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• Building blocks  
– Convolution 
– Stride 
– Padding 
– Channel 
– Pooling 
– Dropout 
– Batch Norm 

– Residual 
connection 

• Data Augmentation 
• Deeper is better:  

• LeNet 5 layers of 
CNN 

• AlexNet 
• ResNet
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Recap



• Language Modeling  
• Recurrent Neural Network 
• Long-short term memory network (LSTM) 
• Gated Recurrent Unit (GRU) 
• Attention 
• Encoder-decoder framework 
• LSTM Seq2seq
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Outline



• a natural and succinct model for sequence 
data 

• explicit modelling memory 
• wide applications: 

– text classification 
– text generation 
– dialog response generation 
– time series prediction
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Why Learning Recurrent Neural 
Networks?



• Given a sentence y, estimate the 
probability 

 P(y) = ∏
t

P(yt+1 |y1…yt)

P(yt+1 |y1…yt) = fθ(y1, …, yt)
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Language Generation

The  cat  sits  on   a   __ 
 y1       y2       y3       y4    y5    y6  

mat 
rug 
chair 
hat 
dog 

0.15 
0.13 
0.08 
0.05 
0.01 

p(y6 |y1, …, y5)



• To model P(y|x) 
• Consider a ten-word sentence, chosen from 

common English dictionary about 5k words 
– 500010 possible sentences 
– need a table of 500010·500010 entries, infeasible 

• source and target sentences need to break 
into smaller units.  

• Multiple ways to segment 
• Language specific considerations
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Vocabulary



• Break sentences into tokens, basic elements of 
processing 

• Word-level Tokenization 
– Break by space and punctuation. 
– English, French, German, Spanish 

– Special treatment: numbers replaced by special 
token [number] 

– How large is the Vocabulary? Cut-off by frequency, 
the rest replaced by [UNK]
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Tokenization

The  most  eager  is  Oregon  which  is  enlisting  5,000  drivers  in  the  country’s  biggest  experiment. 



• Easy to implement 
• Cons: 

– Out-of-vocabulary (OOV) or unknown tokens, e.g. Covid 
– Tradeoff between parameters size and unknown chances.  

‣ Smaller vocab => fewer parameters to learn, easier to generate 
(deciding one word from smaller dictionary), more OOV 

‣ Larger vocab => more parameters to learn, harder to generate, 
less OOV 

– Hard for certain languages with continuous script: 
Japanese, Chinese, Korean, Khmer, etc. Need separate 
word segmentation tool (can be neural networks)
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Pros and Cons of Word-level 
Tokenization

最热切的是俄勒冈州，该州正在招募 5,000 名司机参与该国最⼤的试验。



• Each letter and punctuation is a token 
• Pros: 

– Very small vocabulary (except for some 
languages, e.g. Chinese) 

– No Out-of-Vocabulary token 
• Cons: 

– A sentence can be longer sequence 
– Tokens do not representing semantic meaning
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Character-level Tokenization

T h e m o s t e a g e r i s O r e g …



• Goal: 
– moderate size vocabulary 
– no OOV 

• Idea:  
– represent rare words (OOV) by sequence of 

subwords 
• Byte Pair Encoding (BPE) 

– not necessarily semantic meaningful 
– Originally for data compression
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Subword-level Tokenization
The  most  eager  is  Oregon  which  is  en listing  5,000  driver s  in  the  country ’s  big g est  experiment. 

Philip Gage. A New Algorithm for Data Compression, 1994



• Use smallest sequence of 
strings to represent original 
string. Group frequent pair 
of bytes together. 

• Put all characters into 
symbol table 

• For each loop, until 
table reach size limit 

– count frequencies of 
symbol pair 

– replace most frequent 
pair with a new symbol, 
add to symbol table
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Byte Pair Encoding



1. Initialize vocabulary with all characters as 
tokens (also add end-of-word symbol) and 
frequencies 

2. Loop until vocabulary size reaches capacity 
1. Count successive pairs of tokens in corpus 
2. Rank and select the top frequent pair 
3. Combine the pair to form a new token, add to 

vocabulary 
3. Output final vocabulary and tokenized corpus
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Byte Pair Encoding (BPE) for Text 
Tokenization

