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Recap

 Attention mechanism in neural networks

* Transformer
— Multi-head attention
— Positional embedding
— Residual connection
— Layer norm
— Cross attention



Representing Probabilistic
Dependency

« Two problems with using full joint distribution
tables as probabilistic models:

— Unless there are only a few variables, the joint
Is WAY too big to represent explicitly

— Hard to learn (estimate) anything empirically
about more than a few variables at a time

« Bayesian networks: a technique for describing
complex joint distributions (models) using
simple, local distributions (conditional
probabilities)

— More properly called graphical models

— Describe how variables locally interact; Local
interactions chain together to give global,
iIndirect interactions




Probabilistic Graphical Models

* Models describe how (a portion of) the world
WOrks
* Models are always simplifications
— May not account for every variable
— May not account for all interactions between variables

— “All models are wrong; but some are useful.” -
George E. P. Box

* \What do we do with probabilistic models?

— We (or our agents) need to reason about unknown
variables, given evidence

— Example: explanation (diagnostic reasoning)
— Example: prediction (causal reasopi
— Example: value of information




Bayesian Networks: Nodes and

Arcs

* Nodes: random variables (with domains)

— Can be assigned (observed) or unassigned
(unobserved) g

56 (0

 Arcs: interactions
— Indicate “direct influence” between variables

— Formally: encode conditional independence
(more later)

* For now: imagine that arrows mean direct
causation (in general, they don't!) (Cavity)

Toothache @



Example: Coin Flips

* N independent coin flips

* No interactions between variables:
absolute independence



Example: Rain and Traffic

 Variables:
— R: It rains; T: There is traffic

« Model 1: independence  Model 2: rain causes traffic

© O . -
od B A

* Why is an agent using model 2 better?




Example: Traffic li

 Let’s build a graphical model

 Variables
— T: Traffic

— R: It rains
— U: Umbrella




Example: fire, smoke, alarm

 Variables:
— Fire

— Smoke G

— Alarm




Example: localization

 GPS data can be noisy
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Example: localization

actual

location, .
Veloci transitio
elocity, | Z4 Z, Z3
acceleration -
erission
Observed
location X4

Linear dynamical systems




Example: automatic speech
recognition (ASR)
* Infer spoken words from audio signals

 Hidden Markov models

* Could also be modeled using
RNN/Transformer

transitio

“He ate the cookies on the couch”



Example: evolutionary biology

* Reconstruct a phylogenetic tree from DNA
sequences of current species (Corvid-19)

£

ACCGTA.. CCGAA.. CCGTA.. GCGGCT.. GCAATT.. GCAGTT..



Example: Insurance




Example: Car diagnosis




Bayesian Networks: Nodes and

Arcs

* Nodes: random variables (with domains)

— Can be assigned (observed) or unassigned
(unobserved) g

56 (0

 Arcs: interactions
— Indicate “direct influence” between variables

— Formally: encode conditional independence
(more later)

* For now: imagine that arrows mean direct
causation (in general, they don't!) (Cavity)

Toothache @



Bayesian network Semantics

* A set of nodes, one per
variable X

A directed, acyclic graph Ojjg ) G
« A conditional distribution for
each node

— A collection of distributions
over X, one for each
combination of parents’ values

P(Xlay...an) _
— CPT: conditional probability Bayesian network =
table Topology (graph) + Local
_ Description of 3 noisy “causal’ Conditional Probabilities
process

» Directed graphical models



Probabilities in BNs

« Bayes’ nets implicitly encode the
joint distribution

— As a product of local conditional
distributions

n
P(z1,x2,...xzn) = || P(=z;|parents(X;))

1=1
— To see what probability a BN gives (Caty)
to a full assignment, multiply all the
relevant conditionals together (Caten)

— Example:
P(+cavity, 4catch, -toothache)




Probabilities In BNs o

Why are we guaranteed that the following results in a proper
joint distribution?

n
P(z1,22,...2n) = || P(x;|parents(X;))
1=1

Chain rule (valid for all distributions):

n
P(z1,22,...2n) = || P(zilzy...2i—1)

Assume conditional independences, from topological order:
P(xz;|zq,...x¢;_1) = P(xz;|parents(X;))

- Consequence:
P(xq1,20,...2n) = H P(xz;|parents(X;))
Not every BN can represent everyjomt distribution
— The topology enforces certain conditional independencies



Example: Coin Flips

P(X,) P(X>) P(X5)
h 0.5 h 0.5 h 0.5
t 0.5 t 0.5 t 0.5
P(h,h,t,h) =

Only distributions whose variables are absolutely independent
can be represented by a Bayesian network with no arcs.



