
Lecture 7
Recurrent Neural Network

Lei Li and Yuxiang Wang
UCSB

1

• Building blocks
– Convolution
– Stride
– Padding
– Channel
– Pooling
– Dropout
– Batch Norm

– Residual
connection

• Data Augmentation
• Deeper is better:

• LeNet 5 layers of
CNN

• AlexNet
• ResNet

2

Recap

• Language Modeling
• Recurrent Neural Network
• Long-short term memory network (LSTM)
• Gated Recurrent Unit (GRU)
• Attention
• Encoder-decoder framework
• LSTM Seq2seq

3

Outline

• a natural and succinct model for sequence
data

• explicit modelling memory
• wide applications:

– text classification
– text generation
– dialog response generation
– time series prediction

4

Why Learning Recurrent Neural
Networks?

• Given a sentence y, estimate the
probability

 P(y) = ∏
t

P(yt+1 |y1…yt)

P(yt+1 |y1…yt) = fθ(y1, …, yt)

5

Language Generation

The cat sits on a __
 y1 y2 y3 y4 y5 y6

mat
rug
chair
hat
dog

0.15
0.13
0.08
0.05
0.01

p(y6 |y1, …, y5)

• To model P(y|x)
• Consider a ten-word sentence, chosen from

common English dictionary about 5k words
– 500010 possible sentences
– need a table of 500010·500010 entries, infeasible

• source and target sentences need to break
into smaller units.

• Multiple ways to segment
• Language specific considerations

6

Vocabulary

• Break sentences into tokens, basic elements of
processing

• Word-level Tokenization
– Break by space and punctuation.
– English, French, German, Spanish

– Special treatment: numbers replaced by special
token [number]

– How large is the Vocabulary? Cut-off by frequency,
the rest replaced by [UNK]

7

Tokenization

The most eager is Oregon which is enlisting 5,000 drivers in the country’s biggest experiment.

• Easy to implement
• Cons:

– Out-of-vocabulary (OOV) or unknown tokens, e.g. Covid
– Tradeoff between parameters size and unknown chances.

‣ Smaller vocab => fewer parameters to learn, easier to generate
(deciding one word from smaller dictionary), more OOV

‣ Larger vocab => more parameters to learn, harder to generate,
less OOV

– Hard for certain languages with continuous script:
Japanese, Chinese, Korean, Khmer, etc. Need separate
word segmentation tool (can be neural networks)

8

Pros and Cons of Word-level
Tokenization

最热切的是俄勒冈州，该州正在招募 5,000 名司机参与该国最⼤的试验。

• Each letter and punctuation is a token
• Pros:

– Very small vocabulary (except for some
languages, e.g. Chinese)

– No Out-of-Vocabulary token
• Cons:

– A sentence can be longer sequence
– Tokens do not representing semantic meaning

9

Character-level Tokenization

T h e m o s t e a g e r i s O r e g …

• Goal:
– moderate size vocabulary
– no OOV

• Idea:
– represent rare words (OOV) by sequence of

subwords
• Byte Pair Encoding (BPE)

– not necessarily semantic meaningful
– Originally for data compression

10

Subword-level Tokenization
The most eager is Oregon which is en listing 5,000 driver s in the country ’s big g est experiment.

Philip Gage. A New Algorithm for Data Compression, 1994

• Use smallest sequence of
strings to represent original
string. Group frequent pair
of bytes together.

• Put all characters into
symbol table

• For each loop, until
table reach size limit

– count frequencies of
symbol pair

– replace most frequent
pair with a new symbol,
add to symbol table

11

Byte Pair Encoding

1. Initialize vocabulary with all characters as
tokens (also add end-of-word symbol) and
frequencies

2. Loop until vocabulary size reaches capacity
1. Count successive pairs of tokens in corpus
2. Rank and select the top frequent pair
3. Combine the pair to form a new token, add to

vocabulary
3. Output final vocabulary and tokenized corpus

12

Byte Pair Encoding (BPE) for Text
Tokenization

Rico Sennrich et al. Neural Machine Translation of Rare Words with Subword Units. 2016