Rico Sennrich et al. Neural Machine Translation of Rare Words with Subword Units. 2016
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Example

l, o, w, e, r, n, s, t, i, d, </w> ‘l o w</w>’ : 5   ‘l o w e r</w>’ : 2   ’n e w e s t</w>’ : 
6    ‘w i d e s t</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>, 
es

‘l o w</w>’ : 5   ‘l o w e r</w>’ : 2   ’n e w es t</w>’ : 6    
‘w i d es t</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>, 
es, est

‘l o w</w>’ : 5   ‘l o w e r</w>’ : 2   ’n e w est</w>’ : 6    
‘w i d est</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>, 
es, est, est</w>

‘l o w</w>’ : 5   ‘l o w e r</w>’ : 2   ’n e w est</w>’ : 6    
‘w i d est</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>, 
es, est, est</w>, lo, 

‘lo w</w>’ : 5   ‘lo w e r</w>’ : 2   ’n e w est</w>’ : 6    
‘w i d est</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>, 
es, est, est</w>, lo, low

‘low</w>’ : 5   ‘low e r</w>’ : 2   ’n e w est</w>’ : 6    
‘w i d est</w>’ : 3



There are many methods to predict the next token: 
• N-gram: assuming 

, and estimate it directly 
• Context MLP: use DNN to estimate 

 

• CNN-LM (previous lecture)  
• RNN-LM, LSTM, GRU 
• GPT

𝑝(𝑥𝑡 𝑥1, …,  𝑥𝑡−1) = 𝑝(𝑥𝑡 𝑥𝑡−𝑘, …,  𝑥𝑡−1)

𝑝(𝑥𝑡 𝑥𝑡−𝑘, …,  𝑥𝑡−1)
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Predict Next Token Probability
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Word and Bigram

the

and

in

was

on

he

that

it

his

by

0% 1.5% 3% 4.5% 6%

Statistics from English Wikipedia and books 

first united the a be

the 0.014 0.006

of 0.283 0.030

would 0.191

with 0.187 0.122

cond. prob. p(x2|x1)



• Vocabulary: V 
• n-gram needs a probability table of size Vn 

• Common V size 30k ~ 100k 
• Hard to estimate and hard to generalize 
• Solution: Parameterization with generative 

model 
–  
– f can be a carefully designed and computationally 

tractable function, e.g. a neural network (later 
lectures). 

p(yt |y1, ⋯, yt−1; θ) = fθ(y1, ⋯, yt−1)
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Challenge of n-gram LM
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CNN Language Model

https://lena-voita.github.io/nlp_course/models/convolutional.html

P(yt+1 |y1, …, yt) ≈ CNNθ(yt−k, …, yt) But,  
limited context



• CNN-LM only has a fixed-length receptive field 
– probability of next token only dependent on a 

fixed-size context 
• But sentences are of variable length 
• How to handle sentences with variable length? 
• Idea: 

– adding memory to network 
– adaptive updating memory
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Limitation of CNN-LM



• Introduce memory representation 
• RNN-LM: use RNN to estimate 

 

    

• RNN cell can be
• Simple feedforward neural network
• Long-short term memory
• Gated recurrent units

𝑝(𝑥𝑡 𝑥1, …,  𝑥𝑡−1) = soVmax(𝑊 ⋅ h𝑡)

h𝑡 = 𝑅𝑁𝑁(h𝑡−1,  𝐸𝑚𝑏(𝑥𝑡−1))
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Recurrent Memory
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Recurrent Neural Network

0 h1

_

x1

  a      cat   sits    on 。。

h2

e
1

x2

h3

e
2

x3

h4

e
3

x4

𝑝(𝑥𝑡 𝑥1, …,  𝑥𝑡−1) = softmax(U ⋅ h𝑡)

ht = σ (W ⋅ [ht−1
xt ] + b)

Mikolov et al, Recurrent neural network based language model. Interspeech 2010.
Elman, Finding Structure in Time. Cog. Sci. 1990.



