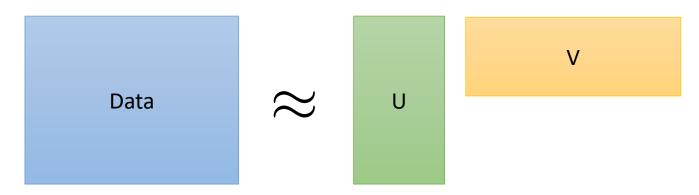
Lecture 16 Duality and Support Vector Machines

Lei Li, Yu-Xiang Wang

Recap: Modeling by writing down an optimization problem

Unsupervised learning as matrix factorization



- Example: Principle Component Analysis
- Example: Topic model with Latent Dirichlet Allocation
- Example: Gaussian mixture model
- Example: Movie recommendation
- Example: Dictionary learning (sparse coding)
- Example: Robust PCA

Does not have to be unsupervised...

Recap: Structural inducing regularization and convex relaxation

Sparsity

$$||x||_0$$
 $||x||_1$

• Low-rank matrix with Nuclear norm regularization

$$\operatorname{rank}(X)$$
 $||X||_*$

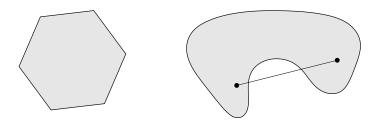
Piecewise polynomials with a small number of pieces

$$||D^{(k+1)}f||_0 \qquad ||D^{(k+1)}f||_1$$

Recap: Convex Set and Functions

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x, y \in C \implies tx + (1-t)y \in C \text{ for all } 0 \le t \le 1$$



Convex function: $f:\mathbb{R}^n\to\mathbb{R}$ such that $\mathrm{dom}(f)\subseteq\mathbb{R}^n$ convex, and $f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)\quad\text{for all }0\leq t\leq 1$ and all $x,y\in\mathrm{dom}(f)$

Recap: Convex optimization problem --- the standard form

Optimization problem:

$$\min_{x \in D} f(x)$$
subject to $g_i(x) \le 0, i = 1, \dots m$

$$h_j(x) = 0, j = 1, \dots r$$

Here $D = \text{dom}(f) \cap \bigcap_{i=1}^m \text{dom}(g_i) \cap \bigcap_{j=1}^p \text{dom}(h_j)$, common domain of all the functions

This is a convex optimization problem provided the functions f and $g_i, i = 1, ..., m$ are convex, and $h_j, j = 1, ..., p$ are affine:

$$h_j(x) = a_j^T x + b_j, \quad j = 1, \dots p$$

Recap: High school examples

$$\min_{x \in \mathbb{R}} x^2 - 4x + 9$$

$$\min_{x \in [0,1]} x^2 - 4x + 9$$

$$\min_{x \in \mathbb{R}} |x| - 4x + 9$$

$$\min_{x \in \mathbb{R}} \log(e^{5x+6} + e^{-8x+3})$$

Why learning convex optimization when deep learning is non-convex?

 A lot of non-convex problems has a convex reformulation or convex relaxation

 Helpful in designing optimization algorithms for non-convex problems too.

 The technical training helps to develop skills that makes you a better researcher and more effective problem solver.

Example: principal components analysis

Given $X \in \mathbb{R}^{n \times p}$, consider the low rank approximation problem:

$$\min_{R} ||X - R||_F^2 \text{ subject to } \operatorname{rank}(R) = k$$

Here $\|A\|_F^2 = \sum_{i=1}^n \sum_{j=1}^p A_{ij}^2$, the entrywise squared ℓ_2 norm, and $\mathrm{rank}(A)$ denotes the rank of A

Also called principal components analysis or PCA problem. Given $X=UDV^T$, singular value decomposition or SVD, the solution is

$$R = U_k D_k V_k^T$$

where U_k, V_k are the first k columns of U, V and D_k is the first k diagonal elements of D. I.e., R is reconstruction of X from its first k principal components

