#### Lecture 7 Recurrent Neural Network

#### Lei Li and Yuxiang Wang UCSB

#### Recap

- Building blocks
  - Convolution
  - Stride
  - Padding
  - Channel
  - Pooling
  - Dropout
  - Batch Norm

 Residual connection

- Data Augmentation
- Deeper is better:
  - LeNet 5 layers of CNN
  - AlexNet
  - ResNet

#### Outline

- Language Modeling
- Recurrent Neural Network
- Long-short term memory network (LSTM)
- Gated Recurrent Unit (GRU)
- Attention
- Encoder-decoder framework
- LSTM Seq2seq

#### Why Learning Recurrent Neural Networks?

- a natural and succinct model for sequence data
- explicit modelling memory
- wide applications:
  - text classification
  - text generation
  - dialog response generation
  - time series prediction

#### **Language Generation**

 Given a sentence y, estimate the probability  $P(y) = \prod P(y_{t+1} | y_1 \dots y_t)$  $p(y_6 | y_1, ..., y_5)$ t **mat** 0.15  $P(y_{t+1} | y_1 \dots y_t) = f_{\theta}(y_1, \dots, y_t)$ rug 0.13 The cat sits on a chair 0.08 Y<sub>1</sub> Y<sub>2</sub> Y<sub>3</sub> Y<sub>4</sub> Y<sub>5</sub> Y<sub>6</sub> hat 0.05 dog 0.01

#### Vocabulary

- To model P(y|x)
- Consider a ten-word sentence, chosen from common English dictionary about 5k words
  - 5000<sup>10</sup> possible sentences
  - need a table of 5000<sup>10</sup>·5000<sup>10</sup> entries, infeasible
- source and target sentences need to break into smaller units.
- Multiple ways to segment
- Language specific considerations

#### **Tokenization**

- Break sentences into tokens, basic elements of processing
- Word-level Tokenization
  - Break by space and punctuation.
  - English, French, German, Spanish

The most eager is Oregon which is enlisting 5,000 drivers in the country's biggest experiment.

- Special treatment: numbers replaced by special token [number]
- How large is the Vocabulary? Cut-off by frequency, the rest replaced by [UNK]

#### Pros and Cons of Word-level Tokenization

- Easy to implement
- Cons:
  - Out-of-vocabulary (OOV) or unknown tokens, e.g. Covid
  - Tradeoff between parameters size and unknown chances.
    - Smaller vocab => fewer parameters to learn, easier to generate (deciding one word from smaller dictionary), more OOV
    - Larger vocab => more parameters to learn, harder to generate, less OOV
  - Hard for certain languages with continuous script: Japanese, Chinese, Korean, Khmer, etc. Need separate word segmentation tool (can be neural networks)

最热切的是俄勒冈州,该州正在招募5,000名司机参与该国最大的试验。

#### **Character-level Tokenization**

- Each letter and punctuation is a token
  T h e m o s t e a g e r i s O r e g ...
  Pros:
  - Very small vocabulary (except for some languages, e.g. Chinese)
  - No Out-of-Vocabulary token
- Cons:
  - A sentence can be longer sequence
  - Tokens do not representing semantic meaning

#### **Subword-level Tokenization**

The most eager is Oregon which is en listing 5,000 drivers in the country's big g est experiment.

- moderate size vocabulary
- no OOV
- Idea:
  - represent rare words (OOV) by sequence of subwords
- Byte Pair Encoding (BPE)
  - not necessarily semantic meaningful
  - Originally for data compression

Philip Gage. A New Algorithm for Data Compression, 1994

## **Byte Pair Encoding**

- Use smallest sequence of strings to represent original string. Group frequent pair of bytes together.
- Put all characters into symbol table
- For each loop, until table reach size limit
  - count frequencies of symbol pair
  - replace most frequent pair with a new symbol, add to symbol table

