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291K Machine Learning



• Attention mechanism in neural networks
• Transformer

– Multi-head attention
– Positional embedding
– Residual connection
– Layer norm
– Cross attention

2

Recap



• Two problems with using full joint distribution 
tables as probabilistic models:
– Unless there are only a few variables, the joint 

is WAY too big to represent explicitly
– Hard to learn (estimate) anything empirically 

about more than a few variables at a time
• Bayesian networks: a technique for describing 

complex joint distributions (models) using 
simple, local distributions (conditional 
probabilities)
– More properly called graphical models
– Describe how variables locally interact; Local 

interactions chain together to give global, 
indirect interactions

Representing Probabilistic 
Dependency



• Models describe how (a portion of) the world 
works

• Models are always simplifications
– May not account for every variable
– May not account for all interactions between variables
– “All models are wrong; but some are useful.”   –

George E. P. Box
• What do we do with probabilistic models?

– We (or our agents) need to reason about unknown 
variables, given evidence

– Example: explanation (diagnostic reasoning)
– Example: prediction (causal reasoning)
– Example: value of information

Probabilistic Graphical Models



• Nodes: random variables (with domains)
– Can be assigned (observed) or unassigned 

(unobserved)

• Arcs: interactions
– Indicate “direct influence” between variables
– Formally: encode conditional independence 

(more later)

• For now: imagine that arrows mean direct 
causation (in general, they don’t!)

Bayesian Networks: Nodes and
Arcs



• N independent coin flips

• No interactions between variables: 
absolute independence

Example: Coin Flips

X1 X2 Xn



• Variables:
– R: It rains; T: There is traffic

• Model 1: independence

• Why is an agent using model 2 better?

Example: Rain and Traffic

R

T

R

T

Model 2: rain causes traffic



• Let’s build a graphical model
• Variables

– T: Traffic
– R: It rains
– U: Umbrella

Example: Traffic II

R

T U



• Variables:
– Fire
– Smoke
– Alarm

Example: fire, smoke, alarm

F

S

A



• GPS data can be noisy

Example: localization



Example: localization

z1

x1

z2

x2

z3

x3

z4

x4

actual 
location,
Velocity,
acceleration

Observed 
location

transition

emission

Linear dynamical systems



• Infer spoken words from audio signals
• Hidden Markov models
• Could also be modeled using 

RNN/Transformer

Example: automatic speech 
recognition (ASR)

z1

x1

z2

x2

z3

x3

z4

x4

transition

emission

words

speech



• Reconstruct a phylogenetic tree from DNA 
sequences of current species (Corvid-19)

Example: evolutionary biology



Example: Insurance



Example: Car diagnosis



• Nodes: random variables (with domains)
– Can be assigned (observed) or unassigned 

(unobserved)

• Arcs: interactions
– Indicate “direct influence” between variables
– Formally: encode conditional independence 

(more later)

• For now: imagine that arrows mean direct 
causation (in general, they don’t!)

Bayesian Networks: Nodes and
Arcs



• A set of nodes, one per 
variable X

• A directed, acyclic graph
• A conditional distribution for 

each node
– A collection of distributions 

over X, one for each 
combination of parents’ values

– CPT: conditional probability 
table

– Description of a noisy “causal” 
process

• Directed graphical models

Bayesian network Semantics

A1

X

An

Bayesian network = 
Topology (graph) + Local 
Conditional Probabilities



• Bayes’ nets implicitly encode the 
joint distribution
– As a product of local conditional 

distributions

– To see what probability a BN gives 
to a full assignment, multiply all the 
relevant conditionals together

– Example:

Probabilities in BNs



• Why are we guaranteed that the following results in a proper 
joint distribution?  

• Chain rule (valid for all distributions):

•
• Assume conditional independences, from topological order: 

à Consequence:

• Not every BN can represent every joint distribution
– The topology enforces certain conditional independencies

Probabilities in BNs



Only distributions whose variables are absolutely independent 
can be represented by a Bayesian network with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2



Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998 B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

Example: Alarm Network



A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

E P(E)

+e 0.002

-e 0.998

B P(B)

+b 0.001

-b 0.999

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



• Causal direction

Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



• Reverse causality?

Example: Reverse Traffic

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



• When Bayesian networks reflect the true causal 
patterns:
– Often simpler (nodes have fewer parents)
– Often easier to think about
– Often easier to elicit from experts

• BNs need not actually be causal
– Sometimes no causal net exists over the domain 

(especially if variables are missing), e.g. consider the 
variables Traffic and AirlineDelay

– End up with arrows that reflect correlation, not causation
• What do the arrows really mean?

– Topology may happen to encode causal structure; 
Topology really encodes conditional independence

Causality?



• So far: how a Bayesian network encodes a 
joint distribution

• Inference: How to answer numerical 
queries regarding marginal distribution of a 
variable given observations

• Learning: How to estimate parameters
from data

• Structure learning: how to learn graphs

Bayesian Networks



• Obvious problems:
– Worst-case time complexity O(dn) 
– Space complexity O(dn) to store the joint 

distribution
– Sample complexity (need many examples to 

estimate probabilities for full joint)
• Need new way of specifying the joint 

distribution!