The PCA problem is not convex. Let's recast it. First rewrite as

 $\min_{Z \in \mathbb{S}^p} \ \|X - XZ\|_F^2 \quad \text{subject to} \quad \text{rank}(Z) = k, \ Z \text{ is a projection}$ $\iff \max_{Z \in \mathbb{S}^p} \ \text{tr}(SZ) \quad \text{subject to} \quad \text{rank}(Z) = k, \ Z \text{ is a projection}$

where $S = X^T X$. Hence constraint set is the nonconvex set

$$C = \{ Z \in \mathbb{S}^p : \lambda_i(Z) \in \{0, 1\}, \ i = 1, \dots p, \ \text{tr}(Z) = k \}$$

where $\lambda_i(Z)$, $i=1,\ldots n$ are the eigenvalues of Z. Solution in this formulation is

$$Z = V_k V_k^T$$

where V_k gives first k columns of V

Now consider relaxing constraint set to $\mathcal{F}_k = \operatorname{conv}(C)$, its convex hull. Note

$$\mathcal{F}_k = \{ Z \in \mathbb{S}^p : \lambda_i(Z) \in [0, 1], \ i = 1, \dots p, \ \text{tr}(Z) = k \}$$
$$= \{ Z \in \mathbb{S}^p : 0 \le Z \le I, \ \text{tr}(Z) = k \}$$

This set is called the Fantope of order k. It is convex. Hence, the linear maximization over the Fantope, namely

$$\max_{Z \in \mathcal{F}_k} \operatorname{tr}(SZ)$$

is a convex problem. Remarkably, this is equivalent to the original nonconvex PCA problem (admits the same solution)!

(Famous result: Fan (1949), "On a theorem of Weyl conerning eigenvalues of linear transformations")

Ky Fan 樊 **埢** 914 - 201

1914 - 2010 UCSB Math Professor

Why is this useful? We already have Singular Value Decomposition!

Sparse PCA with Fantope Projection and Selection

- Having an optimization formulation allows us to add additional problem specific considerations.
- Suppose we want the recovered principle components to be sparse

$$\max_{Z \in \mathcal{F}_k} \operatorname{tr}(SZ) - \lambda \sum_{i,j} |Z_{i,j}| \text{ subject to } \operatorname{rank}(R) = k$$

• This is the algorithm for the sparse PCA problem that achieves the minimax rate. (Vu and Lei, NIPS 2013).

This lecture

Examples of convex sets / convex functions

Duality

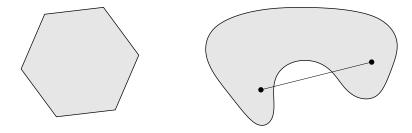
Application to Support Vector Machines

Convex sets

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x, y \in C \implies tx + (1-t)y \in C \text{ for all } 0 \le t \le 1$$

In words, line segment joining any two elements lies entirely in set



Convex combination of $x_1, \ldots x_k \in \mathbb{R}^n$: any linear combination

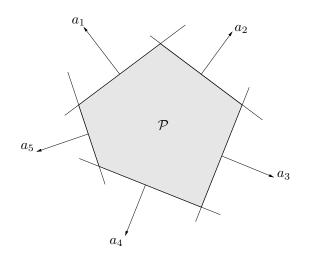
$$\theta_1 x_1 + \ldots + \theta_k x_k$$

with $\theta_i \geq 0$, i = 1, ..., k, and $\sum_{i=1}^k \theta_i = 1$. Convex hull of a set C, $\operatorname{conv}(C)$, is all convex combinations of elements. Always convex

Examples of convex sets

- Trivial ones: empty set, point, line
- Norm ball: $\{x: ||x|| \le r\}$, for given norm $||\cdot||$, radius r
- Hyperplane: $\{x: a^Tx = b\}$, for given a, b
- Halfspace: $\{x: a^T x \leq b\}$
- Affine space: $\{x : Ax = b\}$, for given A, b

• Polyhedron: $\{x: Ax \leq b\}$, where inequality \leq is interpreted componentwise. Note: the set $\{x: Ax \leq b, Cx = d\}$ is also a polyhedron (why?)