13

Example

l, o, w, e, r, n, s, t, i, d, </w> ‘l o w</w>’ : 5 ‘l o w e r</w>’ : 2 ’n e w e s t</w>’ :
6 ‘w i d e s t</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>,
es

‘l o w</w>’ : 5 ‘l o w e r</w>’ : 2 ’n e w es t</w>’ : 6
‘w i d es t</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>,
es, est

‘l o w</w>’ : 5 ‘l o w e r</w>’ : 2 ’n e w est</w>’ : 6
‘w i d est</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>,
es, est, est</w>

‘l o w</w>’ : 5 ‘l o w e r</w>’ : 2 ’n e w est</w>’ : 6
‘w i d est</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>,
es, est, est</w>, lo,

‘lo w</w>’ : 5 ‘lo w e r</w>’ : 2 ’n e w est</w>’ : 6
‘w i d est</w>’ : 3

l, o, w, e, r, n, s, t, i, d, </w>,
es, est, est</w>, lo, low

‘low</w>’ : 5 ‘low e r</w>’ : 2 ’n e w est</w>’ : 6
‘w i d est</w>’ : 3

There are many methods to predict the next token:
• N-gram: assuming

, and estimate it directly
• Context MLP: use DNN to estimate

• CNN-LM (previous lecture)
• RNN-LM, LSTM, GRU
• GPT

𝑝(𝑥𝑡 𝑥1, …, 𝑥𝑡−1) = 𝑝(𝑥𝑡 𝑥𝑡−𝑘, …, 𝑥𝑡−1)

𝑝(𝑥𝑡 𝑥𝑡−𝑘, …, 𝑥𝑡−1)

14

Predict Next Token Probability

15

Word and Bigram

the

and

in

was

on

he

that

it

his

by

0% 1.5% 3% 4.5% 6%

Statistics from English Wikipedia and books

first united the a be

the 0.014 0.006

of 0.283 0.030

would 0.191

with 0.187 0.122

cond. prob. p(x2|x1)

• Vocabulary: V
• n-gram needs a probability table of size Vn

• Common V size 30k ~ 100k
• Hard to estimate and hard to generalize
• Solution: Parameterization with generative

model
–
– f can be a carefully designed and computationally

tractable function, e.g. a neural network (later
lectures).

p(yt |y1, ⋯, yt−1; θ) = fθ(y1, ⋯, yt−1)

16

Challenge of n-gram LM

17

CNN Language Model

https://lena-voita.github.io/nlp_course/models/convolutional.html

P(yt+1 |y1, …, yt) ≈ CNNθ(yt−k, …, yt) But,
limited context

• CNN-LM only has a fixed-length receptive field
– probability of next token only dependent on a

fixed-size context
• But sentences are of variable length
• How to handle sentences with variable length?
• Idea:

– adding memory to network
– adaptive updating memory

18

Limitation of CNN-LM

• Introduce memory representation
• RNN-LM: use RNN to estimate

• RNN cell can be
• Simple feedforward neural network
• Long-short term memory
• Gated recurrent units

𝑝(𝑥𝑡 𝑥1, …, 𝑥𝑡−1) = soVmax(𝑊 ⋅ h𝑡)

h𝑡 = 𝑅𝑁𝑁(h𝑡−1, 𝐸𝑚𝑏(𝑥𝑡−1))

19

Recurrent Memory

20

Recurrent Neural Network

0 h1

_

x1

 a cat sits on 。。

h2

e
1

x2

h3

e
2

x3

h4

e
3

x4

𝑝(𝑥𝑡 𝑥1, …, 𝑥𝑡−1) = softmax(U ⋅ h𝑡)

ht = σ (W ⋅ [ht−1
xt] + b)

Mikolov et al, Recurrent neural network based language model. Interspeech 2010.
Elman, Finding Structure in Time. Cog. Sci. 1990.