Inference by Enumeration



• Definition of Bayes net given the graph,:

• This assumes that a node is conditionally 
independent of other ancestors given its 
parents 

• Often additional conditional independences, 
which can be read off the graph

• Important for modeling: understand 
assumptions made when choosing a Bayes 
net graphical structure

Bayes Nets: Assumptions



• Consider this chain shaped Bayesian 
Network:

• What conditional independence structures 
do we have?

Example

X Y Z W



• Important question about a BN:
–Are two nodes independent given certain evidence?
–If yes, can prove using algebra (tedious in general). If 

no, can prove with a counter example
–Example:

–Question: are X and Z necessarily independent?
• Answer: no.  Example: low pressure causes rain, 

which causes traffic.
• X can influence Z, Z can influence X (via Y)

Independence in a BN

X Y Z



• D-separation: a condition / algorithm for 
answering queries about independence

Determining conditional 
independence via D-separation

X Y Z



•This configuration is a “causal 
chain”

Causal Chains

X: Low pressure          Y: Rain                          Z: Traffic

‣ Guaranteed X independent of Z ?   No

‣ One example set of CPTs for which X 
is not independent of Z is sufficient 
to show this independence is not 
guaranteed

‣ Example:
‣ Low pressure causes rain causes 

traffic, high pressure causes no 
rain causes no traffic

‣ In numbers:
P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



•This configuration is a “causal 
chain”

Causal Chains

X: Low pressure          Y: Rain                          Z: Traffic

‣ Guaranteed X independent of Z given Y?

‣ Evidence along the chain “blocks” the influence
Yes!



•This configuration is a “common 
cause”

Common Cause

‣ Guaranteed X independent of Z?   No

‣ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed

‣ Example:
‣ Project due causes both forums busy and 

lab full 
‣ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: 
Forums 

busy

Z: Lab full



•This configuration is a “common 
cause”

Common Cause

Y: Project 
due

X: 
Forums 

busy

Z: Lab full

‣ Guaranteed X and Z independent given Y?

‣ Observing the cause blocks influence between 
effects

Yes!



•Last configuration: two causes of 
one effect (v-structure)

Common Effect

Z: Traffic

‣ Are X and Y independent?

‣ Yes: the ballgame and the rain cause traffic, but 
they are not correlated 
(Still need to prove this from Bayes net)

‣ Are X and Y independent given Z?

‣ No: seeing traffic puts the rain and the ballgame 
in competition as explanation

‣ This is backwards from the other cases—Observing 
an effect activates influence between possible 
causes.

X: Raining Y: Ballgame



Conditional independence

Each node is 
conditionally 
independent of its 
non-descendents
given its parents



Markov Blanket

Each node is conditionally 
independent of the rest of 
the graph given its Markov 
Blanket

*The Markov blanket of a 
node A in a Bayesian 
network is the set of 
nodes composed of A's 
parents, A's children, and 
A's children's other 
parents.



• General question: in a given BN, are two 
variables independent (given evidence)?

• Solution: analyze the graph

• Any complex example can be broken into 
repetitions of the three canonical cases

The General Case



•Recipe: shade evidence nodes, look 
for paths in the resulting graph

• Attempt 1: if two nodes are connected 
by an undirected path not blocked by a 
shaded node, they are conditionally 
independent

• Almost works, but not quite
–Where does it break?
–Answer: the v-structure at T doesn’t 

count as a link in a path unless 
“active”

Reachability

R

T

B

D

L



• Question: Are X and Y conditionally 
independent given evidence variables 
{Z}?
–Yes, if X and Y “d-separated” by Z
–Consider all (undirected) paths from X 

to Y
–No active paths = independence!

• A path is active if each triple is active:
–Causal chain A ® B ® C where B is 

unobserved (either direction)
–Common cause A ¬ B ® C where B is 

unobserved
–Common effect (aka v-structure)

A ® B ¬ C where B or one of its 
descendents is observed

• All it takes to block a path is a single 
inactive segment

Active / Inactive Paths

Active Triples Inactive Triples



•Query:

•Check all (undirected!) paths between         
and 

–If one or more active, then independence 
not guaranteed

–Otherwise (i.e. if all paths are inactive),then 
independence is guaranteed

D-Separation
?