#### Byte Pair Encoding (BPE) for Text Tokenization

- Initialize vocabulary with all characters as tokens (also add end-of-word symbol) and frequencies
- 2. Loop until vocabulary size reaches capacity
  - 1. Count successive pairs of tokens in corpus
  - 2. Rank and select the top frequent pair
  - 3. Combine the pair to form a new token, add to vocabulary
- 3. Output final vocabulary and tokenized corpus

Rico Sennrich et al. Neural Machine Translation of Rare Words with Subword Units. 2016

#### Example

| l, o, w, e, r, n, s, t, i, d,   | 'l o w': 5 'l o w e r': 2 'n e w e s t':<br>6 'w i d e s t': 3 |
|---------------------------------|----------------------------------------------------------------|
| l, o, w, e, r, n, s, t, i, d, , | 'l o w': 5 'l o w e r': 2 'n e w es t': 6                      |
| es                              | 'w i d es t': 3                                                |
| l, o, w, e, r, n, s, t, i, d, , | 'l o w': 5 'l o w e r': 2 'n e w est': 6                       |
| es, est                         | 'w i d est': 3                                                 |
| l, o, w, e, r, n, s, t, i, d, , | 'l o w': 5 'l o w e r': 2 'n e w est': 6                       |
| es, est, est                    | 'w i d est': 3                                                 |
| l, o, w, e, r, n, s, t, i, d, , | 'lo w': 5 'lo w e r': 2 'n e w est': 6                         |
| es, est, est, lo,               | 'w i d est': 3                                                 |
| l, o, w, e, r, n, s, t, i, d, , | 'low': 5 'low e r': 2 'n e w est': 6                           |
| es, est, est, lo, low           | 'w i d est': 3                                                 |

#### **Predict Next Token Probability**

There are many methods to predict the next token:

N-gram: assuming

$$p(x_t | x_1, ..., x_{t-1}) = p(x_t | x_{t-k}, ..., x_{t-1})$$

, and estimate it directly

• Context MLP: use DNN to estimate

$$p(x_t | x_{t-k}, \dots, x_{t-1})$$

- CNN-LM (previous lecture)
- RNN-LM, LSTM, GRU
- GPT

#### **Word and Bigram**



## Challenge of n-gram LM

- Vocabulary: V
- n-gram needs a probability table of size V<sup>n</sup>
- Common V size 30k ~ 100k
- Hard to estimate and hard to generalize
- Solution: Parameterization with generative model

$$- p(y_t | y_1, \dots, y_{t-1}; \theta) = f_{\theta}(y_1, \dots, y_{t-1})$$

 f can be a carefully designed and computationally tractable function, e.g. a neural network (later lectures).

## **CNN Language Model**



condition on the previous tokens

https://lena-voita.github.io/nlp\_course/models/convolutional.html

#### **Limitation of CNN-LM**

- CNN-LM only has a fixed-length receptive field

   probability of next token only dependent on a
   fixed-size context
- But sentences are of variable length
- How to handle sentences with variable length?
- Idea:
  - adding memory to network
  - adaptive updating memory

#### **Recurrent Memory**

- Introduce memory representation
- RNN-LM: use RNN to estimate

$$p(x_t \mid x_1, \dots, x_{t-1}) = \operatorname{softmax}(W \cdot h_t)$$

# $h_t = RNN(h_{t-1}, Emb(x_{t-1}))$

- RNN cell can be
  - Simple feedforward neural network
  - Long-short term memory
  - Gated recurrent units

#### **Recurrent Neural Network**

$$p(x_t | x_1, ..., x_{t-1}) = \operatorname{softmax}(U \cdot h_t) \qquad a \quad cat \quad sit$$

$$h_t = \sigma \left( W \cdot \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix} + b \right) \qquad \downarrow h_1 \qquad \downarrow h_2 \qquad \downarrow h_1$$

$$0 - h_1 + h_2 + h_1$$

$$0 - h_1 + h_2 + h_1$$

Elman, Finding Structure in Time. Cog. Sci. 1990.

