Lecture 17 SVM (Part Il)
and Online Learning

Lei Li, Yu-Xiang Wang

(some slides from my convex optimization class,
originally taught by Ryan Tibshirani in CMU)



Recap: Support Vector Machines

Given y € {—1,1}", X € R™*P having rows z1, ...x,, recall the
support vector machine or SVM problem:

B,80,&
subject to & >0,i=1,...n
yi(zTB+B0) >1—¢,i=1,...n

. 1 -
min 5!!6!!% +C;&:

This is a quadratic program



Recap: Lagrange dual problem

Given a minimization problem

min f(x)

X

subject to  h; (a:)

we defined the Lagrangian:

L(x,u,v) ) + Zuz ) + Zvjﬁj(a:)
j=1
and Lagrange dual function:

g(u,v) = min L(z,u,v)

x



Recap: Lagrange dual problem

The subsequent dual problem is:

max g(u,v)
u,v

subject to u >0

Important properties:

® Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)

® The primal and dual optimal values, f* and ¢*, always satisfy
weak duality: f* > g*
e Slater’'s condition: for convex primal, if there is an x such that

hi(xz) <0,...hAp(x) <0 and 4i(x)=0,...0.(x) =0

then strong duality holds: f* = ¢g*. Can be further refined to
strict inequalities over the nonaffine h;, 1 =1,...m



Recap: Deriving the dual of SVM

Introducing dual variables v, w > 0, we form the Lagrangian:

n

L(B?B()agavaw) — %HBH% _'_CZEZ — Z/UZ€Z +

1=1

sz yz TB +60))



Recap: Dual SVM

Minimizing over (3, By, & gives Lagrange dual function:

—%wTXX'Tw—i—lTw ifw=Cl—v wly=0
g(v,w) = .
—00 otherwise

where X = diag(y)X. Thus SVM dual problem, eliminating slack
variable v, becomes

1 .
max — inXXTw + 17w

w

subject to 0 < w < (1, wTy =0

Check: Slater’s condition is satisfied, and we have strong duality.
Further, from study of SVMs, might recall that at optimality

B=XTw

This is not a coincidence, as we'll later via the KKT conditions



“Kernel trick” in SVM

* The dual SVM depends only on inner products

1 -
max — §wTXXTw + 11w
w

subject to 0 < w < ('], wTy =0

* How to make predictions?



This lecture

* KKT conditions
* SVM as an example

* Online Learning



Optimality conditions: the conditions
that characterizes the optimal solutions

* What you learned in high school

min 2 — Ao + 9
rER

* Slight generalization: For convex and differentiable

objective function min f(:l?)
rcR4

Does not handle non-differentiable functions, does not handle constraints.



Handling constraints with first-
order optimality conditions

For a convex problem

min f(z) subject to x € C
T

and differentiable f, a feasible point x is optimal if and only if
Vi) (y—x)>0 forallyeC

This is called the first-order condition

\ for optimality
S V(2
! In words: all feasible directions from x

are aligned with gradient V f(x)

Important special case: if C' = R" (unconstrained optimization),
then optimality condition reduces to familiar Vf(z) =0



Handling non-differentiable
functions with “subgradient”

Recall that for convex and differentiable f,

fy) > fx)+ Vi) (y—x) forall z,y
|.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any g € R" such that

fy) > fx)+g' (y—z) forall y

e Always exists!
e |f f differentiable at x, then g = V f(x) uniquely

® Same definition works for nonconvex f (however, subgradients
need not exist)

'On the relative interior of dom(f)



Examples of subgradients

Consider f: R — R, f(z) = |z

1.0 1.5 2.0
|

0.5

0.0

-0.5
|

® For x # 0, unique subgradient g = sign(x)

® For x = 0, subgradient g is any element of [—1, 1]
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R = R, f(z) = ||l

Consider f

= xz/|z|2
® For x = 0, subgradient g is any element of {z

ique subgradient g

® For x £ 0, un

Iz]l2 < 1}



Subdifferential

Set of all subgradients of convex f is called the subdifferential:

Of(x) ={g € R": g is a subgradient of f at x}

® Nonempty (only for convex f)

® J0f(x) is closed and convex (even for nonconvex f)

e If f is differentiable at x, then 0f(x) = {V f(z)}

If Of(x) = {g}, then f is differentiable at z and Vf(z) =g
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First order optimality condition
with subgradient

For any f (convex or not),

f@) =min fz) > 0€0f(")

l.e., x* is a minimizer if and only if 0 is a subgradient of f at x*.

