291K Machine Learning

Lecture 9 Bayesian Networks

Lei Li and Yu-xiang Wang UCSB

Some slides adapted from Yexiang Xue, Pat Virtue

Recap

- Attention mechanism in neural networks
- Transformer
 - Multi-head attention
 - Positional embedding
 - Residual connection
 - Layer norm
 - Cross attention

Representing Probabilistic Dependency

- Two problems with using full joint distribution tables as probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayesian networks: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - Describe how variables locally interact; Local interactions chain together to give global, indirect interactions

Probabilistic Graphical Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful." George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Bayesian Networks: Nodes and Arcs

- Nodes: random variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Catch

Toothache

Example: Coin Flips

X_n

• N independent coin flips

*X*₂

X1

 No interactions between variables: absolute independence

• • •

Example: Rain and Traffic

- Variables:
 - R: It rains; T: There is traffic
- Model 1: independence Model 2: rain causes traffic

• Why is an agent using model 2 better?

Example: Traffic II

- Let's build a graphical model
- Variables
 - T: Traffic
 - R: It rains
 - U: Umbrella

Example: fire, smoke, alarm

- Variables:
 - Fire
 - Smoke
 - Alarm

Example: localization

• GPS data can be noisy

Example: localization

Linear dynamical systems

Example: automatic speech recognition (ASR)

- Infer spoken words from audio signals
- Hidden Markov models
- Could also be modeled using RNN/Transformer

Example: evolutionary biology

• Reconstruct a phylogenetic tree from DNA sequences of current species (Corvid-19)

Example: Insurance

Example: Car diagnosis

Bayesian Networks: Nodes and Arcs

- Nodes: random variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Catch

Toothache

Bayesian network Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- CPT: conditional probability table
- Description of a noisy "causal" process
- Directed graphical models

E OO

 $P(X|A_1\ldots A_n)$

Bayesian network = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode the joint distribution
 - As a product of local conditional distributions

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together
- Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

 Why are we guaranteed that the following results in a proper joint distribution?

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Chain rule (valid for all distributions):

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

• Assume conditional independences, from topological order: $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$

→ Consequence:

$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Not every BN can represent every joint distribution
 The topology enforces certain conditional independencies

Example: Coin Flips

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be represented by a Bayesian network with no arcs.

Example: Traffic

1 (11)	
+r	1/4
-r	3/4

D(R)

P(+r,-t) =

Example: Alarm Network

В	E	А	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

0.999

-b

-е

-a

 $P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

Example: Traffic

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

• Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- When Bayesian networks reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing), e.g. consider the variables Traffic and AirlineDelay
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure;
 Topology really encodes conditional independence

$$P(x_i|x_1,\ldots,x_{i-1}) = P(x_i|parents(X_i))$$

Bayesian Networks

- So far: how a Bayesian network encodes a joint distribution
- Inference: How to answer numerical queries regarding marginal distribution of a variable given observations
- Learning: How to estimate parameters from data
- Structure learning: how to learn graphs

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dn)
 - Space complexity O(dn) to store the joint distribution
 - Sample complexity (need many examples to estimate probabilities for full joint)
- Need new way of specifying the joint distribution!

Bayes Nets: Assumptions

- Definition of Bayes net given the graph,: $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$
- This assumes that a node is conditionally independent of other ancestors given its parents
- Often additional conditional independences, which can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graphical structure

 Consider this chain shaped Bayesian Network:

Y Ζ W

• What conditional independence structures do we have?

Independence in a BN

- Important question about a BN:
 - -Are two nodes independent given certain evidence?
 - -If yes, can prove using algebra (tedious in general). If no, can prove with a counter example
 - -Example:

- –Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)

Determining conditional independence via D-separation

• D-separation: a condition / algorithm for answering queries about independence

Causal Chains

This configuration is a "causal chain"

X: Low pressure

Z: Traffic

```
P(x, y, z) = P(x)P(y|x)P(z|y)
```

Y: Rain

Guaranteed X independent of Z ? No

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed
- Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:
 P(+y | +x) = 1, P(-y | x) = 1,
 P(+z | +y) = 1, P(-z | -y) = 1

Causal Chains

 This configuration is a "causal chain" Guaranteed X independent of Z given Y? ►

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
 Yes!

Evidence along the chain "blocks" the influence

P(x, y, z) = P(x)P(y|x)P(z|y)

X: Low pressure

Common Cause

This configuration is a "common cause"

- Guaranteed X independent of Z? No
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers: P(+x | +y) = 1, P(-x | -y) = 1,P(+z | +y) = 1, P(-z | -y) = 1

Common Cause

• This configuration is a "common cause"

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$=\frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
 Yes!