Example: Traffic

P(R)
° +r 1/4 P(+4+r,—t) =
-r 3/4
P(T

|R

+r
-r -

&=
E




Example: Alarm Networ

=

%

4 B

]
E=A

B -~

s |

P(A|B,E)




P(+b,—e,+a,—j,+m) =
P(4+b)P(—e)P(4a| 4+ b, —e)P(—j| + a)P(+m]| + a) =
0.001 x 0.998 x 0.94 x 0.1 x 0.7

P(A|B,E)




Example: Traffic

 Causal direction

T|R




Example: Reverse Traffic

» Reverse causality?

P(R|T)

+t +r 1/3
-r 2/3

-t +r 1/7

e -t 7/16

-r 6/7




Causality?

* When Bayesian networks reflect the true causal
patterns:

— Often simpler (nodes have fewer parents)
— Often easier to think about
— Often easier to elicit from experts

* BNs need not actually be causal

— Sometimes no causal net exists over the domain
(especially if variables are missing), e.g. consider the
variables Traffic and AirlineDelay

— End up with arrows that reflect correlation, not causation
 What do the arrows really mean?

— Topology may happen to encode causal structure;
Topology really encodes conditional independence

P(xzi|zy,...2;—1) = P(xs|parents(X;))



Bayesian Networks

* So far: how a Bayesian network encodes a
joint distribution

* Inference: How to answer numerical
qgueries regarding marginal distribution of a
variable given observations

* Learning: How to estimate parameters
from data

« Structure learning: how to learn graphs




Inference by Enumeration

* Obvious problems:
— Worst-case time complexity O(dn)

— Space complexity O(dn) to store the joint
distribution

— Sample complexity (need many examples to
estimate probabilities for full joint)

* Need new way of specifying the joint
distribution!



Bayes Nets: Assumptions

» Definition of Bayes net given the graph,:
P(x;|x1---2;-1) = P(x;|parents(X;))

* This assumes that a node is conditionally
iIndependent of other ancestors given its
parents

» Often additional conditional independences,
which can be read off the graph

 Important for modeling: understand
assumptions made when choosing a Bayes
net graphical structure



Example

» Consider this chain shaped Bayesian
Network:

* What conditional independence structures
do we have?



Independence in a BN

 Important question about a BN:
—Are two nodes independent given certain evidence?

—If yes, can prove using algebra (tedious in general). If
no, can prove with a counter example

—Example:

—Question: are X and Z necessarily independent?

* Answer: no. Example: low pressure causes rain,
which causes traffic.

« X can influence Z, Z can influence X (via Y)



Determining conditional

independence via D-separation

» D-separation: a condition / algorithm for
answering queries about independence

Ons 020

@ﬁ@@@
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Causal Chains

* This configuration is a “causal
chain”

» Guaranteed X independentof Z? No

» One example set of CPTs for which X
//// is not independent of Z is sufficient
to show this independence is not
‘] 1§> guaranteed

» Example:
X:Low pressure  Y:Rain Z: Traffic > Low pressure causes rain causes
traffic, high pressure causes no
P(x,y,2) = P(z)P(y|z) P(z|y) rain causes no traffic

» |n numbers:
P(+y [ +x)=1,P(-y[-x)=1,
P(+z | +y)=1,P(-z|-y)=1



Causal Chains

* This configuration is a “"causal
chain”

» Guaranteed X independent of Z given Y?

L=< Yo P(zlx,y) = Plz,y,2)
b T eaE P(z.y)
_ P@)P@ln)P(:ly)
'@‘w () P(yle)

= P(z|ly)  Yes!

X: Low pressure Y: Rain Z: Traffic > Evidence along the chain “blocks” the influence

P(z,y,z) = P(z)P(ylz)P(z|y)



Common Cause

* This configuration is a “"common
cause’

» Guaranteed X independent of Z? No

Y: Project | feoject > One example set of CPTs for which X is not

due Due! independent of Z is sufficient to show this
independence is not guaranteed
» > Example:
%\\:\4 > Project due causes both forums busy and
lab full

» |n numbers:

£
@ A \WgA N PE+x||+y; 1PEX|| y))=
= o P(+z | +y Z|-y)=
Forums = )_‘? ‘ Z: Lab full

bus
ey ) = Po)P(ely) PCely)



Common Cause

» Guaranteed X and Z independent given Y?