• Empirical Risk:
– Loss: cross-entropy for every next-token given

prefix context
– CE(x_t+1, f(x_1, …, x_t))

• SGD
– Calculate gradient: Back-propogation through

time (BPTT)

– ∇Et

21

Training RNN-LM

 1 def bptt(self, x, y):
 2 T = len(y)
 3 # Perform forward propagation
 4 o, s = self.forward_propagation(x)
 5 # We accumulate the gradients in these variables
 6 dLdU = np.zeros(self.U.shape)
 7 dLdV = np.zeros(self.V.shape)
 8 dLdW = np.zeros(self.W.shape)
 9 delta_o = o
10 delta_o[np.arange(len(y)), y] -= 1.
11 # For each output backwards...
12 for t in np.arange(T)[::-1]:
13 dLdV += np.outer(delta_o[t], s[t].T)
14 # Initial delta calculation: dL/dz
15 delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
16 # Backpropagation through time (for at most self.bptt_truncate steps)
17 for bptt_step in np.arange(max(0, t-self.bptt_truncate), t+1)[::-1]:
18 # Add to gradients at each previous step
19 dLdW += np.outer(delta_t, s[bptt_step-1])
20 dLdU[:,x[bptt_step]] += delta_t
21 # Update delta for next step dL/dz at t-1
22 delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
23 return [dLdU, dLdV, dLdW]

22

Back-propagation for RNN (python)

• tanh has derivative close to zero at both
ends

23

Computational Issue: Gradient Vanishing

Pascanu et al. On the difficulty of training recurrent neural networks. ICML 2013

• Use gradient clipping
• Two options: clip by absolute value or

rescale norm
• if ,

• if ,

|g | > η ̂g ← η
|g | > η ̂g ←

η
|g |

g

24

Gradient Exploding

• Replace cell with more advanced one
• Adaptively memorize short and long term

information

25

Long-Short Term Memory (LSTM)

h𝑡 𝑖𝑡+1 = 𝜎(𝑀𝑖𝑥𝑥𝑡+1 + 𝑀𝑖hh𝑡 + 𝑏𝑖)

𝑜𝑡+1 = 𝜎(𝑀𝑜𝑥𝑥𝑡+1 + 𝑀𝑜hh𝑡 + 𝑏𝑜)

𝑐𝑡+1 = 𝒇𝒕+𝟏 ⊗ 𝒄𝒕 + 𝑖𝑡+1 ⊗ 𝑎𝑡+1

𝑎𝑡+1 = tanh(𝑀𝑐𝑥𝑥𝑡+1 + 𝑀𝑐hh𝑡 + 𝑏𝑎)

h𝑡+1 = 𝑜𝑡+1 ⊗ tanh(𝑐𝑡+1)

𝑓𝑡+1 = 𝜎(𝑀𝑓𝑥𝑥𝑡+1 + 𝑀𝑓hh𝑡 + 𝑏𝑓)
𝑜𝑡+1

𝑓𝑡+1

𝑖𝑡+1

h𝑡

𝑥𝑡+1 h𝑡+1

h𝑡𝑥𝑡+1 𝑥𝑡+1

h𝑡 𝑥𝑡+1

Forget Gate

Output GateInput Gate

Memory Cell

𝑐𝑡𝑐𝑡+1

Hochreiter & Schmidhuber. Long Short-Term Memory, 1997
Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000

• Many
fundamental
contributions in
deep learning,
esp. LSTM

• heavily influence
deepmind through
his students

26

Jürgen Schmidhuber

• Adaptively memorize short and long term
information

• like LSTM, but fewer parameters

27

Gated Recurrent Unit (GRU)

𝑧𝑡+1

𝑟𝑡+1

h𝑡

𝑥𝑡+1 h𝑡+1

h𝑡 𝑥𝑡+1

Update Gate

Reset Gate

h𝑡

~h𝑡+1

𝑧𝑡+11−

𝑧𝑡+1

Input:
Memory:

𝑥𝑡
h𝑡𝑟𝑡+1 = 𝜎(𝑀𝑟𝑥𝑥𝑡+1 + 𝑀𝑟hh𝑡 + 𝑏𝑟)

~h𝑡+1 = tanh(𝑀h𝑥𝑥𝑡+1 + 𝑀hh(𝑟𝑡+1 ⊗ h𝑡) + 𝑏h)

h𝑡+1 = 𝑧𝑡+1 ⊗ ~h𝑡+1 + (𝟏 − 𝒛𝒕+𝟏) ⊗ 𝒉𝒕

𝑧𝑡+1 = 𝜎(𝑀𝑧𝑥𝑥𝑡+1 + 𝑀𝑧hh𝑡 + 𝑏𝑧)

h𝑡𝑥𝑡+1

Cho et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation. 2014

28

LSTM Language Modelling

[BOS] A cat sits on a

A cat sits on a mat .