 Observing the cause blocks influence between effects
Common Effect

Last configuration: two causes of one effect (v-structure)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated (Still need to prove this from Bayes net)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation
- This is backwards from the other cases—Observing an effect activates influence between possible causes.

Conditional independence

Each node is conditionally independent of its non-descendents given its parents

Markov Blanket

Each node is conditionally independent of the rest of the graph given its Markov Blanket

*The Markov blanket of a node A in a Bayesian network is the set of nodes composed of A's parents, A's children, and A's children's other parents.

The General Case

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Reachability

R

- **Recipe**: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite

-Where does it break?

–Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - –Yes, if X and Y "d-separated" by Z
 - –Consider all (undirected) paths from X to Y
 - -No active paths = independence!
- A path is active if each triple is active:
 - -Causal chain A \rightarrow B \rightarrow C where B is unobserved (either direction)
 - –Common cause A \leftarrow B \rightarrow C where B is unobserved
 - -Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

D-Separation

- Query: $X_i \perp \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - -If one or more active, then independence not guaranteed
 - -Otherwise (i.e. if all paths are inactive), then independence is guaranteed

 $X_i \perp \!\!\!\perp X_j | \{ X_{k_1}, ..., X_{k_n} \}$

 $\begin{array}{c} R \bot B & \text{Yes} \\ R \bot B | T \\ R \bot B | T' \end{array}$

Example

B

Example

- Variables:
 - R: Raining; T: Traffic
 - D: Roof drips; S: I'm sad
- Questions:

 $T \bot D$ $T \bot D | R$ Yes $T \bot D | R, S$

Structure Implications

 Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \perp X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

• This list determines the set of probability distributions that can be represented

Graph Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be S
- The graph structure guarantees certain (conditional) independences (there might be more independence)

Bayes Networks: Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayesian network's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific (quantitative) distribution

Inference

 Inference: calculating some useful quantity from a joint probability distribution

Examples:

- Posterior probability
 - $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Most likely explanation:

 $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$

Inference by Enumeration

- General case: P(Q|e₁...e_k)

 –Evidence variables: E₁...E_k = e₁...e_k
 –Query* variable: Q
 –Hidden variables: H₁...H_r
- Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of query and evidence

Step 3: Normalize

►

Inference by Enumeration in Bayes Net

• Given unlimited time, inference in BNs is easy

Α

 Reminder of inference by enumeration by example:

 $P(B \mid +j,+m) \propto_B P(B,+j,+m)$

$$= \sum_{e,a} P(B, e, a, +j, +m)$$
$$= \sum_{e,a} P(B)P(e)P(a|B, e)P(+j|a)P(+m|a)$$

=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)

Inference by Enumeration?

 $P(Antilock | observed \ variables) = ?$

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
 - Idea: interleave joining and marginalizing

- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

First we'll need some new notation: factors

Factor Zoo I

- Joint distribution: P(X,Y)
 –Entries P(x,y) for all x, y
 - -Sums to 1
- Selected joint: P(x,Y)
 - -A slice of the joint distribution
 - -Entries P(x,y) for fixed x, all y

-Sums to P(x)

 Number of capital letters = dimensionality of the table

\boldsymbol{D}	(T	ר	W/	1
1	1	,	VV)

Т	W	Ρ
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 Sums to 1

P(W|cold)

_	Т	W	Р
	cold	sun	0.4
	cold	rain	0.6

- Family of conditionals: P(X |Y)
 - -Multiple conditionals -Entries P(x | y) for all x, y P(W|T)-Sums to |Y|

Factor Zoo III

- •Specified family: P(y | X)
 - –Entries P(y | x) for fixed y, but for all x
 - -Sums to ... unknown

P(rain|T)

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6]P(rain cold)

Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N | X_1 ... X_M)$
- It is a "factor," a multi-dimensional array
- Its values are P(y1 ... yN | X1 ... XM)
- Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

R

T

- Random Variables
 - -R: Raining
 - -T: Traffic
 - -L: Late for class

$$P(L) = ?$$

$$= \sum_{r,t} P(r,t,L)$$
$$= \sum_{r,t} P(r)P(t|r)P(L|t)$$

1 (10)		
+r	0.1	
-r	0.9	

P(R)

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

P(L|T)

+t	+	0.3
+t	-1	0.7
-t	+	0.1
-t	-1	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node) P(R)

+r	0.1
-r	0.9

P	(1)	(K)
+r	+t	0.
+r	-t	0.1
-r	+t	0.1
-r	-t	0.9

P	(R)
+r	0.1
-r	0.9

P(T R)				
+r	+t	0.8		
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		
-1 -1 0.5				