Mikolov et al, Recurrent neural network based language model. Interspeech 2010.

on

X

h₄

e

0

## **Training RNN-LM**

- Empirical Risk:
  - Loss: cross-entropy for every next-token given prefix context
  - CE(x\_t+1, f(x\_1, ..., x\_t))
- SGD
  - Calculate gradient: Back-propogation through time (BPTT)
  - $-\nabla E_t$

#### **Back-propagation for RNN (python)**

```
def bptt(self, x, y):
 1
 2
       T = len(y)
        # Perform forward propagation
 3
 4
        o, s = self.forward_propagation(x)
 5
        # We accumulate the gradients in these variables
 6
        dLdU = np.zeros(self.U.shape)
 7
        dLdV = np.zeros(self.V.shape)
 8
        dLdW = np.zeros(self.W.shape)
 9
        delta o = o
        delta_o[np.arange(len(y)), y] = 1.
10
11
        # For each output backwards...
12
        for t in np.arange(T)[::-1]:
13
            dLdV += np.outer(delta_o[t], s[t].T)
            # Initial delta calculation: dL/dz
14
            delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
15
            # Backpropagation through time (for at most self.bptt_truncate steps)
16
17
            for bptt_step in np.arange(max(0, t-self.bptt_truncate), t+1)[::-1]:
18
                # Add to aradients at each previous step
19
                dLdW += np.outer(delta_t, s[bptt_step-1])
20
                dLdU[:,x[bptt_step]] += delta_t
21
                # Update delta for next step dL/dz at t-1
22
                delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
23
        return [dLdU, dLdV, dLdW]
```

#### **Computational Issue: Gradient Vanishing**

 tanh has derivative close to zero at both ends



Pascanu et al. On the difficulty of training recurrent neural networks. ICML 2013

## **Gradient Exploding**

- Use gradient clipping
- Two options: clip by absolute value or rescale norm
   Without clipping
   With

• if 
$$|g| > \eta$$
,  $\hat{g} \leftarrow \eta$   
• if  $|g| > \eta$ ,  $\hat{g} \leftarrow \frac{\eta}{|g|}g$ 



#### Long-Short Term Memory (LSTM)

- Replace cell with more advanced one
- Adaptively memorize short and long term information



$$\begin{split} \dot{a}_{t+1} &= \sigma(M_{ix}x_{t+1} + M_{ih}h_t + b_i) \\ f_{t+1} &= \sigma(M_{fx}x_{t+1} + M_{fh}h_t + b_f) \\ o_{t+1} &= \sigma(M_{ox}x_{t+1} + M_{oh}h_t + b_o) \end{split}$$

$$\begin{aligned} a_{t+1} &= \tanh(M_{cx}x_{t+1} + M_{ch}h_t + b_a) \\ c_{t+1} &= f_{t+1} \otimes c_t + i_{t+1} \otimes a_{t+1} \\ h_{t+1} &= o_{t+1} \otimes \tanh(c_{t+1}) \end{aligned}$$

Hochreiter & Schmidhuber. Long Short-Term Memory, 1997 Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000

## Jürgen Schmidhuber

- Many fundamental contributions in deep learning, esp. LSTM
- heavily influence deepmind through his students



#### Gated Recurrent Unit (GRU)

- Adaptively memorize short and long term information
- like LSTM, but fewer parameters



Input:  $x_t$ 

$$Memory: h_t r_{t+1} = \sigma(M_{rx}x_{t+1} + M_{rh}h_t + b_r) z_{t+1} = \sigma(M_{zx}x_{t+1} + M_{zh}h_t + b_z)$$

$$\widetilde{h}_{t+1} = \tanh(M_{hx}x_{t+1} + M_{hh}(r_{t+1} \otimes h_t) + b_h)$$

$$h_{t+1} = z_{t+1} \otimes \widetilde{h}_{t+1} + (1 - z_{t+1}) \otimes h_t$$

Cho et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. 2014

## **LSTM Language Modelling**



#### **LSTM Generation**



#### **LSTM: More layers**





#### **Expressive Power of RNN-LM**

Perplexity:  