Embedding

LSTM

Linear

Softmax

29

LSTM Generation

[BOS] A cat sits on a

A cat sits on a mat .

Embedding

LSTM

Linear

Softmax

30

LSTM: More layers

LSTM

Linear

Softmax

Embedding

LSTM

A cat sits on a mat .

[BOS] A cat sits on a

31

Expressive Power of RNN-LM

Jozefowicz et al. Exploring the limits of language modelling, 2016

Perplexity:

PPL = P(x1, …, xN)− 1
N = exp(−

1
N

N

∑
n=1

log P(xn |x1…xn−1))

Sequence Labelling

33

Understanding Query Intention

How to go from Santa Barbara to Log Angeles ?

Noodle house near Santa Barbara
[Keyword] [Location]

[Origin] [Destination]

Sequence Labelling

34

Named entity recognition

In April 1775 fighting broke out between Massachusetts
militia units and British regulars at Lexington and Concord .

date Location

Geo-Political

• Named entity recognition

• Semantic role labeling

• Question Answering: subject parsing

35

Sequence Labelling

In April 1775 fighting broke out between
Massachusetts militia units and British regulars at
Lexington and Concord .

Who created Harry Potter ?

The excess supply pushed gasoline prices down in that period .
verbsubject object

• BIO scheme

36

Represent the Output Labels

The governor of Santa Barbara is Cathy Murillo .
1640 897 45 1890 78 943 3521 782 533

 O O O B-GPE I-GPE O B-PER I-PER O

37

RNN/LSTM for Sequence Labelling

The governor of Santa Barbara is Cathy Murillo .
1640 897 45 1890 78 943 3521 782 533

Embedding

LSTM

 O O O B-GPE I-GPE O B-PER I-PER O

LSTM

Linear

38

Bi-LSTM

The governor of Santa Barbara is Cathy Murillo .
1640 897 45 1890 78 943 3521 782 533

Embedding

 O O O B-GPE I-GPE O B-PER I-PER O

LSTM

LSTM

Linear

class LSTMTagger(nn.Module):

 def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):
 super(LSTMTagger, self).__init__()
 self.hidden_dim = hidden_dim

 self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)

 # The LSTM takes word embeddings as inputs, and outputs hidden states
 # with dimensionality hidden_dim.
 self.lstm = nn.LSTM(embedding_dim, hidden_dim)

 # The linear layer that maps from hidden state space to tag space
 self.hidden2tag = nn.Linear(hidden_dim, tagset_size)

 def forward(self, sentence):
 embeds = self.word_embeddings(sentence)
 lstm_out, _ = self.lstm(embeds.view(len(sentence), 1, -1))
 tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
 tag_scores = F.log_softmax(tag_space, dim=1)
 return tag_scores

39

Sequence Labelling using LSTM
(Pytorch)

model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

See what the scores are before training
Note that element i,j of the output is the score for tag j for word i.
Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
 inputs = prepare_sequence(training_data[0][0], word_to_ix)
 tag_scores = model(inputs)
 print(tag_scores)

for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
 for sentence, tags in training_data:
 # Step 1. Remember that Pytorch accumulates gradients.
 # We need to clear them out before each instance
 model.zero_grad()

 # Step 2. Get our inputs ready for the network, that is, turn them into
 # Tensors of word indices.
 sentence_in = prepare_sequence(sentence, word_to_ix)
 targets = prepare_sequence(tags, tag_to_ix)

 # Step 3. Run our forward pass.
 tag_scores = model(sentence_in)

 # Step 4. Compute the loss, gradients, and update the parameters by
 # calling optimizer.step()
 loss = loss_function(tag_scores, targets)
 loss.backward()
 optimizer.step()

40

Training in Pytorch

See what the scores are after training
with torch.no_grad():
 inputs = prepare_sequence(training_data[0][0], word_to_ix)
 tag_scores = model(inputs)