$P(+\ell T)$				
+t	+	0.3		
-t +l 0.1				

+t

+|

0.3

0.9

 Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

X

- First basic operation: joining factors
- Combining factors: (just like a database join)
 - Get all factors over the joining variable; Build a new factor over the union of the variables involved
- Example: Join on R

-Computation for each entry: pointwise products $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

Example: Multiple Joins D P(R)P(R,T)0.1 +r 0.9 R Join R Join T -r 0.08 +t +r УL 0.02 -t +r P(T|R)0.09 +t -r 0.81 -r -t T +t 0.8 +r -t 0.2 P(R,T,L)+r 0.1 +t -r -t 0.9 -r 0.024 +t +| +r L +t -1 0.056 +r -t 0.002 +| +r P(L|T)P(L|T)-t -1 0.018 +r +| 0.027 +t -r +| 0.3 0.3 +t +| +t -1 0.063 -r +t 0.7 0.7 -1 +t -1 +t 0.081 -t +| -r -t +| 0.1 -t +| 0.1 0.729 -t -1 -r -t -1 0.9 -t -1 0.9

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - -Shrinks a factor to a smaller one
 - -A projection operation
- •Example:

+r	+t	0.08	
+r	-t	0.02	
-r	+t	0.09	
-r	-t	0.81	

D(P T)

$$\underset{}{\overset{\text{sum }R}{\longrightarrow}}$$

P(T)		
+t	0.17	
-t	0.83	

Multiple Elimination

P(R,T,L)

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

P(T,L)				
+t	+	0.051		
+t	-	0.119		
-t	+	0.083		
-t	-	0.747		

T, *L*

P(L)		
+	0.134	
-1	0.886	

L

Variable Elimination = Marginalizing Early

Traffic Domain

Inference by Enumeration

Variable Elimination

Evidence

 If evidence, start with factors that select that evidence -No evidence uses these initial factors:

P(R)		P(T	R)		
+r	0.1		+r	+t	0.8
-r	0.9		+r	-t	0.2
			-r	+t	0.1
			_r	_t	00

P(I	L T)	
+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

-To compute P(L|+r)

, the initial factors become:

(T	" +	r)		P(l	L T)
r	+t	0.8		+t	+
r	-t	0.2		+t	-1
			-	-t	+
				+	1

$\Gamma(L I)$			
+t	+	0.3	
+t	-	0.7	
-t	+	0.1	
-t	-1	0.9	

Then we eliminate all variables other than query + evidence

Evidence

- Result will be a selected joint of query and evidence
 - -To get our answer, just normalize that 's it!
 - -E.g. for P(L | +r), we would end up with:

P(L	+r)
+	0.26
	0.74

General Variable Elimination

- Query: $P(Q|E_1 = e_1, ..., E_k = e_k)$
- Start with initial factors:
 Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - -Pick a hidden variable H
 - –Join all factors mentioning H
 - –Eliminate (sum out) H
- Join all remaining factors and normalize $\times \frac{1}{z}$

Example

$$P(B|j,m) \propto P(B,j,m)$$

P(B)	P(E)	P(A B,E)	P(j A)	P(m A)
------	------	----------	--------	--------

Choose A

$$P(A|B, E)$$

$$P(j|A)$$

$$P(m|A)$$

$$P(B)$$

$$P(E)$$

$$P(j, m|B, E)$$

$$P(j, m|B, E)$$
Example

Same Example in Equations

marginal can be obtained from joint by summing out $P(B|j,m) \propto P(B,j,m)$

use Bayes' net joint distribution expression

 $\begin{array}{c|c} P(B) & P(E) & P(A|B,E) \\ \textbf{USe X^*(y+z) = Xy + Xz} \end{array} \end{array} \begin{array}{c} P(j|A) & P(m|A) \end{array}$

joining on a, and the $P(B|j,m) \propto P(B,j,m)$ = $\sum_{e,a} P(B,j,m,e,a)$

use $x^{*}(y+z) = xy + x$:

joining on e, and the

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B)\sum_{e} P(e)f_1(B, e, j, m)$$

All we are doing is exploiting uwy + uwz + uxz + vwy + vwz + vxy + $v\overline{xz} = \{u(+y), \psi(+z)\}$ improve computational efficiency!

Summary

- Bayesian networks:
 - Directed acyclic graph
 - Nodes are random variables
 - arcs are probabilistic dependencies
- Examine dependence of two variables given observation: d-separation
- Inference:

– Variable elimination for discrete variables

Next up

- Gaussian Mixture Model
- Linear Dynamical Systems
- Learning parameters for BNs