$$PPL = P(x_1, ..., x_N)^{-\frac{1}{N}} = \exp(-\frac{1}{N}\sum_{n=1}^N \log P(x_n | x_1 ... x_{n-1}))$$

| Model                                                      | TEST PERPLEXITY | NUMBER OF PARAMS [BILLIONS] |
|------------------------------------------------------------|-----------------|-----------------------------|
| SIGMOID-RNN-2048 (JI ET AL., 2015A)                        | 68.3            | 4.1                         |
| INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) | 67.6            | 1.76                        |
| SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015)       | 52.9            | 33                          |
| RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013)    | 51.3            | 20                          |
|                                                            | ~               | 0.00                        |
| LSTM-512-512                                               | 54.1            | 0.82                        |
| LSTM-1024-512                                              | 48.2            | 0.82                        |
| LSTM-2048-512                                              | 43.7            | 0.83                        |
| LSTM-8192-2048 (No Dropout)                                | 37.9            | 3.3                         |
| LSTM-8192-2048 (50% DROPOUT)                               | 32.2            | 3.3                         |
| 2-LAYER LSTM-8192-1024 (BIG LSTM)                          | 30.6            | 1.8                         |
| BIG LSTM+CNN INPUTS                                        | 30.0            | 1.04                        |
| BIG LSTM+CNN INPUTS + CNN SOFTMAX                          | 39.8            | 0.29                        |
| BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION     | 35.8            | 0.39                        |
| BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS                | 47.9            | 0.23                        |

Jozefowicz et al. Exploring the limits of language modelling, 2016 <sup>31</sup>

## **Sequence Labelling**

#### **Understanding Query Intention**

Noodle house near Santa Barbara [Keyword] [Location]

How to go from <u>Santa Barbara</u> to <u>Log Angeles</u> ? [Origin] [Destination]



Sequence Labelling

#### Named entity recognition

date Location In <u>April 1775</u> fighting broke out between <u>Massachusetts</u> militia units and <u>British</u> regulars at <u>Lexington</u> and <u>Concord</u>. <u>Geo-Political</u>

#### **Sequence Labelling**

- Named entity recognition In April 1775 fighting broke out between Massachusetts militia units and British regulars at Lexington and Concord.
- Semantic role labeling

The excess supply pushed gasoline prices down in that period . subject verb object

• Question Answering: subject parsing Who created Harry Potter ?

#### **Represent the Output Labels**

• BIO scheme

O O B-GPE I-GPE O B-PER I-PER O The governor of Santa Barbara is Cathy Murillo . 1640 897 45 1890 78 943 3521 782 533

#### **RNN/LSTM for Sequence Labelling**



37

#### **Bi-LSTM**



#### Sequence Labelling using LSTM (Pytorch)

class LSTMTagger(nn.Module):

def \_\_init\_\_(self, embedding\_dim, hidden\_dim, vocab\_size, tagset\_size):
 super(LSTMTagger, self).\_\_init\_\_()
 self.hidden\_dim = hidden\_dim

self.word\_embeddings = nn.Embedding(vocab\_size, embedding\_dim)

# The LSTM takes word embeddings as inputs, and outputs hidden states # with dimensionality hidden\_dim. self.lstm = nn.LSTM(embedding dim, hidden dim)

# The linear layer that maps from hidden state space to tag space self.hidden2tag = nn.Linear(hidden\_dim, tagset\_size)

```
def forward(self, sentence):
    embeds = self.word_embeddings(sentence)
    lstm_out, _ = self.lstm(embeds.view(len(sentence), 1, -1))
    tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
    tag_scores = F.log_softmax(tag_space, dim=1)
    return tag_scores
```

