Lecture 16 Duality and
Support Vector Machines

Lei Li, Yu-Xiang Wang

(some slides from my convex optimization class,
originally taught by Ryan Tibshirani in CMU)



Recap: Modeling by writing down
an optimization problem

e Unsupervised learning as matrix factorization

Data % U

* Example:
* Example:
* Example:
* Example:
* Example:
* Example:

Principle Component Analysis

Topic model with Latent Dirichlet Allocation
Gaussian mixture model

Movie recommendation

Dictionary learning (sparse coding)

Robust PCA

Does not have to be unsupervised...



Recap: Structural inducing
regularization and convex relaxation

* Sparsity

|| [Eal¥

* Low-rank matrix with Nuclear norm regularization
rank(X) | X«

* Piecewise polynomials with a small number of
pieces

| DY Flo | DYV fly



Recap: Convex Set and Functions

Convex set: C' C R"™ such that
r,yceC = tr+(1—-t)yeC forall 0 <t <1

o &=

Convex function: f : R™ — R such that dom(f) C R™ convex, and
flx+ (1 —-t)y) <tf(z)+(1—1)f(y) forall()gtgl
and all z,y € dom(f)

(v, f(y))
(z, f(x))



Recap: Convex optimization
problem --- the standard form

Optimization problem:

min f(x)

xeD
subject to ¢g;(x) <0,i=1,...m

Here D = dom(f) N[~ dom(g;) N ﬂ§:1 dom(h;), common
domain of all the functions

This is a convex optimization problem provided the functions f
and g;,4 = 1,...m are convex, and hj,7 = 1,...p are affine:

hj(x):a?x+bj, j=1,...p



Recap: High school examples

min z° — 4z 4+ 9
rER

min z° — 4z + 9
xe(0,1]

min || — 4x + 9
r R

min log(e”*° + ¢ 519)

rclR



Why learning convex optimization
when deep learning is hon-convex?

* A lot of non-convex problems has a convex
reformulation or convex relaxation

* Helpful in designing optimization algorithms for
non-convex problems too.

* The technical training helps to develop skills that
makes you a better researcher and more effective
problem solver.



Example: principal components analysis

Given X € R™* P consider the low rank approximation problem:

mﬁi}n |X — R||% subject to rank(R) =k

Here ||A]|% = >, Z§:1 A%j, the entrywise squared /2 norm, and

rank(A) denotes the rank of A

Also called principal components analysis or PCA problem. Given
X =UDVT, singular value decomposition or SVD, the solution is

R =U,D, Vil

where Uy, V. are the first £ columns of U,V and Dy, is the first k
diagonal elements of D. l.e., R is reconstruction of X from its first
k principal components



The PCA problem is not convex. Let's recast it. First rewrite as

énisrzlj |X — XZ||% subject to rank(Z) =k, Z is a projection
C

< max tr(SZ) subject to rank(Z) =k, Z is a projection
cSp

where S = X7 X . Hence constraint set is the nonconvex set
C = {Z eSP:M(Z) € {0,1Y, i=1,...p, tr(Z) = k)

where \;(Z), i =1,...n are the eigenvalues of Z. Solution in this

formulation is
Z =V,

where V}. gives first k columns of V



Now consider relaxing constraint set to Fj, = conv(C'), its convex
hull. Note

Fr={2eSP: \(Z)e0,1],i=1,...p, tr(Z) =k}
={ZeSP:0=7Z2=<1, tr(Z) =k}

This set is called the Fantope of order k. It is convex. Hence, the
linear maximization over the Fantope, namely

max tr(S%2)
ZeF.

Is a convex problem. Remarkably, this is equivalent to the original
nonconvex PCA problem (admits the same solution)!

(Famous result: Fan (1949), “On a theorem of Weyl conerning
eigenvalues of linear transformations”)

Ky Fan
B i

1914 - 2010
UCSB Math
Professor



Why is this useful? We already have
Singular Value Decomposition!

Sparse PCA with Fantope Projection and Selection

® Having an optimization formulation allows us to add
additional problem specific considerations.