• Simplex: special case of polyhedra, given by $conv\{x_0, ... x_k\}$, where these points are affinely independent. The canonical example is the probability simplex,

$$conv{e_1, \dots e_n} = \{w : w \ge 0, 1^T w = 1\}$$

Operations preserving convexity

- Intersection: the intersection of convex sets is convex
- Scaling and translation: if C is convex, then

$$aC + b = \{ax + b : x \in C\}$$

is convex for any a, b

• Affine images and preimages: if f(x) = Ax + b and C is convex then

$$f(C) = \{f(x) : x \in C\}$$

is convex, and if D is convex then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

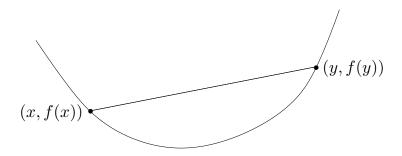
is convex

Convex functions

Convex function: $f:\mathbb{R}^n \to \mathbb{R}$ such that $\mathrm{dom}(f) \subseteq \mathbb{R}^n$ convex, and

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for $0 \le t \le 1$

and all $x, y \in dom(f)$



In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

$$f$$
 concave \iff $-f$ convex

Important modifiers:

- Strictly convex: f(tx + (1-t)y) < tf(x) + (1-t)f(y) for $x \neq y$ and 0 < t < 1. In words, f is convex and has greater curvature than a linear function
- Strongly convex with parameter m > 0: $f \frac{m}{2}||x||_2^2$ is convex. In words, f is at least as convex as a quadratic function

Note: strongly convex \Rightarrow strictly convex \Rightarrow convex

(Analogously for concave functions)

Examples of convex functions

- Univariate functions:
 - ightharpoonup Exponential function: e^{ax} is convex for any a over $\mathbb R$
 - Power function: x^a is convex for $a \ge 1$ or $a \le 0$ over \mathbb{R}_+ (nonnegative reals)
 - ▶ Power function: x^a is concave for $0 \le a \le 1$ over \mathbb{R}_+
 - ▶ Logarithmic function: $\log x$ is concave over \mathbb{R}_{++}
- Affine function: $a^Tx + b$ is both convex and concave
- Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \succeq 0$ (positive semidefinite)
- Least squares loss: $||y Ax||_2^2$ is always convex (since A^TA is always positive semidefinite)

• Norm: ||x|| is convex for any norm; e.g., ℓ_p norms,

$$||x||_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$$
 for $p \ge 1$, $||x||_{\infty} = \max_{i=1,\dots n} |x_i|$

and also operator (spectral) and trace (nuclear) norms,

$$||X||_{\text{op}} = \sigma_1(X), \quad ||X||_{\text{tr}} = \sum_{i=1}^{r} \sigma_r(X)$$

where $\sigma_1(X) \geq \ldots \geq \sigma_r(X) \geq 0$ are the singular values of the matrix X

• Indicator function: if C is convex, then its indicator function

$$I_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

is convex

• Support function: for any set C (convex or not), its support function

$$I_C^*(x) = \max_{y \in C} x^T y$$

is convex

• Max function: $f(x) = \max\{x_1, \dots x_n\}$ is convex

Key properties of convex functions

- A function is convex if and only if its restriction to any line is convex
- ullet Epigraph characterization: a function f is convex if and only if its epigraph

$$\operatorname{epi}(f) = \{(x, t) \in \operatorname{dom}(f) \times \mathbb{R} : f(x) \le t\}$$

is a convex set

• Convex sublevel sets: if f is convex, then its sublevel sets

$$\{x \in dom(f) : f(x) \le t\}$$

are convex, for all $t \in \mathbb{R}$. The converse is not true

• First-order characterization: if f is differentiable, then f is convex if and only if dom(f) is convex, and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \text{dom}(f)$. Therefore for a differentiable convex function $\nabla f(x) = 0 \iff x$ minimizes f

- Second-order characterization: if f is twice differentiable, then f is convex if and only if $\mathrm{dom}(f)$ is convex, and $\nabla^2 f(x) \succeq 0$ for all $x \in \mathrm{dom}(f)$
- Jensen's inequality: if f is convex, and X is a random variable supported on dom(f), then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