Example

Yes R

T

B

T’



Example

R

T

B

D

L

T’

Yes

Yes

Yes



Example
• Variables:

– R: Raining; T: Traffic
– D: Roof drips; S: I’m sad

• Questions: T

S

D

R

Yes



• Given a Bayes net structure, can run 
d-separation algorithm to build a complete 
list of conditional independences that are 
necessarily true of the form

• This list determines the set of probability 
distributions that can be represented 

Structure Implications



• Given some graph 
topology G, only certain 
joint distributions can be 
encoded

• The graph structure 
guarantees certain 
(conditional) 
independences (there 
might be more 
independence)

Graph Topology Limits 
Distributions

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

X
Y

Z



• Bayes nets compactly encode joint distributions

• Guaranteed independencies of distributions can 
be deduced from BN graph structure

• D-separation gives precise conditional 
independence guarantees from graph alone

• A Bayesian network’s joint distribution may have 
further (conditional) independence that is not 
detectable until you inspect its specific 
(quantitative) distribution

Bayes Networks: Summary



‣ Examples:

‣ Posterior probability

‣ Most likely explanation:

• Inference: calculating 
some useful quantity 
from a joint probability 
distribution

Inference



• General case:
–Evidence variables: 
–Query* variable:
–Hidden variables:

Inference by Enumeration

‣ Step 1: Select the entries 
consistent with the evidence

‣ Step 2: Sum out H to get joint of 
query and evidence

‣ Step 3: Normalize



•Given unlimited time, inference 
in BNs is easy

•Reminder of inference by 
enumeration by example:

Inference by Enumeration in 
Bayes Net

B E

A

MJ



Inference by Enumeration?



• Why is inference by enumeration so slow?

– You join up the whole joint distribution before you 
sum out the hidden variables

Variable Elimination

‣ Idea: interleave joining and marginalizing

‣ Called “Variable Elimination”

‣ Still NP-hard, but usually much faster than 
inference by enumeration

‣ First we’ll need some new notation: factors



• Joint distribution: P(X,Y)
–Entries P(x,y) for all x, y
–Sums to 1

• Selected joint: P(x,Y)
–A slice of the joint distribution
–Entries P(x,y) for fixed x, all y
–Sums to P(x)

• Number of capital letters = dimensionality 
of the table

Factor Zoo I
T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

cold sun 0.2

cold rain 0.3



•Single conditional: P(Y | x)
–Entries P(y | x) for fixed x, all y
–Sums to 1

•Family of conditionals: P(X |Y)
–Multiple conditionals
–Entries P(x | y) for all x, y
–Sums to |Y|

Factor Zoo II

T W P

hot sun 0.8

hot rain 0.2

cold sun 0.4

cold rain 0.6

T W P

cold sun 0.4

cold rain 0.6



•Specified family: P( y | X )
–Entries P(y | x) for fixed y,but 
for all x

–Sums to … unknown

Factor Zoo III

T W P

hot rain 0.2

cold rain 0.6



• In general, when we write P(Y1 … 
YN | X1 … XM)

• It is a “factor,” a multi-dimensional 
array

• Its values are P(y1 … yN | x1 … xM)
•Any assigned (=lower-case) X or Y 
is a dimension missing (selected) 
from the array

Factor Zoo Summary



•Random Variables
–R: Raining
–T: Traffic
–L: Late for class

Example: Traffic Domain

T

L

R
+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9



•Track objects called factors
• Initial factors are local CPTs (one per node)

•Any known values are selected, e.g. if we 
know                   , the initial factors are:

•Procedure: Join all factors, then eliminate all 
hidden variables

Inference by Enumeration: 
Procedural Outline

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1+r 0.1

-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



• First basic operation: joining factors
• Combining factors: (just like a database join)

– Get all factors over the joining variable; Build a new 
factor over the union of the variables involved

• Example: Join on R

– Computation for each entry: pointwise products

Operation 1: Join Factors

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

T

R

R,T



Example: Multiple Joins



Example: Multiple Joins

T

R Join R

L

R, T
L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L
+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join T



•Second basic operation: 
marginalization

•Take a factor and sum out a 
variable
–Shrinks a factor to a smaller one
–A projection operation

•Example:

Operation 2: Eliminate

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886



Variable Elimination = 
Marginalizing Early



• Inference by Enumeration

Traffic Domain

T

L

R

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t

▸ Variable Elimination



Variable Elimination

Sum 
out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T
Sum 
out T



• If evidence, start with factors that select that evidence
–No evidence uses these initial factors:

–To compute                       , the initial factors become:

• Then we eliminate all variables other than query + evidence

Evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



•Result will be a selected joint of 
query and evidence
–To get our answer, just normalize —
that ’s it!

–E.g. for P(L | +r), we would end up 
with:

Evidence

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



•Query:

•Start with initial factors:
–Local CPTs (but instantiated by evidence)

•While there are still hidden variables (not Q 
or evidence):
–Pick a hidden variable H
–Join all factors mentioning H
–Eliminate (sum out) H

•Join all remaining factors and normalize

General Variable Elimination



Example

Choose A



Example

Choose E

Finish with B

Normalize



marginal can be obtained from joint by 
summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

Same Example in Equations

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



• Bayesian networks: 
– Directed acyclic graph
– Nodes are random variables
– arcs are probabilistic dependencies

• Examine dependence of two variables
given observation: d-separation

• Inference:
– Variable elimination for discrete variables

78

Summary



• Gaussian Mixture Model
• Linear Dynamical Systems
• Learning parameters for BNs

79

Next up