• Empirical Risk: 
– Loss: cross-entropy for every next-token given 

prefix context 
– CE(x_t+1, f(x_1, …, x_t)) 

• SGD 
– Calculate gradient: Back-propogation through 

time (BPTT) 

– ∇Et
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Training RNN-LM



 1  def bptt(self, x, y):
 2      T = len(y)
 3      # Perform forward propagation
 4      o, s = self.forward_propagation(x)
 5      # We accumulate the gradients in these variables
 6      dLdU = np.zeros(self.U.shape)
 7      dLdV = np.zeros(self.V.shape)
 8      dLdW = np.zeros(self.W.shape)
 9      delta_o = o
10      delta_o[np.arange(len(y)), y] -= 1.
11      # For each output backwards...
12      for t in np.arange(T)[::-1]:
13          dLdV += np.outer(delta_o[t], s[t].T)
14          # Initial delta calculation: dL/dz
15          delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
16          # Backpropagation through time (for at most self.bptt_truncate steps)
17          for bptt_step in np.arange(max(0, t-self.bptt_truncate), t+1)[::-1]:
18              # Add to gradients at each previous step
19              dLdW += np.outer(delta_t, s[bptt_step-1])              
20              dLdU[:,x[bptt_step]] += delta_t
21              # Update delta for next step dL/dz at t-1
22              delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
23      return [dLdU, dLdV, dLdW]
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Back-propagation for RNN (python)



• tanh has derivative close to zero at both 
ends
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Computational Issue: Gradient Vanishing

Pascanu et al. On the difficulty of training recurrent neural networks. ICML 2013



• Use gradient clipping 
• Two options: clip by absolute value or 

rescale norm 
• if ,  

• if , 

|g | > η ̂g ← η
|g | > η ̂g ←

η
|g |

g
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Gradient Exploding



• Replace cell with more advanced one 
• Adaptively memorize short and long term 

information
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Long-Short Term Memory (LSTM)

h𝑡 𝑖𝑡+1 = 𝜎(𝑀𝑖𝑥𝑥𝑡+1 + 𝑀𝑖hh𝑡 + 𝑏𝑖)

𝑜𝑡+1 = 𝜎(𝑀𝑜𝑥𝑥𝑡+1 + 𝑀𝑜hh𝑡 + 𝑏𝑜)

𝑐𝑡+1 = 𝒇𝒕+𝟏 ⊗ 𝒄𝒕 + 𝑖𝑡+1 ⊗ 𝑎𝑡+1

𝑎𝑡+1 = tanh(𝑀𝑐𝑥𝑥𝑡+1 + 𝑀𝑐hh𝑡 + 𝑏𝑎)

h𝑡+1 = 𝑜𝑡+1 ⊗ tanh(𝑐𝑡+1)

𝑓𝑡+1 = 𝜎(𝑀𝑓𝑥𝑥𝑡+1 + 𝑀𝑓hh𝑡 + 𝑏𝑓)
𝑜𝑡+1

𝑓𝑡+1

𝑖𝑡+1

h𝑡

𝑥𝑡+1 h𝑡+1

h𝑡𝑥𝑡+1 𝑥𝑡+1

h𝑡 𝑥𝑡+1

Forget Gate

Output GateInput Gate

Memory Cell

𝑐𝑡𝑐𝑡+1

Hochreiter & Schmidhuber. Long Short-Term Memory, 1997
Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000



• Many 
fundamental 
contributions in 
deep learning, 
esp. LSTM 

• heavily influence 
deepmind through 
his students
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Jürgen Schmidhuber



• Adaptively memorize short and long term 
information 

• like LSTM, but fewer parameters
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Gated Recurrent Unit (GRU)

𝑧𝑡+1

𝑟𝑡+1

h𝑡

𝑥𝑡+1 h𝑡+1

h𝑡 𝑥𝑡+1

Update Gate

Reset Gate

h𝑡

~h𝑡+1

𝑧𝑡+11−

𝑧𝑡+1

Input:  
Memory: 

𝑥𝑡
h𝑡𝑟𝑡+1 = 𝜎(𝑀𝑟𝑥𝑥𝑡+1 + 𝑀𝑟hh𝑡 + 𝑏𝑟)

~h𝑡+1 = tanh(𝑀h𝑥𝑥𝑡+1 + 𝑀hh(𝑟𝑡+1 ⊗ h𝑡) + 𝑏h)

h𝑡+1 = 𝑧𝑡+1 ⊗ ~h𝑡+1 + (𝟏 − 𝒛𝒕+𝟏) ⊗ 𝒉𝒕

𝑧𝑡+1 = 𝜎(𝑀𝑧𝑥𝑥𝑡+1 + 𝑀𝑧hh𝑡 + 𝑏𝑧)

h𝑡𝑥𝑡+1

Cho et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical 
Machine Translation. 2014
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LSTM Language Modelling

[BOS]    A      cat     sits    on      a 

A      cat     sits    on      a      mat   .