Operations preserving convexity

- Nonnegative linear combination: $f_1, \ldots f_m$ convex implies $a_1 f_1 + \ldots + a_m f_m$ convex for any $a_1, \ldots a_m \geq 0$
- Pointwise maximization: if f_s is convex for any $s \in S$, then $f(x) = \max_{s \in S} f_s(x)$ is convex. Note that the set S here (number of functions f_s) can be infinite
- Partial minimization: if g(x,y) is convex in x,y, and C is convex, then $f(x) = \min_{y \in C} g(x,y)$ is convex

Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C under an arbitrary norm $\|\cdot\|$:

$$f(x) = \max_{y \in C} \|x - y\|$$

Let's check convexity: $f_y(x) = ||x - y||$ is convex in x for any fixed y, so by pointwise maximization rule, f is convex

Now let C be convex, and consider the minimum distance to C:

$$f(x) = \min_{y \in C} \|x - y\|$$

Let's check convexity: g(x,y) = ||x - y|| is convex in x,y jointly, and C is assumed convex, so apply partial minimization rule

More operations preserving convexity

- Affine composition: if f is convex, then g(x) = f(Ax + b) is convex
- General composition: suppose $f = h \circ g$, where $g : \mathbb{R}^n \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$, $f : \mathbb{R}^n \to \mathbb{R}$. Then:
 - ightharpoonup f is convex if h is convex and nondecreasing, g is convex
 - ightharpoonup f is convex if h is convex and nonincreasing, g is concave
 - ightharpoonup f is concave if h is concave and nondecreasing, g concave
 - ightharpoonup f is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n=1:

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$

Vector composition: suppose that

$$f(x) = h(g(x)) = h(g_1(x), \dots g_k(x))$$

where $g: \mathbb{R}^n \to \mathbb{R}^k$, $h: \mathbb{R}^k \to \mathbb{R}$, $f: \mathbb{R}^n \to \mathbb{R}$. Then:

- lackbox f is convex if h is convex and nondecreasing in each argument, g is convex
- \blacktriangleright f is convex if h is convex and nonincreasing in each argument, g is concave
- ightharpoonup f is concave if h is concave and nondecreasing in each argument, g is concave
- \blacktriangleright f is concave if h is concave and nonincreasing in each argument, g is convex

Example: log-sum-exp function

Log-sum-exp function: $g(x) = \log(\sum_{i=1}^k e^{a_i^T x + b_i})$, for fixed a_i, b_i , i = 1, ...k. Often called "soft max", as it smoothly approximates $\max_{i=1,...k} (a_i^T x + b_i)$

How to show convexity? First, note it suffices to prove convexity of $f(x) = \log(\sum_{i=1}^{n} e^{x_i})$ (affine composition rule)

Now use second-order characterization. Calculate

$$\nabla_i f(x) = \frac{e^{x_i}}{\sum_{\ell=1}^n e^{x_\ell}}$$

$$\nabla_{ij}^2 f(x) = \frac{e^{x_i}}{\sum_{\ell=1}^n e^{x_\ell}} 1\{i = j\} - \frac{e^{x_i} e^{x_j}}{(\sum_{\ell=1}^n e^{x_\ell})^2}$$

Write $\nabla^2 f(x) = \operatorname{diag}(z) - zz^T$, where $z_i = e^{x_i}/(\sum_{\ell=1}^n e^{x_\ell})$. This matrix is diagonally dominant, hence positive semidefinite

Linear program

A linear program or LP is an optimization problem of the form

$$\min_{x} c^{T}x$$
subject to $Dx \leq d$

$$Ax = b$$

Observe that this is always a convex optimization problem

- First introduced by Kantorovich in the late 1930s and Dantzig in the 1940s
- Dantzig's simplex algorithm gives a direct (noniterative) solver for LPs (later in the course we'll see interior point methods)
- Fundamental problem in convex optimization. Many diverse applications, rich history

Examples of linear programs

Example: diet problem

Find cheapest combination of foods that satisfies some nutritional requirements (useful for graduate students!)

$$\min_{x} c^{T}x$$
subject to
$$Dx \ge d$$

$$x \ge 0$$

Interpretation:

- c_i : per-unit cost of food j
- d_i : minimum required intake of nutrient i
- ullet D_{ij} : content of nutrient i per unit of food j
- x_j : units of food j in the diet

Example: transportation problem

Ship commodities from given sources to destinations at min cost

$$\min_{x} \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
subject to
$$\sum_{j=1}^{n} x_{ij} \leq s_{i}, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} \geq d_{j}, j = 1, \dots, n, x \geq 0$$

Interpretation:

- s_i : supply at source i
- d_j : demand at destination j
- c_{ij} : per-unit shipping cost from i to j
- x_{ij} : units shipped from i to j

Convex quadratic program

A convex quadratic program or QP is an optimization problem of the form

$$\min_{x} c^{T}x + \frac{1}{2}x^{T}Qx$$
subject to
$$Dx \leq d$$

$$Ax = b$$

where $Q \succeq 0$, i.e., positive semidefinite

Note that this problem is not convex when $Q \not\succeq 0$

From now on, when we say quadratic program or QP, we implicitly assume that $Q \succeq 0$ (so the problem is convex)

Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

$$\max_{x} \qquad \mu^{T} x - \frac{\gamma}{2} x^{T} Q x$$
subject to
$$1^{T} x = 1$$

$$x \ge 0$$

Interpretation:

- μ : expected assets' returns
- ullet Q: covariance matrix of assets' returns
- γ : risk aversion
- x : portfolio holdings (percentages)

Example: support vector machines

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$ having rows $x_1, \dots x_n$, recall the support vector machine or SVM problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i
\text{subject to} \quad \xi_i \ge 0, \ i = 1, \dots n
\quad y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

This is a quadratic program

Hierarchy of Canonical Optimizations

- Linear programs
- Quadratic programs
- Semidefinite programs
- Cone programs

This lecture

Examples of convex sets / convex functions

Duality

Application to Support Vector Machines

Lower bounds in linear programs

Suppose we want to find lower bound on the optimal value in our convex problem, $B \leq \min_x f(x)$

E.g., consider the following simple LP

$$\min_{x,y} x + y$$
subject to $x + y \ge 2$

$$x, y \ge 0$$

What's a lower bound? Easy, take B=2

But didn't we get "lucky"?

Try again:

$$\min_{x,y} x + 3y$$

subject to
$$x + y \ge 2$$

$$x, y \ge 0$$

$$x + y \ge 2$$

$$+ \qquad 2y \ge 0$$

$$= \qquad x + 3y \ge 2$$

Lower bound B=2

More generally:

$$\min_{x,y} px + qy$$

subject to
$$x + y \ge 2$$

$$x, y \ge 0$$

$$a + b = p$$
$$a + c = q$$
$$a, b, c \ge 0$$

Lower bound B=2a, for any a,b,c satisfying above

What's the best we can do? Maximize our lower bound over all possible a,b,c:

$$\min_{x,y} \quad px + qy \qquad \max_{a,b,c} \quad 2a$$
 subject to
$$x + y \ge 2 \qquad \text{subject to} \quad a + b = p$$

$$x, y \ge 0 \qquad \qquad a + c = q$$

$$a, b, c \ge 0$$
 Called primal LP

Note: number of dual variables is number of primal constraints

Try another one:

$$\begin{array}{lll} \min\limits_{x,y} & px+qy & \max\limits_{a,b,c} & 2c-b \\ \text{subject to} & x\geq 0 & \text{subject to} & a+3c=p \\ & y\leq 1 & -b+c=q \\ & 3x+y=2 & a,b\geq 0 \end{array}$$

Note: in the dual problem, c is unconstrained

Duality for general form LP

Given $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $G \in \mathbb{R}^{r \times n}$, $h \in \mathbb{R}^r$:

$$\min_{x} \quad c^{T}x \qquad \max_{u,v} \quad -b^{T}u - h^{T}v$$
 subject to
$$Ax = b \qquad \text{subject to} \quad -A^{T}u - G^{T}v = c$$

$$Gx \le h \qquad v \ge 0$$
 Primal LP

Explanation: for any u and $v \geq 0$, and x primal feasible,

$$u^T(Ax - b) + v^T(Gx - h) \le 0, \text{ i.e.,}$$
$$(-A^Tu - G^Tv)^Tx \ge -b^Tu - h^Tv$$