® Suppose we want the recovered principle components to be
sparse

tr(SZ) — A Zi i bject t k(R) =k
max tr(S2) Z| j| subject to rank(R)
® This is the algorithm for the sparse PCA problem that
achieves the minimax rate. (Vu and Lei, NIPS 2013).



This lecture

e Examples of convex sets / convex functions
* Duality

* Application to Support Vector Machines



Convex sets

Convex set: C' C R"™ such that
r,yeC = te+(1—t)yeC forall 0 <t <1

In words, line segment joining any two elements lies entirely in set

O &9

Convex combination of x1,...x;r € R™: any linear combination
O1x1 + ...+ 0z
with 8; > 0,2 =1,...k, and Zle 0; = 1. Convex hull of a set C,

conv(C), is all convex combinations of elements. Always convex
13



Examples of convex sets

Trivial ones: empty set, point, line

Norm ball: {x : ||z|| < r}, for given norm || - ||, radius r
Hyperplane: {z : al'x = b}, for given a,b

Halfspace: {z:alz < b}

Affine space: {z : Ax = b}, for given A,b

14



® Polyhedron: {z : Ax < b}, where inequality < is interpreted
componentwise. Note: the set {z : Az < b,Cx =d} is also a
polyhedron (why?)

a
1 as

as

as

Qg

® Simplex: special case of polyhedra, given by conv{xg,...xx},
where these points are affinely independent. The canonical
example is the probability simplex,

conv{er,...ep} ={w:w>0,1Tw=1}

15



Operations preserving convexity

® |ntersection: the intersection of convex sets is convex

® Scaling and translation: if C'is convex, then
aC+b={{ax+b:2¢e€C}

Is convex for any a, b

e Affine images and preimages: if f(z) = Az + b and C'is
convex then
f(C)={f(z):zeC}
Is convex, and if D is convex then

f~Y(D) ={z: f(x) € D}

IS convex

16



Convex functions
Convex function: f : R™ — R such that dom(f) C R" convex, and
flte + (1 —t)y) <tf(e) + (1 -1)f(y) for 0<t<1

and all z,y € dom(f)

(y, f(y))
(z, f(x))
In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

f concave <= —f convex

17



Important modifiers:

e Strictly convex: f(tz + (1 —1t)y) <tf(x)+ (1 —1t)f(y) for
x#yand 0 <t < 1. In words, f is convex and has greater
curvature than a linear function

e Strongly convex with parameter m > 0: f — 2||z||3 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex = strictly convex = convex

(Analogously for concave functions)

18



Examples of convex functions

Univariate functions:

» Exponential function: e** is convex for any a over R

» Power function: z¢ is convex for a > 1 or a < 0 over R
(nonnegative reals)

» Power function: z% is concave for 0 < a <1 over R,

» Logarithmic function: logx is concave over Ry |

Affine function: alx + b is both convex and concave

Quadratic function: %xTQa: + bz + ¢ is convex provided that
Q = 0 (positive semidefinite)

Least squares loss: ||y — Ax||5 is always convex (since AT A is
always positive semidefinite)

19



® Norm: ||x|| is convex for any norm; e.g., ¢, norms,

n 1/p
Jllp = (Zxﬁ?) for p> 1, lalleo = max |z
1=1
and also operator (spectral) and trace (nuclear) norms,
r
[ Xlop = 01(X), | X|er = ZUT(X)
i=1

where 01(X) > ... > 0,.(X) > 0 are the singular values of
the matrix X



® |ndicator function: if C' is convex, then its indicator function

0 xeC

lolz) = x x¢C

IS convex

® Support function: for any set C' (convex or not), its support
function
I} (z) = max =
c(w) = max "y

IS convex

® Max function: f(z) = max{zy,...x,} is convex

21



Key properties of convex functions

® A function is convex if and only if its restriction to any line is
convex

® Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(x,t) € dom(f) x R: f(x) <t}
IS a convex set