Embedding

LSTM

Linear

Softmax
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LSTM Generation

[BOS]    A      cat     sits    on      a 

A      cat     sits    on      a      mat   .

Embedding

LSTM

Linear

Softmax
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LSTM: More layers

LSTM

Linear

Softmax

Embedding

LSTM

A      cat     sits    on      a      mat   .

[BOS]    A      cat     sits    on      a 
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Expressive Power of RNN-LM

Jozefowicz et al. Exploring the limits of language modelling, 2016 

Perplexity: 

PPL = P(x1, …, xN)− 1
N = exp(−

1
N

N

∑
n=1

log P(xn |x1…xn−1))



Sequence Labelling
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Understanding Query Intention

How to go from Santa Barbara to Log Angeles ?

Noodle house near Santa Barbara
[Keyword] [Location]

[Origin] [Destination]

Sequence Labelling
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Named entity recognition

In April 1775 fighting broke out between Massachusetts 
militia units and British regulars at Lexington and Concord .

date Location

Geo-Political



• Named entity recognition 

• Semantic role labeling 

• Question Answering: subject parsing
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Sequence Labelling

In April 1775 fighting broke out between 
Massachusetts militia units and British regulars at 
Lexington and Concord .

Who created Harry Potter ?

The excess supply pushed gasoline prices down in that period .
verbsubject object



• BIO scheme
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Represent the Output Labels

The  governor of Santa Barbara is Cathy Murillo . 
1640  897       45  1890      78   943  3521  782  533

   O      O      O  B-GPE I-GPE O  B-PER I-PER O
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RNN/LSTM for Sequence Labelling

The  governor of Santa Barbara is Cathy Murillo . 
1640  897       45  1890      78   943  3521  782  533

Embedding

LSTM

   O      O      O  B-GPE I-GPE O  B-PER I-PER O

LSTM

Linear
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Bi-LSTM

The  governor of Santa Barbara is   Cathy  Murillo   . 
1640  897       45  1890      78   943  3521    782    533

Embedding

   O      O       O   B-GPE I-GPE  O   B-PER I-PER   O

LSTM

LSTM

Linear



class LSTMTagger(nn.Module): 

    def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size): 
        super(LSTMTagger, self).__init__() 
        self.hidden_dim = hidden_dim 

        self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) 

        # The LSTM takes word embeddings as inputs, and outputs hidden states 
        # with dimensionality hidden_dim. 
        self.lstm = nn.LSTM(embedding_dim, hidden_dim) 

        # The linear layer that maps from hidden state space to tag space 
        self.hidden2tag = nn.Linear(hidden_dim, tagset_size) 

    def forward(self, sentence): 
        embeds = self.word_embeddings(sentence) 
        lstm_out, _ = self.lstm(embeds.view(len(sentence), 1, -1)) 
        tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1)) 
        tag_scores = F.log_softmax(tag_space, dim=1) 
        return tag_scores 
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Sequence Labelling using LSTM 
(Pytorch)



model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix)) 
loss_function = nn.NLLLoss() 
optimizer = optim.SGD(model.parameters(), lr=0.1) 

# See what the scores are before training 
# Note that element i,j of the output is the score for tag j for word i. 
# Here we don't need to train, so the code is wrapped in torch.no_grad() 
with torch.no_grad(): 
    inputs = prepare_sequence(training_data[0][0], word_to_ix) 
    tag_scores = model(inputs) 
    print(tag_scores) 

for epoch in range(300):  # again, normally you would NOT do 300 epochs, it is toy data 
    for sentence, tags in training_data: 
        # Step 1. Remember that Pytorch accumulates gradients. 
        # We need to clear them out before each instance 
        model.zero_grad() 