#### **Training in Pytorch**

```
model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
# See what the scores are before training
# Note that element i, j of the output is the score for tag j for word i.
# Here we don't need to train, so the code is wrapped in torch.no grad()
with torch.no grad():
    inputs = prepare_sequence(training_data[0][0], word_to_ix)
    tag scores = model(inputs)
    print(tag_scores)
for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
    for sentence, tags in training data:
        # Step 1. Remember that Pytorch accumulates gradients.
        # We need to clear them out before each instance
        model.zero grad()
        # Step 2. Get our inputs ready for the network, that is, turn them into
        # Tensors of word indices.
        sentence_in = prepare_sequence(sentence, word_to_ix)
        targets = prepare sequence(tags, tag to ix)
        # Step 3. Run our forward pass.
        tag scores = model(sentence in)
        # Step 4. Compute the loss, gradients, and update the parameters by
        # calling optimizer.step()
        loss = loss function(tag scores, targets)
        loss.backward()
        optimizer.step()
```

#### **Testing in Pytorch**

# See what the scores are after training
with torch.no\_grad():
 inputs = prepare\_sequence(training\_data[0][0], word\_to\_ix)
 tag\_scores = model(inputs)

#### **Better Loss Function (advanced)**

Loss using Conditional Random Fields

$$-\log(P(\mathbf{y} | \mathbf{X})) = -\log\left(\frac{\exp\left(\sum_{k=1}^{\ell} U(\mathbf{x}_{k}, y_{k}) + \sum_{k=1}^{\ell-1} T(y_{k}, y_{k+1})\right)}{Z(\mathbf{X})}\right)$$
$$= \log\left(Z(\mathbf{X})\right) - \log\left(\exp\left(\sum_{k=1}^{\ell} U(\mathbf{x}_{k}, y_{k}) + \sum_{k=1}^{\ell-1} T(y_{k}, y_{k+1})\right)\right)$$
$$= \log\left(Z(\mathbf{X})\right) - \left(\sum_{k=1}^{\ell} U(\mathbf{x}_{k}, y_{k}) + \sum_{k=1}^{\ell-1} T(y_{k}, y_{k+1})\right)$$
$$= Z_{\log}(\mathbf{X}) - \left(\sum_{k=1}^{\ell} U(\mathbf{x}_{k}, y_{k}) + \sum_{k=1}^{\ell-1} T(y_{k}, y_{k+1})\right)$$

will revisit in graphical models lecture

#### **Encoder-decoder framework**



A generic formulation ImageCaption Text-to-Image Generation ASR (speech-to-text) MT (text-to-text)

#### Sequence To Sequence (Seq2seq)

 Machine translation as directly learning a function mapping from source sequence to target sequence



Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

#### Sequence To Sequence (Seq2seq)

 Machine translation as directly learning a function mapping from source sequence to target sequence



$$P(Y|X) = \prod P(y_t|y_{< t}, x)$$

Training loss: Cross-Entropy

$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_{n}, y_{n,1}, \dots, y_{n,t-1})$$

Teacher-forcing during training.

(pretend to know groundtruth for prefix)

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

#### Performance (2014)



Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014 Durrani et al. Edinburgh's Phrase-based Machine Translation Systems for WMT-14. 201

#### Stacked LSTM for seq-2-seq

• More layers of LSTM



#### **LSTM Seq2seq with Attention**



Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate 2015

#### **Generation by Attention**



Mnih et al. Recurrent Models of Visual Attention. 2014.



#### **Autoregressive Generation**

## greedy decoding: output the token with max next token prob



#### But, this is not necessary the best

#### Inference

- Now already trained a model  $\theta$
- Decoding/Generation: Given an input sentence x, to generate the target sentence y that maximize the probability  $P(y | x; \theta)$

$$\operatorname{argmax}_{y} P(y | x) = f_{\theta}(x, y)$$

- Two types of error
  - the most probable translation is bad  $\rightarrow$  fix the model
  - search does not find the most probably translation  $\rightarrow$  fix the search
- Most probable translation is not necessary the highest BLEU one!