: : P(x,y, z
Y: Project | P;:J:it P(z|lz,y) = (z,y,2)
due P(z,y)

_ PPl PGIy)
H P(y) P(aly)

b
& X
f@ @; = P(zly)  Yes!

> Observing the cause blocks influence between

X: @? Z: Lab full effects
Forums
busy

P(z,y,z) = P(y)P(z|y)P(z|y)



Common Effect

» Last configuration: two causes of
one effect (v-structure)

Ery. > Are X and Y independent?

X: Ralnlng ﬁ Y: Ballgame > Yes: the ballgame and the rain cause traffic, but
they are not correlated

@ @ (Still need to prove this from Bayes net)
@ > No: seeing traffic puts the rain and the ballgame
X in competition as explanation
——? P(z,y,z) =
P

_ N > This is backwards from the other cases—Observing
Z: Traffic ._..!N (a:)P(y)P(z|:1:, y) an effect activates influence between possible

causes.

» Are X and Y independent given Z?

%



Conditional independence

Each node is
conditionally
Independent of its
non-descendents
given its parents




Markov Blanket

Each node is conditionally
Independent of the rest of

the graph given its Markov
Blanket

*The Markov blanket of a
node A in a Bayesian
network is the set of
nodes composed of A's
parents, A's children, and
A's children’s other
parents.




The General Case

» General question: in a given BN, are two
variables independent (given evidence)?

» Solution: analyze the graph

* Any complex example can be broken into
repetitions of the three canonical cases

e
)

& &9



Reachability

e Recipe: shade evidence nodes, look
for paths in the resulting graph o

» Attempt 1: if two nodes are connected () o)
blx an undirected path not blocked by a
shaded node, they are conditionally
independent oo

* Almost works, but not quite

—Where does it break?

—Answer: the v-structure at T doesn't
‘c‘:outnt as a link in a path unless L=
active -




Active / Inactive Paths

* Question: Are X and Y conditionall
?}?gpendent given evidence variables

—Yes, if Xand Y “d-separated” by Z
—Copsider all (undirected) paths from X O+»O»QO | OO0

to

—No active paths = independence! O,Q,O O,O,O

A path is active if each triple is active:

—CaLg,aI chadn A—>B > CwhereBis

unobserved (either direction

—Common cguse A<« B-—->CwhereBis : ‘O‘ : : ‘Q‘ :
unobserve

—Common %ffe t@akg v-structure)
where B or one of Its
descendents is observed

« All it takes to block a path is a single
Inactive segment

Active Triples Inactive Triples



D-Separation @@ @
*Query: x, 1L X;[{Xy,, ... Xp,} ? @ @

* Check all (undirected!) paths between x;
and X,

—If one or more active, then independence
not guaranteed

—Otherwise (i.e. if all paths are inactive),then
independence is guaranteed

X X5 Xk oo, X, }



Example

RI B Yes
R1LB|T
R B|T’



Example

LUT|T  Yes
L1 B Yes
L1 B|T
L1 B|T
LI1BIT,R Yes



Example

* Variables:
— R: Raining; T: Traffic
— D: Roof drips; S: I'm sad (%)
 Questions: ) (o)
T 1D 9

T1D|R  Yes
T1 D|R, S



Structure Implications

* Given a Bayes net structure, can run
d-separation algorithm to build a complete
list of conditional independences that are
necessarily true of the form

X L XiH{ Xkyy ooy Xk,

* This list determines the set of probability
distributions that can be represented



Graph Topology Limits

Distributions
» Given some graph  wurxuzraz

topology G, only certain” @ A
joint distributions can be @® @

encoded

* The graph structure
guarantees certain
(conditional)
independences (there m
might be more

independence) & @%
&% &b

PP PFF



Bayes Networks: Summary

» Bayes nets compactly encode joint distributions

« Guaranteed independencies of distributions can
be deduced from BN graph structure

» D-separation gives precise conditional
independence guarantees from graph alone

* A Bayesian network’s joint distribution may have
further (conditional) independence that is hot
detectable until you inspect its specific
(quantitative) distribution



Inference

Inference: calculating

some useful quantity | N
from a joint probability ~ "o
distribution Lo

v |

> Examples:

> Most likely explanation:

argmax, P(Q =q|E1 =e7...)




Inference by Enumeration

* General case:. r@pe ..
—Evidence variables: ""=
—Query* variable: ©
—Hidden variables: u..x.

Step 1: Select the entries > Step 2: Sum out H to get joint of - Step 3: Normalize
consistent with the evidence guery and evidence

x Pod

-3 0.05
e

0.25 .




