(x) = \{\nabla f(x)\}$ unless f is convex! There are other versions of KKT conditions that deal with local optima.

Example: support vector machines

Given $y \in \{-1,1\}^n$, and $X \in \mathbb{R}^{n \times p}$, the support vector machine problem is:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$

subject to $\xi_i \ge 0, \ i = 1, \dots n$
$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

Introduce dual variables $v, w \geq 0$. KKT stationarity condition:

$$0 = \sum_{i=1}^{n} w_i y_i, \quad \beta = \sum_{i=1}^{n} w_i y_i x_i, \quad w = C1 - v$$

Complementary slackness:

$$v_i \xi_i = 0, \ w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0)) = 0, \quad i = 1, \dots n$$

Hence at optimality we have $\beta = \sum_{i=1}^{n} w_i y_i x_i$, and w_i is nonzero only if $y_i(x_i^T \beta + \beta_0) = 1 - \xi_i$. Such points i are called the support points

- For support point i, if $\xi_i = 0$, then x_i lies on edge of margin, and $w_i \in (0, C]$;
- For support point i, if $\xi_i \neq 0$, then x_i lies on wrong side of margin, and $w_i = C$

KKT conditions do not really give us a way to find solution, but gives a better understanding

In fact, we can use this to screen away non-support points before performing optimization

Checkpoint: KKT conditions and SVM

- A generalized set of conditions that characterizes the optimal solutions
 - Stationarity, complementary slackness, primal / dual feasibility
 - Always sufficient for optimality
 - Necessary when we have strong duality
- Complementary slackness implies
 - SVM dual solutions are sparse!
 - The number of "support vector"s is small

This lecture

- KKT conditions
 - SVM as an example

Online Learning

Recap: Statistical Learning Setting

(Adversarial) Online Learning Setting

 Data points show up sequentially (non-iid), learner makes online predictions

Performance metric: Mistake bounds

Algorithm A "Consistency"

Algorithm B "Halfing"

Now let's get rid of "Realizability". The setting is called "Agnostic learning"

Example: Stock forecasting

Alg C Weighted Majority

How do we fix "weighted majority"? Instead of discounting by 1/2, let's try discounting by $1-\epsilon$

Following the same analysis

Fact: For all
$$0 \le x \le 0.5$$

$$-x - x^2 \le \log(1 - x) \le -x$$

Algorithm D: Randomized Weighted Majority

Analysis of RWM

From mistake bounds to loss minimization

Loss function

Regret

• The "Hedge" Algorithm:

Checkpoint: Online Learning

- Learning with expert advice
 - A summary of regret bound: # mistakes Oracle # of mistakes

	Consistency	Halfing	Weighted Majority	Randomized WM
Realizable setting	$\min(T, \mathcal{H})$	$\min(T, \log \mathcal{H})$	$\min(T, \log \mathcal{H})$	$\min(T, \log \mathcal{H})$
Agnostic setting	n.a.	n.a.	$(1+\epsilon)m$ + $\log \mathcal{H} /\epsilon$	$\sqrt{m\log \mathcal{H} } = O(\sqrt{T\log \mathcal{H} })$

Next lecture

- Online Learning (Part II)
 - Online Gradient Descent

- Reinforcement Learning
 - Markov Decision Processes