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291K Machine Learning



• Bayesian networks: 
– Directed acyclic graph
– Nodes are random variables
– arcs are probabilistic dependencies

• Mixture of Gaussian Model
• Expectation-Maximization
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Recap



• What about non-IID data / sequential data
• Markov assumption

• GMM => Sequential => HMM
• PPCA è Sequential è LDS
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Dynamic Bayesian Networks
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Estimating the true trajectory



• Markov chain
• Current value only dependent on the 

previous step
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Markov Process

x1 x2 x3 x4
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Linear Dynamical Systems
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• EM again
• argmax

!
𝐸"($!..#|&!..#;!$%&) log 𝑝(𝑥)..+ , 𝑧)..+|𝜃)

• E-step: estimate 𝑝(𝑧,|𝑥)..+) and 
𝑝(𝑧,, 𝑧,-)|𝑥)..+)

• M-step: optimizing for params
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Learning LDS



• 𝐸"($!..#|&!..#;!$%&) log 𝑝(𝑥)..+ , 𝑧)..+|𝜃)
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Objective: Expected log-likelihood
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Maximization



• Forward-backward algorithm
• Forward: also known as Kalman filter, 

estimate filtering density 𝑝(𝑧,|𝑥)..,)
• Backward: also known as Kalman 

smoothing, estimate smoothing density 
𝑝(𝑧,|𝑥)..+)
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Estimating 𝒑(𝒛𝒏|𝒙𝟏..𝑵)
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Forward: 𝑝(𝑧%|𝑥&..%)
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What does Kalman filter (forward-
pass) do?

Predict one step
𝑝(𝑧!"#|𝑥#…𝑥!"#)

𝑝(𝑧!|𝑥#…𝑥!"#)

𝑝(𝑧!|𝑥#…𝑥!) Update estimation 
given a new 
observation

𝑝(𝑥!|𝑧!)
𝑝(𝑧!|𝑥#…𝑥!"#)
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Backward: 𝑝(𝑧%|𝑥&..')



• Observation: 𝑥)..+
• 𝜃 = 𝜇., 𝑄., 𝐴, 𝑄, 𝐶, 𝑅
• Iterate until convergence

1. E step: use X and current 𝜃 to calculate 
marginal posterior mean E[z|x] and co-
variance Cov[z|x]

• Using forward (Kalman filtering) and backward 
(Kalman smoothing)

2. M step: 
𝜃 ← argmax

!
𝐸"($!..#|&!..#;!$%&) log 𝑝(𝑥) , 𝑧)|𝜃)
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EM for LDS



• Kalman filter: Tracking object movement
• Time series forecasting
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Application of LDS



• Same graph topology, but different distribution
• Sequential version of GMM
• Transition: a probability matrix
• Emission: Gaussian 
• Wide applications in Speech, Communication, 

Genetics
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Hidden Markov Model
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• Very similar algorithm
• Inference: 𝑝(𝑧!|𝑥#, … , 𝑥$) using forward-

backward
• Learning: same EM alg as LDS (different update 

eq.), also known as Baum-Welch alg.
• Decoding: finding max prob. codes for z, again 

forward-backward, also known as Viterbi alg. 

17

Hidden Markov Model
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Other Variations

Observation also dependent on previous steps
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Other Variations

Input-Output HMM/LDS
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Other Variations

Factorial HMM with multiple chains



• Mixture Distribution: to build more complex 
distribution from simple ones

• Gaussian Mixture Model: k Gaussian components
• Expectation-Maximization: general for graphical 

models with latent variables
– E-step: fix parameter, estimate posterior 

mean/variance
– M-step: update parameter 

• Probabilistic PCA: latent is continuous
• Linear Dynamical System:

– E-step: Forward-backward alg.
– M-step: update parameters 

21

Summary



• PRML Chapter 9, 12.2, 13.3
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Recommended Reading



• Undirected Graphical Models
• Approximate Inference

– Variational Inference
– Sampling
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Next up