        # Step 2. Get our inputs ready for the network, that is, turn them into 
        # Tensors of word indices. 
        sentence_in = prepare_sequence(sentence, word_to_ix) 
        targets = prepare_sequence(tags, tag_to_ix) 

        # Step 3. Run our forward pass. 
        tag_scores = model(sentence_in) 

        # Step 4. Compute the loss, gradients, and update the parameters by 
        #  calling optimizer.step() 
        loss = loss_function(tag_scores, targets) 
        loss.backward() 
        optimizer.step() 
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Training in Pytorch



# See what the scores are after training 
with torch.no_grad(): 
    inputs = prepare_sequence(training_data[0][0], word_to_ix) 
    tag_scores = model(inputs) 
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Testing in Pytorch



• Loss using Conditional Random Fields

42

Better Loss Function (advanced)

will revisit in graphical models lecture
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Encoder-decoder framework

Encoder

Decoder

input

output A generic formulation 
ImageCaption 

Text-to-Image Generation 
ASR (speech-to-text) 

MT (text-to-text) 



• Machine translation as directly learning a 
function mapping from source sequence to 
target sequence
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Sequence To Sequence (Seq2seq)

h1 h2 h3 h4

ea eb ec ed
_ ex ey ez

t1 t2 t3 t4
Encoder: LSTM

Decoder:  LSTMSource: 天     ⽓     
很     好

target:    
The weather is   nice

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014



• Machine translation as directly learning a 
function mapping from source sequence to 
target sequence

45

Sequence To Sequence (Seq2seq)

h1 h2 h3 h4

ea eb ec ed
_ ex ey ez

t1 t2 t3 t4
Encoder: LSTM

Decoder:  LSTMSource: 天     ⽓     
很     好

target:    
The weather is   nice

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

 

Training loss: Cross-Entropy 

 

Teacher-forcing during training. 
(pretend to know groundtruth for prefix)

P(Y |X) = ∏P(yt |y<t, x)

l = − ∑
n

∑
t

log fθ(xn, yn,1, …, yn,t−1)
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Performance (2014)

0

9.5

19

28.5

38

En-Fr

37.5
33.1

30.6

37.03
33.3

SMT (moses) SMT (Buck 2014)
LSTM S2S (2014) LSTM - UNK replace
LSTM ensemble

WMT14
Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Durrani et al. Edinburgh’s Phrase-based Machine Translation Systems for WMT-14. 2014



• More layers of LSTM

47

Stacked LSTM for seq-2-seq



48

LSTM Seq2seq with Attention

天 ⽓ 很 好 [BOS] Weather

is        niceWeather

Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate. 
2015



A context vector c will be predicted before, 
which represents the related source context for 
current predicted word. 








The probability of word y_i is computed as: 

αnj = Softmax(D(sn, h1…n−1)) =
exp(D(sn, hj))

∑k exp(D(sn, hk)
cn = ∑

j

αnjhj
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Generation by Attention

_

Y

0.
6

0.
2

0.
1

0.
1

context 
vector

e
d

e
a

e
b

e
c

ex

Mnih et al. Recurrent Models of Visual Attention. 2014.



Decoding
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Autoregressive Generation

Encode Encode EncodeEncode

我  喜  欢  唱  歌 和 <BO

Decod

Softma

y1

y1

Decod

Softma

y2

y2

Decod

Softma

y3
I Iike singing

I Iike

<EOS>

But, this is not necessary the best

greedy decoding: output the token with max 
next token prob



• Now already trained a model  
• Decoding/Generation: Given an input sentence x, to 

generate the target sentence y that maximize the 
probability  

•  

• Two types of error 
– the most probable translation is bad → fix the model 
– search does not find the most probably translation → fix the 

search 
• Most probable translation is not necessary the highest 

BLEU one!