So if $c = -A^T u - G^T v$, we get a bound on primal optimal value

Another perspective on LP duality

$$\min_{x} \quad c^T x \qquad \max_{u,b} \quad -b^T u - h^T v$$
 subject to
$$Ax = b \qquad \text{subject to} \quad -A^T u - G^T v = c$$

$$Gx \le h \qquad v \ge 0$$
 Primal LP

Explanation # 2: for any u and $v \ge 0$, and x primal feasible

$$c^T x \ge c^T x + u^T (Ax - b) + v^T (Gx - h) := L(x, u, v)$$

So if C denotes primal feasible set, f^{\star} primal optimal value, then for any u and $v \geq 0$,

$$f^* \geq \min_{x \in C} L(x, u, v) \geq \min_{x} L(x, u, v) := g(u, v)$$

In other words, g(u,v) is a lower bound on f^* for any u and $v \geq 0$

Note that

$$g(u,v) = \begin{cases} -b^T u - h^T v & \text{if } c = -A^T u - G^T v \\ -\infty & \text{otherwise} \end{cases}$$

Now we can maximize g(u,v) over u and $v\geq 0$ to get the tightest bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to arbitrary optimization problems (even nonconvex ones)

Lagrangian

Consider general minimization problem

$$\min_{x} f(x)$$
subject to $h_i(x) \le 0, i = 1, \dots m$

$$\ell_j(x) = 0, j = 1, \dots r$$

Need not be convex, but of course we will pay special attention to convex case

We define the Lagrangian as

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

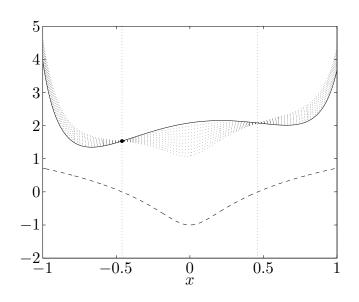
New variables $u \in \mathbb{R}^m, v \in \mathbb{R}^r$, with $u \ge 0$ (implicitly, we define $L(x,u,v)=-\infty$ for u<0)

Important property: for any $u \ge 0$ and v,

$$f(x) \ge L(x, u, v)$$
 at each feasible x

Why? For feasible x,

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i \underbrace{h_i(x)}_{\leq 0} + \sum_{j=1}^{r} v_j \underbrace{\ell_j(x)}_{=0} \leq f(x)$$



- Solid line is f
- Dashed line is h, hence feasible set $\approx [-0.46, 0.46]$
- Each dotted line shows L(x, u, v) for different choices of $u \ge 0$

(From B & V page 217)

Lagrange dual function

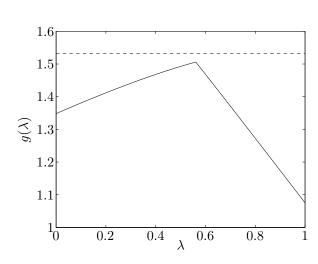
Let C denote primal feasible set, f^* denote primal optimal value. Minimizing L(x, u, v) over all x gives a lower bound:

$$f^{\star} \geq \min_{x \in C} L(x, u, v) \geq \min_{x} L(x, u, v) := g(u, v)$$

We call g(u, v) the Lagrange dual function, and it gives a lower bound on f^* for any $u \ge 0$ and v, called dual feasible u, v

- Dashed horizontal line is f^*
- Dual variable λ is (our u)
- Solid line shows $g(\lambda)$

(From B & V page 217)