## Decoding

• 
$$\underset{y}{\operatorname{argmax}} P(y | x) = f_{\theta}(x, y)$$

- naive solution: exhaustive search
  - too expensive
- Beam search
  - (approximate) dynamic programming

#### **Beam Search**

- start with empty S
- at each step, keep k best partial sequences
- expand them with one more forward generation
- collect new partial results and keep top-k

#### Beam Search (pseudocode)

```
best_scores = []
add \{[0], 0.0\} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length:
 new_seqs = PriorityQueue()
  for (candidate, s) in best_scores:
    if candidate[-1] is EOS:
        prob = all - inf
        prob[EOS] = 0
      else:
      prob = using model to take candidate and compute next token
probabilities (logp)
    pick top k scores from prob, and their index
    for each score, index in the top-k of prob:
      new_candidate = candidate.append(index)
      new score = s + score
      if not new_seqs.full():
```

#### **Beam Search**



#### Seq2seq for Machine Translation

# Many possible translation, which is better?

SpaceX周三晚间进行了一次发射任务,将四名毫无航天经验 的业余人士送入太空轨道。

SpaceX launched a mission Wednesday night to put four amateurs with no space experience into orbit.

SpaceX conducted a launch mission on Wednesday night, sending four amateurs with no aerospace experience into space orbit.

SpaceX conducted a launch mission Wednesday night that sent four amateurs with no spaceflight experience into orbit. SpaceX carried out a launch mission on Wednesday night to put four amateurs without Aerospace experience into orbit.

#### BLEU

- Measuring the precision of n-grams
  - Precision of n-gram: percentage of tokens in output sentences

 $p_n = \frac{num.of.correct.token.ngram}{total.output.ngram}$ 

- Penalize for brevity
  - if output is too short

$$-bp = min(1, e^{1-r/c})$$

- BLEU= $bp \cdot (\prod p_i)^{\frac{1}{4}}$
- Notice BLEU is computed over the whole corpus, not on one sentence



Ref: A SpaceX rocket was launched into a space orbit Wednesday evening.

- System A: SpaceX launched a mission Wednesday evening into a space orbit.
- System B: A rocket sent SpaceX into orbit Wednesday.



Ref: A SpaceX rocket was launched into a space orbit Wednesday evening.

System A: SpaceX launched a mission Wednesday evening into a space orbit.

|           | Precision     | bp=e <sup>1-12/11</sup> =0.91                      |
|-----------|---------------|----------------------------------------------------|
| Unigram   | 9/11 <b> </b> | BLEU=0.91*(9/11 * 4/10 * 2/9 * 1/8) <sup>1/4</sup> |
| Bigram    | 4/10          | =28.1%                                             |
| Trigram   | 2/9           |                                                    |
| Four-gram | 1/8           | 61                                                 |

## LSTM Seq2Seq for NMT

 Machine translation as directly learning a function mapping from source sequence to target sequence



Source:天气很好 Decoder: LSTM

$$P(Y|X) = \prod P(y_t|y_{< t}, x)$$

Training loss: Cross-Entropy

$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_{n}, y_{n,1}, \dots, y_{n,t-1})$$

Teacher-forcing during training.

(pretend to know groundtruth for prefix)

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

## LSTM Seq2Seq w/ Attention



Jean et al. On Using Very Large Target Vocabulary for Neural Machine Translation. 2015

#### **Performance with Model Ensemble**



Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

#### Summary

- Recurrent Neural Network
- Long-short term memory
- Gated recurrent units
- Attention between decoder and encoder
- Sequence Labelling with LSTM
- LSTM seq2seq for Machine Translation

#### **Video Cover Selection**

- Your manager assigns a task for you: build a system to automatically select the cover photo for a short video on Tiktok
- Please discuss in groups how you plan to build the system

#### Next up

- Transformer
- What story you'd like to hear about?
  - A robot writer that can write Olympic sport news, or
  - Lessons learned in building real MT product, or
  - an 8-week journey to develop AI component for map product