θ

P(y |x; θ)
argmax

y
P(y |x) = fθ(x, y)
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Inference



•  

• naive solution: exhaustive search 
– too expensive 

• Beam search 
– (approximate) dynamic programming

argmax
y

P(y |x) = fθ(x, y)

53

Decoding



• start with empty S  
• at each step, keep k best partial 

sequences 
• expand them with one more forward 

generation 
• collect new partial results and keep top-k
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Beam Search



best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length: 
  new_seqs = PriorityQueue()
  for (candidate, s) in best_scores:
    if candidate[-1] is EOS:

      prob = all -inf 
      prob[EOS] = 0
    else: 

      prob = using model to take candidate and compute next token 
probabilities (logp)
    pick top k scores from prob, and their index 
    for each score, index in the top-k of prob:
      new_candidate = candidate.append(index)
      new_score = s + score
      if not new_seqs.full():

55

Beam Search (pseudocode)
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Beam Search

<BOS>

I 0.4

We 0.3

He 0.1

She 0.1

They 0.01

like 0.4
love 0.4
am 0.1
hate 0.01
want 0.01

I 0.4 
We 0.3

like 0.4
do 0.3
are 0.2
can 0.01
say 0.01

I like 0.16 

I love 0.16

We like 0.12 

We do 0.09

I like 0.16 
I love 0.16

singing 0.6

song 0.2
shoutin

g 0.01

going 0.01

dancing 0.01

singing 0.5
dancing 0.3

you 0.11
going 0.01

it 0.01

I like singing 0.096 

I like song 0.032

I love singing 0.08 

I love dancing 0.048

forward by 
network top-k

forward by 
network

forward by 
network

top-k

forward by 
network

forward by 
network

top-k



Seq2seq for Machine 
Translation



SpaceX周三晚间进⾏了⼀次发射任务，将四名毫⽆航天经验
的业余⼈⼠送⼊太空轨道。 
SpaceX launched a mission Wednesday night to put four 
amateurs with no space experience into orbit. 
SpaceX conducted a launch mission on Wednesday night, 
sending four amateurs with no aerospace experience into 
space orbit. 
SpaceX conducted a launch mission Wednesday night that 
sent four amateurs with no spaceflight experience into orbit. 
SpaceX carried out a launch mission on Wednesday night to 
put four amateurs without Aerospace experience into orbit.
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Many possible translation, which is 
better?



• Measuring the precision of n-grams 
– Precision of n-gram: percentage of tokens in output 

sentences 

–  

• Penalize for brevity 
– if output is too short 
–  

• BLEU=  

• Notice BLEU is computed over the whole corpus, not on 
one sentence

pn =
num . of . correct . token . ngram

total . output . ngram

bp = min(1,e1−r/c)
bp ⋅ (∏pi)

1
4
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BLEU



Ref: A SpaceX rocket was launched into a 
space orbit Wednesday evening. 
System A: SpaceX launched a mission 
Wednesday evening into a space orbit. 
System B: A rocket sent SpaceX into orbit 
Wednesday.
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Example



Ref: A SpaceX rocket was launched into a 
space orbit Wednesday evening. 
System A: SpaceX launched a mission 
Wednesday evening into a space orbit. 
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Example

Precision

Unigram 9/11

Bigram 4/10

Trigram 2/9

Four-gram 1/8

bp=e1-12/11=0.91 
BLEU=0.91*(9/11 * 4/10 * 2/9 * 1/8)1/4 

=28.1%



• Machine translation as directly learning a 
function mapping from source sequence to 
target sequence
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LSTM Seq2Seq for NMT

h1 h2 h3 h4

ea eb ec ed
_ ex ey ez

t1 t2 t3 t4
Encoder: LSTM

Decoder:  LSTMSource: 天  ⽓ 很  好

target:    
The weather is   nice

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

 

Training loss: Cross-Entropy 

 

Teacher-forcing during training. 
(pretend to know groundtruth for prefix)

P(Y |X) = ∏P(yt |y<t, x)

l = − ∑
n

∑
t

log fθ(xn, yn,1, …, yn,t−1)
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LSTM Seq2Seq w/ Attention
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Performance with Model Ensemble
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• Recurrent Neural Network 
• Long-short term memory 
• Gated recurrent units 
• Attention between decoder and encoder 
• Sequence Labelling with LSTM 
• LSTM seq2seq for Machine Translation
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Summary



• Your manager assigns a task for you: build 
a system to automatically select the cover 
photo for a short video on Tiktok 

• Please discuss in groups how you plan to 
build the system
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Video Cover Selection



• Transformer 
• What story you’d like to hear about? 

– A robot writer that can write Olympic sport 
news, or 

– Lessons learned in building real MT product, 
or 

– an 8-week journey to develop AI component 
for map product
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Next up