This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y
Fy) = f@") + 07 (y —a*) = f(27)

Note the implication for a convex and differentiable function f,

with 9f(x) = {V f(z)}



Karush-Kuhn-Tucker conditions

Given general problem

min f(x)

X

The Karush-Kuhn-Tucker conditions or KKT conditions are:
* 0c (9(]”(33) + Z u;hi(x) + Z vil; (aj)) (stationarity)
i=1 j=1

® u;-hi(x) =0 for all i (complementary slackness)
® hi(x) <0, ¢j(x) =0 for all 4,7 (primal feasibility)
® u; >0 forall ¢ (dual feasibility)
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Necessity

Let * and u*, v* be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

fa®) = g(u™,v7)
= min f(x) + Z urhi(x) + Z vili(r)
i=1 j=1

< f(@t) + ) uihi(@t) + ) vil(a*)
i=1 j=1
< f(z%)

In other words, all these inequalities are actually equalities
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Two things to learn from this:

® The point x* minimizes L(x,u*,v*) over z € R™. Hence the
subdifferential of L(x,u*,v*) must contain 0 at x = x*—this
Is exactly the stationarity condition

® We must have > ", ufh;(z*) = 0, and since each term here
is < 0, this implies u}h;(z*) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If 2* and u*,v* are primal and dual solutions, with zero duality
gap, then x*, u*, v* satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e., of f,h;,{;)



Sufficiency

If there exists x*, u*, v* that satisfy the KKT conditions, then

gu*,v*) = f@*) + D ufhi(zt) + > vl (a?)
i=1 j=1
= f(a*)

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore the duality gap is zero (and x* and u*, v* are primal and
dual feasible) so z* and u*,v* are primal and dual optimal. Hence,
we've shown:

If x* and u*, v* satisfy the KKT conditions, then z* and u*, v*
are primal and dual solutions




Putting it together
In summary, KKT conditions:
® always sufficient

® necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater’s condi-
tion: convex problem and there exists x strictly satisfying non-

affine inequality contraints),

2™ and u*,v™ are primal and dual solutions

<= z* and u*, v"* satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable

function f, we cannot use 0f(z) = {V f(x)} unless f is convex!
There are other versions of KKT conditions that deal with local

optima. )
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Example: support vector machines

Given y € {—1,1}", and X € R™*P, the support vector machine
problem is:

L, -
min — +C :
B,ﬂo,f 2”5”2 ;gz

subject to & >0,1=1,...n
yi(zIB+B0) >1 &, i=1,...n

Introduce dual variables v, w > 0. KKT stationarity condition:
n n
0=>) wyi, B=) wym; w=Cl—v

Complementary slackness:

vi& =0, wi(1—& —yi(z; B+ ) =0, i=1,...n
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Hence at optimality we have 8 = Z;’-Lzl w;y;x;, and w; IS nonzero
only if yi(a:iTﬂ + 6p) = 1 —&;. Such points i are called the support
points

® For support point 7, if & = 0, then x; lies on edge of margin,
and w; € (0,C];

® For support point ¢, if & # 0, then z; lies on wrong side of
margin, and w; = C

KKT conditions do not really give
us a way to find solution, but gives
a better understanding

In fact, we can use this to screen
away non-support points before
performing optimization




Checkpoint: KKT conditions and
SVM

* A generalized set of conditions that characterizes
the optimal solutions
* Stationarity, complementary slackness, primal / dual
feasibility
* Always sufficient for optimality
* Necessary when we have strong duality

* Complementary slackness implies

* SVM dual solutions are sparse!
* The number of “support vector”s is small



This lecture

* Online Learning



Recap: Statistical Learning Setting



(Adversarial) Online Learning
Setting

» Data points show up sequentially (non-iid), learner
makes online predictions

* Performance metric: Mistake bounds



Algorithm A “Consistency”



Algorithm B “Halfing”



Now let’s get rid of “Realizability”. The
setting is called “Agnostic learning”



Example: Stock forecasting



Alg C Weighted Majority



How do we fix “weighted majority”?
Instead of discounting by 1/2, let’s try
discounting by 1-€

Fact: Forall 0 <z <0.5

. o P —_— 2 —_ -
e Following the same analysis z—z" <log(l—z) < -2




Algorithm D: Randomized
Weighted Majority



Analysis of RWM



From mistake bounds to loss
minimization
* Loss function

* Regret

* The “Hedge” Algorithm:



Checkpoint: Online Learning

* Learning with expert advice

* A summary of regret bound: # mistakes - Oracle # of
mistakes

Weighted Randomized
Consistency Halfing Majority WM

Realizable min(T, |H|) min(T,log|H]|)
setting

min(T,log|H|) min(T,log|H|)

Agnostic o o (1+e)m Jmlog|H| =

setting o o + log|H| /€ O(/T log|H|)
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Next lecture

* Online Learning (Part Il)
* Online Gradient Descent

* Reinforcement Learning
* Markov Decision Processes