® Convex sublevel sets: if f is convex, then its sublevel sets

{x € dom(f): f(x) < t}

are convex, for all t € R. The converse is not true

22



® First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex, and

fly) = f(z) + V@) (y—=)

for all x,y € dom(f). Therefore for a differentiable convex
function Vf(x) =0 <= z minimizes f

® Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex, and V2f(x) = 0
for all € dom(f)

® Jensen's inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E|X]) <E[f(X)]

23



Operations preserving convexity

® Nonnegative linear combination: fi,... f,, convex implies
a1 fi+ ...+ amfm convex for any aq,...a,;, >0

® Pointwise maximization: if fs is convex for any s € S, then
f(z) = maxseg fs(x) is convex. Note that the set S here
(number of functions f;) can be infinite

® Partial minimization: if g(x,y) is convex in x,y, and C'is
convex, then f(x) = minyec g(x,y) is convex

24



Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C' under an arbitrary norm || - ||:

) — Ina r —
() = max [z —y]

Let's check convexity: f,(x) = ||z — y|| is convex in x for any fixed
Y, SO by pointwise maximization rule, f is convex

Now let C' be convex, and consider the minimum distance to C:

f(z) =min ||z —y
yeC

Let's check convexity: g(x,y) = ||z — y|| is convex in x,y jointly,
and C'is assumed convex, so apply partial minimization rule

25



More operations preserving convexity

e Affine composition: if f is convex, then g(x) = f(Ax +b) is
convex

® General composition: suppose f = h o g, where g : R" — R,
h:R—R, f:R" — R. Then:

» f is convex if h is convex and nondecreasing, g is convex
» f is convex if h is convex and nonincreasing, g is concave
» f is concave if h is concave and nondecreasing, g concave
» f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

f(z) =h"(g())g'(z)* + 1 (g(z))g" (z)

26



® \ector composition: suppose that

f(z) = h(g(z)) = h(g1(2),. .. gr(2))
where g : R® = R¥, h: RF -5 R, f: R* = R. Then:

» f is convex if h is convex and nondecreasing in each
argument, g IS convex

» f is convex if h is convex and nonincreasing in each
argument, g Is concave

» f is concave if h is concave and nondecreasing in each
argument, g Is concave

» f is concave if h is concave and nonincreasing in each
argument, g Is convex



Example: log-sum-exp function
Log-sum-exp function: g(x) = log(Zf:1 e% “+bi) for fixed a;, by,
1 =1,...k. Often called “soft max", as it smoothly approximates

max;—1_k (a; = + b;)

How to show convexity? First, note it suffices to prove convexity of
f(z) =log(>_:_ e*) (affine composition rule)

Now use second-order characterization. Calculate

el
Zezl et
9 6:131' . . eaziexj
- — 1{; = 4} —
Vi (@) = so o Wi = )

(Dopq €™)?

Write V2 f(x) = diag(z) — 2z, where z; = %1 /(>_}_, €**). This
matrix is diagonally dominant, hence positive semidefinite
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Linear program

A linear program or LP is an optimization problem of the form

min L

Wi

subject to Dzx <d
Ax =0

Observe that this is always a convex optimization problem

® First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

® Dantzig's simplex algorithm gives a direct (noniterative) solver
for LPs (later in the course we'll see interior point methods)

® Fundamental problem in convex optimization. Many diverse
applications, rich history



Examples of linear programs

Example: diet problem

Find cheapest combination of foods that satisfies some nutritional

requirements (useful for graduate students!)

min Al

xz

subject to Dz > d
x>0

Interpretation:
® c; : per-unit cost of food j
® d; : minimum required intake of nutrient ¢
® D;; : content of nutrient 4 per unit of food j

® z; : units of food j in the diet

Example: transportation problem
Ship commodities from given sources to destinations at min cost
m n
Hlxin Z Z cijmij
i=1 j=1

n
subject to Zayij <s,,i=1,...,m
j=1

m
Z$ij2dj7j:1;---7n7 z >0
=1

Interpretation:
® s; : supply at source %
® d; : demand at destination j
® c;;j : per-unit shipping cost from i to j