Lagrange dual problem

Given primal problem

$$\min_{x} f(x)$$
subject to $h_i(x) \le 0, i = 1, \dots m$

$$\ell_j(x) = 0, j = 1, \dots r$$

Our constructed dual function g(u,v) satisfies $f^* \geq g(u,v)$ for all $u \geq 0$ and v. Hence best lower bound is given by maximizing g(u,v) over all dual feasible u,v, yielding Lagrange dual problem:

$$\max_{u,v} g(u,v)$$

subject to $u \ge 0$

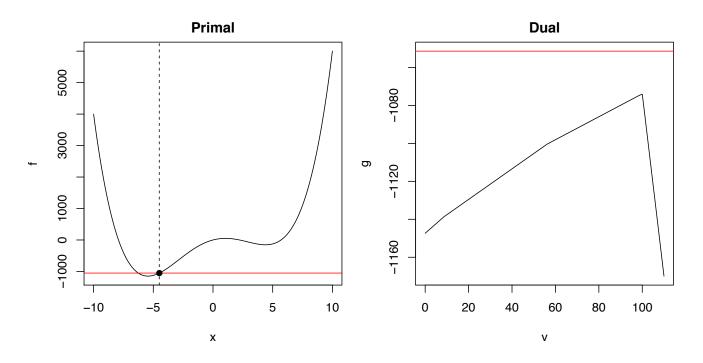
Key property, called weak duality: if dual optimal value is g^* , then

$$f^{\star} \geq g^{\star}$$

Note that this always holds (even if primal problem is nonconvex)

Example: nonconvex quartic minimization

Define $f(x) = x^4 - 50x^2 + 100x$ (nonconvex), minimize subject to constraint $x \ge -4.5$



Dual function g can be derived explicitly, via closed-form equation for roots of a cubic equation

Form of g is rather complicated:

$$g(u) = \min_{i=1,2,3} \left\{ F_i^4(u) - 50F_i^2(u) + 100F_i(u) \right\},$$

where for i = 1, 2, 3,

$$F_{i}(u) = \frac{-a_{i}}{12 \cdot 2^{1/3}} \left(432(100 - u) - \left(432^{2}(100 - u)^{2} - 4 \cdot 1200^{3} \right)^{1/2} \right)^{1/3} -100 \cdot 2^{1/3} \frac{1}{\left(432(100 - u) - \left(432^{2}(100 - u)^{2} - 4 \cdot 1200^{3} \right)^{1/2} \right)^{1/3}},$$

and
$$a_1 = 1$$
, $a_2 = (-1 + i\sqrt{3})/2$, $a_3 = (-1 - i\sqrt{3})/2$

Without the context of duality it would be difficult to tell whether or not g is concave ... but we know it must be!

Strong duality

Recall that we always have $f^* \geq g^*$ (weak duality). On the other hand, in some problems we have observed that actually

$$f^{\star} = g^{\star}$$

which is called strong duality

Slater's condition: if the primal is a convex problem (i.e., f and $h_1, \ldots h_m$ are convex, $\ell_1, \ldots \ell_r$ are affine), and there exists at least one strictly feasible $x \in \mathbb{R}^n$, meaning

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and $\ell_1(x) = 0, \dots \ell_r(x) = 0$

then strong duality holds

This is a pretty weak condition. An important refinement: strict inequalities only need to hold over functions h_i that are not affine

This lecture

Examples of convex sets / convex functions

Duality

Application to Support Vector Machines

Example: support vector machine dual

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$, rows $x_1, \dots x_n$, recall the support vector machine problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$

subject to $\xi_i \ge 0, \ i = 1, \dots n$
$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

Introducing dual variables $v, w \geq 0$, we form the Lagrangian:

$$L(\beta, \beta_0, \xi, v, w) = \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n v_i \xi_i + \sum_{i=1}^n w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0))$$

Minimizing over β, β_0, ξ gives Lagrange dual function:

$$g(v,w) = \begin{cases} -\frac{1}{2} w^T \tilde{X} \tilde{X}^T w + 1^T w & \text{if } w = C1-v, \ w^T y = 0 \\ -\infty & \text{otherwise} \end{cases}$$

where $\tilde{X} = \mathrm{diag}(y)X$. Thus SVM dual problem, eliminating slack variable v, becomes

$$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$

subject to $0 \le w \le C1, \ w^{T}y = 0$

Check: Slater's condition is satisfied, and we have strong duality. Further, from study of SVMs, might recall that at optimality

$$\beta = \tilde{X}^T w$$

This is not a coincidence, as we'll later via the KKT conditions

Next lecture

KKT conditions (with examples in SVM)

Online Learning