Inference by Enumeration in

Bayes Net
*Given unlimited time, inference
INn BNs Is easy O 0

*Reminder of inference by o
enumeration by example:

P(B |+ j,+m) g P(B,+j,+m) 0 @

—ZPBea—I—j +m)

= ZP )P(e)P(a|B,e)P(+j|a)P(+m|a)

=P(B)P(+e)P(+a|B, +¢ ) (+J| + a)P(+m|+ a) + P(B)P(+e¢)P(—a|B,+¢e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B, —e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a) P(+m| — a)



Inference by Enumeration?

P(Antilock|observed variables) = 7



Variable Elimination

Why is inference by enumeration so slow?

— You join up the whole joint distribution before you
sum out the hidden variables

> Idea: interleave joining and marginalizing

> Called “Variable Elimination”
> Still NP-hard, but usually much faster than
= inference by enumeration

» First we’ll need some new notation: factors

N
‘



Factor Zoo |

P(T, W)

» Joint distribution: P(X,Y)
—Entries P(x,y) for all x, y
—Sums to 1

» Selected joint: P(x,Y)

—A slice of the joint distribution
—Entries P(x,y) for fixed x, all y
—Sums to P(x)

* Number of capital letters = dimensionality
of the table




Factor Zoo Il

*Single conditional: P(Y | x) P(Wieold)

W P

—Entries P(y | x) for fixed x, all y [z 1=z
—Sums to 1

* Family of conditionals: P(X |Y)
—Multiple conditionals

—Entries P(x | y) forall X,y s
—Sums to |Y]

- }P(W|hot)

' ]‘P(W|cold




Factor Zoo lli

*Specified family: P(y | X )

—Entries P(y | x) for fixed y, but
for all x

—Sums to ... unknown

P(rain|T)




Factor Zoo Summary

*|In general, when we write P(Y1 ...
YN | X1 ... Xm)

e[t is a “factor,” a multi-dimensional
array

*Its values are P(y1 ... yN | X1 ... Xm)

* Any assigned (=lower-case) X or Y
Is a dimension missing (selected)
from the array



Example: Traffic Domain

Random Variables r»
oo (®) s

—R: Raining -
D) —17=

—T: Traffic R

(1) T T4
—L: Late for class ram
P(L) =" o
=Y P(rtL) T T Y
=Y P(r)P(t|r)P(L|t)

r,t



Inference by Enumeration:

Procedural Outline
 Track objects called factors

* Initial factors are local CPTs (one per node)
P(R) P(T|R) tP(Llngs

0.8
r 0.1 +r -t 0.2 +t | 0.7

r 0.9 -r +t 0.1 t +l 0.1

- Any known values are selected, e.g. if we
know L=/ , the initial factors are:
P(R) P(T|R) P(+£|T)

=T + 0.3
+r . +r -t 0.2 | 0.1
r 0.9 -r +t 0.1

* Procedure: Join all factors, then eliminate all
hidden variables



Operation 1: Join Factors

« First basic operation: joining factors f *® . = .

« Combining factors: (just like a database join)

— Get all factors over the joining variable; Build a new
factor over the union of the variables involved

« Example: Join on R

0 P(R) x P(T|R) =—=> P(R,T)
+r 0.1 +r +t 0.8 +r +t 0.08
-r 0.9 +r -t 0.2 +r -t 0.02
G r +t 0.1 o | o+t 0.09
r -t 0.9 - -t 0.81
— Computation for each entry: pointwise products
vr,t . P(r,t) = P(r)- P(t|r)




Example: Multiple Joins

-
N -



Example: Multiple iJoin

P(R)
+r 0.1
r 109 Join R
P(T|R) :
+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9
P(L|T)
+t +| 0.3
+t -l 0.7
-t + 0.1
-t -l 0.9

P(R,T)

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

P(L|T)

+t

+

0.3

+t

0.7

+

0.1

0.9

JoinT
P(R,T,L)
+r +t +| 0.024
+r +t -| 0.056
+r -t +| 0.002
+r -t -1 0.018
-r +t +| 0.027
-r +t -1 0.063
-r -t + 0.081
-r -t -1 0.729




Operation 2: Eliminate

*Second basic operation:
marginalization

 Take a factor and sum out a
variable

—Shrinks a factor to a smaller one

—A projection operation

P(R,T
‘Example: o cum i PO

0.02 ::> +t 0.17
0.09 t

0.83
0.81




P(R,T,L)

Multiple Elimination

CzD o

+r

+t

+

0.024

+r

+t

0.056

+r

-t

+

0.002

+r

-t

0.018

+t

+

0.027

+t

0.063

-t

+

0.081

L L L el
sIs1=s1-

-t

0.729

Sum

out R
—>

P(T, L)