41

Testing in Pytorch

• Loss using Conditional Random Fields

42

Better Loss Function (advanced)

will revisit in graphical models lecture

43

Encoder-decoder framework

Encoder

Decoder

input

output A generic formulation
ImageCaption

Text-to-Image Generation
ASR (speech-to-text)

MT (text-to-text)

• Machine translation as directly learning a
function mapping from source sequence to
target sequence

44

Sequence To Sequence (Seq2seq)

h1 h2 h3 h4

ea eb ec ed
_ ex ey ez

t1 t2 t3 t4
Encoder: LSTM

Decoder: LSTMSource: 天 ⽓
很 好

target:
The weather is nice

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

• Machine translation as directly learning a
function mapping from source sequence to
target sequence

45

Sequence To Sequence (Seq2seq)

h1 h2 h3 h4

ea eb ec ed
_ ex ey ez

t1 t2 t3 t4
Encoder: LSTM

Decoder: LSTMSource: 天 ⽓
很 好

target:
The weather is nice

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Training loss: Cross-Entropy

Teacher-forcing during training.
(pretend to know groundtruth for prefix)

P(Y |X) = ∏P(yt |y<t, x)

l = − ∑
n

∑
t

log fθ(xn, yn,1, …, yn,t−1)

46

Performance (2014)

0

9.5

19

28.5

38

En-Fr

37.5
33.1

30.6

37.03
33.3

SMT (moses) SMT (Buck 2014)
LSTM S2S (2014) LSTM - UNK replace
LSTM ensemble

WMT14
Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Durrani et al. Edinburgh’s Phrase-based Machine Translation Systems for WMT-14. 2014

• More layers of LSTM

47

Stacked LSTM for seq-2-seq

48

LSTM Seq2seq with Attention

天 ⽓ 很 好 [BOS] Weather

is niceWeather

Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate.
2015

A context vector c will be predicted before,
which represents the related source context for
current predicted word.

The probability of word y_i is computed as:

αnj = Softmax(D(sn, h1…n−1)) =
exp(D(sn, hj))

∑k exp(D(sn, hk)
cn = ∑

j

αnjhj

49

Generation by Attention

_

Y

0.
6

0.
2

0.
1

0.
1

context
vector

e
d

e
a

e
b

e
c

ex

Mnih et al. Recurrent Models of Visual Attention. 2014.

Decoding

51

Autoregressive Generation

Encode Encode EncodeEncode

我 喜 欢 唱 歌 和 <BO

Decod

Softma

y1

y1

Decod

Softma

y2

y2

Decod

Softma

y3
I Iike singing

I Iike

<EOS>

But, this is not necessary the best

greedy decoding: output the token with max
next token prob

• Now already trained a model
• Decoding/Generation: Given an input sentence x, to

generate the target sentence y that maximize the
probability

•

• Two types of error
– the most probable translation is bad → fix the model
– search does not find the most probably translation → fix the

search
• Most probable translation is not necessary the highest

BLEU one!

θ

P(y |x; θ)
argmax

y
P(y |x) = fθ(x, y)

52

Inference

•

• naive solution: exhaustive search
– too expensive

• Beam search
– (approximate) dynamic programming

argmax
y

P(y |x) = fθ(x, y)

53

Decoding

• start with empty S
• at each step, keep k best partial

sequences
• expand them with one more forward

generation
• collect new partial results and keep top-k

54

Beam Search

best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length:
 new_seqs = PriorityQueue()
 for (candidate, s) in best_scores:
 if candidate[-1] is EOS:

 prob = all -inf
 prob[EOS] = 0
 else:

 prob = using model to take candidate and compute next token
probabilities (logp)
 pick top k scores from prob, and their index
 for each score, index in the top-k of prob:
 new_candidate = candidate.append(index)
 new_score = s + score
 if not new_seqs.full():

55

Beam Search (pseudocode)