® x;; : units shipped from i to j




Convex quadratic program

A convex quadratic program or QP is an optimization problem of
the form

1
min e+ =2t Qux
T 2

subject to Dz <d
Ax =b

where (Q = 0, i.e., positive semidefinite
Note that this problem is not convex when @) %~ 0

From now on, when we say quadratic program or QP, we implicitly
assume that @ = 0 (so the problem is convex)



Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

max wle — —ajTQa?
X

subject to 17z =1
x>0

Interpretation:
® /i : expected assets’ returns
® () : covariance matrix of assets’ returns
® ~ : risk aversion

® 1 : portfolio holdings (percentages)



Example: support vector machines

Given y € {—1,1}", X € R™™P having rows 1, ...x,, recall the
support vector machine or SVM problem:

1, “
min — +C :
6,50,5 2”6”2 ;gl
subject to & >0, 1=1,...n

yil@l B+ By)>1—&,i=1,...n

This is a quadratic program



Hierarchy of Canonical Optimizations

Linear programs
Quadratic programs
Semidefinite programs

Cone programs



This lecture

* Duality

* Application to Support Vector Machines



Lower bounds in linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B < min, f(z)

E.g., consider the following simple LP

min T +y

T,y

subject to x +y > 2
z,y >0

What's a lower bound? Easy, take B = 2

But didn’t we get “lucky”?



Try again:

min T+ 3y

T,y

subject to x +y > 2
x,y >0

More generally:

min px + qyu

T,y

subject to x +y > 2
z,y >0

r+y>2
+ 2y > 0
= x+3y>2

Lower bound B = 2

a+b=p
a+c=4q
a,b,c >0

Lower bound B = 2a, for any

a, b, c satisfying above



What's the best we can do? Maximize our lower bound over all
possible a, b, c:

W et o
subject to x +y > 2 subject to a-+b=17p
z,y >0 at+c=q
a,b,c >0
Called primal LP Called dual LP

Note: number of dual variables is number of primal constraints



Try another one:

min px + qy
T,y
subject to x>0
y<1
3r+y =2
Primal LP

max 2c — b
a,b,c

subject to a+3c=0p
—b+c=qg
a,b>0

Dual LP

Note: in the dual problem, ¢ is unconstrained



Duality for general form LP

GivenceR* AcR™" pbcR™ GeR™*" hecR":

min ' max —blu—hlw
x uU,v
subject to Az =b subject to — ATu— GTv =c
Gxr < h v>0
Primal LP Dual LP

Explanation: for any v and v > 0, and = primal feasible,

ul (Az — b) + 01 (Gx —h) <0, e,

(—ATy — GTo)l'e > —bTu — hlw

So if c = —ATu — GTv, we get a bound on primal optimal value



Another perspective on LP duality

min cT:I:

X

subject to Ax =0
Gxr < h

Primal LP

max
u,b

subject to

—bvlu — htw

ATy -Gy =c

v>0

Dual LP

Explanation # 2: for any u and v > 0, and x primal feasible

e >clr+ul (Ax —b) + 0! (Gx — h) := L(z, u,v)

So if C' denotes primal feasible set, f* primal optimal value, then

for any u and v > 0,

f* > min L(x,u,v) > min L(x,u,v) := g(u,v)

zeC

x



In other words, g(u,v) is a lower bound on f* for any u and v > 0

Note that

vy —hlty ife=—-ATu—GTv
g(u,v) = .
—00 otherwise

Now we can maximize g(u,v) over u and v > 0 to get the tightest
bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to
arbitrary optimization problems (even nonconvex ones)



Lagrangian

Consider general minimization problem

min f(x)
subject to hi(x) <0,i=1,...m
li(x) =0, j :1,...7“

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(x,u,v) ) + Zuz ) + Zngj(x)
j=1

New variables u € R™, v € R", with v > 0 (implicitly, we define
L(x,u,v) = —o0o for u < 0)



Important property: for any v > 0 and v,
f(x) > L(x,u,v) at each feasible x

Why? For feasible x,

P

Liz,u,0) = f@) + 3 uihi(@) + 3 v 45(z) < f(x)

® Solid line is f

® Dashed line is A, hence
feasible set ~ [—0.46, 0.46]