+t

+

0.051

+t

0.119

-t

+

0.083

-t

0.747

O,

P(L)

+l

0.134

0.886




Variable Elimination =
Marginalizing Early

f.»lj_@!g
(-~



Traffic Domain

* Inference by Enumeration

0 P(L) =7
> Variable Elimination
(1) =33 P@PC)P(r) =2 P(LI) ) PO)PEr)
t T * *
Joinonr Joinonr
*
G Joinont Eliminate r
—
Eliminate r Join!nt
—— _
Eliminate t

Eliminate t



Variable Elimination

Join R Sum Sum
P(R) o P(R,T) outR JoinT outT
+r +t 0.08 P(T
+r 0.1 +r -t 0.02 ::> ( ) ::> ::>
-r 0.9 -r +t 0.09 +t | 017
-r -t 0.81 -t 0.83
(R) P(T|R)
+r +t 0.8 @ @
+r -t 0.2
0 -r +t 0.1 P(T, L)
-r -t 0.9 P(L)
+t + 0.051
I 0.119 + | 0.134
e P(L|T) P(L|T) P(L|T) T | | 0083 7| 0.866
+t +l 0.3 +t +l 0.3 +t + 0.3 t u 0.747
+t - 0.7 +t i 0.7 + - 0.7
t + 0.1 t + 0.1 t + 0.1
t | 0.9 t | 0.9 t | 0.9




Evidence

* If evidence, start with factors that select that evidence
—No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r +t 0.8 +t +| 0.3
-r 0.9 +r -t 0.2 +t -l 0.7
-r +t 0.1 -t +| 0.1
-r -t 0.9 -t -1 0.9
—To compute PLI+7) , the initial factors become:
P(+r) P(T|+r)  P(LIT)
| + | 01 | +r +t | 08 +t +| 0.3
o | t | 02 +t 1 | o7
-t +| 0.1
-t - 0.9

* Then we eliminate all variables other than query + evidence



Evidence

* Result will be a selected joint of
guery and evidence

—To get our answer, just normalize —
that s it!

—E.g. for P(L | +r), we would end up
with:

P(+r,L) Normalize P<L| + )

+r +l 0.026 +l 0.26
r -| 0.074 ::> -| 0.74




General Variable Elimination

'Query: P(Q|Ey = ey,... B = ey) | [—

- Start with initial factors: (P
—Local CPTs (but instantiated by ewdence)

«\While there are still hidden variables (not Q

or evidence): .w-j&@
—Pick a hidden variable H

—Join all factors mentioning H (- !fx@
—Eliminate (sum out) H (- m-

*Join all remaining factors and normalize x%



Example

P(B|j,m) < P(B, j,m)

P(B)  P(E) P(A|B, E) P(jlA)  P(ml|A)

Choose A
P(A|B,FE)

P(j]1A) X > P(,m,AB,E) [¥ » P(j,m|B,E)
P(m|A)

P(B) P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, E) O (&)
Choose E 0

P(E) ><> P(j,m, E|B) $ P(j,m|B) 8 ()

P(j,m|B, E)

P(B) P(j,m|B)

Finish with B

P(B) :I|> . :: > :
P(j,m|B) X P(],m,B) Normalize P(B‘j,m)




Same Example in Equations

marginal can be obtained from joint by
summing out  P(Blj,m) x P(B,j,m)

use Bayes’ net joint distribution expressi
p(B),, P(E)  P(A|B, E) P(lA)  P(m|A)

. e . P(Blj,m) = P(B,jm)
joining on a, and the = S PBsmeo

= Y P(BYP(e) P(al B,e) P(jla) P(mla)
use x*(y+z) = xy + Xx: S PEIPE) Y. PlalB.)PGla) P(mla)
= 3 P(B)P()f1(B.c.j.m)
= 5<B>§P<e>f1<3,e,j,m>

joining on e, and the

All we are doing is exploiting UWy + UWZ + UXY + UXZ + VWY + VWZ + VXY +VXZ = ﬁj(i—@?\ﬁ?rg(ﬁyﬂz)%)improve computational efficiency!



Summary

« Bayesian networks:
— Directed acyclic graph
— Nodes are random variables
— arcs are probabilistic dependencies

« Examine dependence of two variables
given observation: d-separation

* |Inference:
— Variable elimination for discrete variables

78



Next up

» Gaussian Mixture Model
* Linear Dynamical Systems
» Learning parameters for BNs

79