56

Beam Search

<BOS>

I 0.4

We 0.3

He 0.1

She 0.1

They 0.01

like 0.4
love 0.4
am 0.1
hate 0.01
want 0.01

I 0.4
We 0.3

like 0.4
do 0.3
are 0.2
can 0.01
say 0.01

I like 0.16

I love 0.16

We like 0.12

We do 0.09

I like 0.16
I love 0.16

singing 0.6

song 0.2
shoutin

g 0.01

going 0.01

dancing 0.01

singing 0.5
dancing 0.3

you 0.11
going 0.01

it 0.01

I like singing 0.096

I like song 0.032

I love singing 0.08

I love dancing 0.048

forward by
network top-k

forward by
network

forward by
network

top-k

forward by
network

forward by
network

top-k

Seq2seq for Machine
Translation

SpaceX周三晚间进⾏了⼀次发射任务，将四名毫⽆航天经验
的业余⼈⼠送⼊太空轨道。
SpaceX launched a mission Wednesday night to put four
amateurs with no space experience into orbit.
SpaceX conducted a launch mission on Wednesday night,
sending four amateurs with no aerospace experience into
space orbit.
SpaceX conducted a launch mission Wednesday night that
sent four amateurs with no spaceflight experience into orbit.
SpaceX carried out a launch mission on Wednesday night to
put four amateurs without Aerospace experience into orbit.

58

Many possible translation, which is
better?

• Measuring the precision of n-grams
– Precision of n-gram: percentage of tokens in output

sentences

–

• Penalize for brevity
– if output is too short
–

• BLEU=

• Notice BLEU is computed over the whole corpus, not on
one sentence

pn =
num . of . correct . token . ngram

total . output . ngram

bp = min(1,e1−r/c)
bp ⋅ (∏pi)

1
4

59

BLEU

Ref: A SpaceX rocket was launched into a
space orbit Wednesday evening.
System A: SpaceX launched a mission
Wednesday evening into a space orbit.
System B: A rocket sent SpaceX into orbit
Wednesday.

60

Example

Ref: A SpaceX rocket was launched into a
space orbit Wednesday evening.
System A: SpaceX launched a mission
Wednesday evening into a space orbit.

61

Example

Precision

Unigram 9/11

Bigram 4/10

Trigram 2/9

Four-gram 1/8

bp=e1-12/11=0.91
BLEU=0.91*(9/11 * 4/10 * 2/9 * 1/8)1/4

=28.1%

• Machine translation as directly learning a
function mapping from source sequence to
target sequence

62

LSTM Seq2Seq for NMT

h1 h2 h3 h4

ea eb ec ed
_ ex ey ez

t1 t2 t3 t4
Encoder: LSTM

Decoder: LSTMSource: 天 ⽓ 很 好

target:
The weather is nice

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Training loss: Cross-Entropy

Teacher-forcing during training.
(pretend to know groundtruth for prefix)

P(Y |X) = ∏P(yt |y<t, x)

l = − ∑
n

∑
t

log fθ(xn, yn,1, …, yn,t−1)

63

LSTM Seq2Seq w/ Attention

0

10

20

30

40

En-Fr En-De

16.95

32.68

16.46

29.9730.6

20.67

37.03
33.3

SMT (moses) SMT (best)
LSTM S2S (2014) LSTM w/ Ae (RNNSearch)
LSTM w/ Ae (RNNSearch LV)

WMT14
Jean et al. On Using Very Large Target Vocabulary for Neural Machine

Translation. 2015

64

Performance with Model Ensemble

0

10

20

30

40

En-Fr En-De

21.59

37.5

16.95

32.68

16.46

29.9730.6

20.67

37.03
33.3

SMT (moses) SMT (best)
LSTM S2S (2014) LSTM w/ Ae (RNNSearch)
LSTM w/ Ae (RNNSearch LV) LSTM Ensemble

WMT14
Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

• Recurrent Neural Network
• Long-short term memory
• Gated recurrent units
• Attention between decoder and encoder
• Sequence Labelling with LSTM
• LSTM seq2seq for Machine Translation

65

Summary

• Your manager assigns a task for you: build
a system to automatically select the cover
photo for a short video on Tiktok

• Please discuss in groups how you plan to
build the system

66

Video Cover Selection

• Transformer
• What story you’d like to hear about?

– A robot writer that can write Olympic sport
news, or

– Lessons learned in building real MT product,
or

– an 8-week journey to develop AI component
for map product

67

Next up