® Each dotted line shows

0 L(x,u,v) for different
4 e | choices of u >0
-25 0% 0 05 1 (From B & V page 217)



Lagrange dual function

Let C' denote primal feasible set, f* denote primal optimal value.
Minimizing L(x,u,v) over all x gives a lower bound:

f* > min L(x,u,v) > min L(x,u,v) := g(u,v)
xeC x

We call g(u,v) the Lagrange dual function, and it gives a lower
bound on f* for any u > 0 and v, called dual feasible u, v

1.6

1.5¢

® Dashed horizontal line is f* |

® Dual variable A is (our u) =4
>

® Solid line shows g(\) 12}
(From B & V page 217) H

1 02 04 R 06 0.8 1




Lagrange dual problem

Given primal problem

min f(x)
subject to  hi(x) <0,i=1,...m
fj(l’):(), j: yoooT

Our constructed dual function g(u, v) satisfies f* > g(u,v) for all
u > 0 and v. Hence best lower bound is given by maximizing
g(u,v) over all dual feasible u, v, yielding Lagrange dual problem:

max g(u,v)
u,v

subject to u >0

Key property, called weak duality: if dual optimal value is ¢g*, then
ff=yg

Note that this always holds (even if primal problem is nonconvex)



Example: nonconvex quartic minimization

Define f(x) = z* — 5022 + 100z (nonconvex), minimize subject to
constraint x > —4.5

Primal Dual

5000

-1080

3000

-1120

-1000 O 1000
|
-1160

| I T T | | T T T T |
-10 -5 0 5 10 0 20 40 60 80 100

X \'

Dual function g can be derived explicitly, via closed-form equation
for roots of a cubic equation



Form of g is rather complicated:

g(w) = min | F(u) — 5077 (u) + 100F;(u) }

where for 1 =1, 2, 3,

—a; 1/2\ /3
Fi(u) = 5 <432(100—u)—(4322(100—u)2—4-12003) )
1

—100-21/3

(432(100 — ) — (4322(100 — u)2 — 4 - 12003>1/2)1/3

and a1 =1, ay = (—1 +i\/§)/2, as = (—1 —’L'\/g)/Q

Without the context of duality it would be difficult to tell whether
or not g is concave ... but we know it must be!



Strong duality

Recall that we always have f* > g* (weak duality). On the other
hand, in some problems we have observed that actually

f=9
which is called strong duality

Slater's condition: if the primal is a convex problem (i.e., f and
hi,...hy are convex, {1,...4, are affine), and there exists at least
one strictly feasible x € R™, meaning

hi(x) <0,...hp(x) <0 and ¢i(x)=0,...0.(x) =0
then strong duality holds

This is a pretty weak condition. An important refinement: strict
inequalities only need to hold over functions h; that are not affine



This lecture

* Application to Support Vector Machines



Example: support vector machine dual

Given y € {—1,1}", X € R"™P, rows x1,...x,, recall the support
vector machine problem:

1 5 -
min — +C :
5760,5 2H/BH2 Zzzlgl
subject to & >0,1=1,...n

y@'(l‘?ﬁ—l—ﬁo) >1-&,1=1,...n

Introducing dual variables v, w > 0, we form the Lagrangian:

n

L(B, Bo, &, v, w) = %Hﬁ”% +C) &= v+

1=1 1=1

Z w; (1 =& —vi(z! B+ Bo))

1=1



Minimizing over 3, By, & gives Lagrange dual function:

—%wTXXTw—i—lTw ifw=Cl—v, w'y=0
g(v, w) = .
—00 otherwise

where X = diag(y)X. Thus SVM dual problem, eliminating slack
variable v, becomes

1 -~
max — §wTXXTw + 17w
w

subject to 0 < w < (1, wTy =0

Check: Slater's condition is satisfied, and we have strong duality.
Further, from study of SVMs, might recall that at optimality

B=X"Tw

This is not a coincidence, as we'll later via the KKT conditions



Next lecture

* KKT conditions (with examples in SVM)

* Online Learning



