Lecture 7
Recurrent Neural Network

Lei LI and Yuxiang Wang
UCSB

Recap

 Building blocks — Residual
— Convolution connection
_ Stride « Data Augmentation
— Padding * Deeper is better:
_ Channel * LeNet 5 layers of
. CNN
— Pooling
* AlexNet
— Dropout
* ResNet

— Batch Norm

Outline

Language Modeling

Recurrent Neural Network

Long-short term memory network (LSTM)
Gated Recurrent Unit (GRU)

Attention

Encoder-decoder framework

LSTM Seq2seq

Why Learning Recurrent Neural
Networks?

 a natural and succinct model for sequence
data

» explicit modelling memory

* wide applications:
— text classification
— text generation
— dialog response generation
— time series prediction

Language Generation

* Given a sentence y, estimate the
probability

P(y) = HP()’HI | y1---¥,)

POl y1s -5 ¥s)
P(yt+l |y1yt) =.f(9(y19 °-°9yt) 015
0.13
The cat sits on a __ 0.08
Yi Y2 V3 Vs ¥ys Ye 0.05

0.01

Vocabulary

To model P(y|x)

Consider a ten-word sentence, chosen from
common English dictionary about 5k words

— 500010 possible sentences
— need a table of 500010-500019 entries, infeasible

source and target sentences need to break
iInto smaller units.

Multiple ways to segment
Language specific considerations

Tokenization

* Break sentences into tokens, basic elements of
processing
 Word-level Tokenization
— Break by space and punctuation.
— English, French, German, Spanish

The most eager is Oregon which is enlisting 5,000 drivers in the country’s biggest experiment.

— Special treatment: numbers replaced by special
token [number]

— How large is the Vocabulary? Cut-off by frequency,
the rest replaced by [UNK]

Pros and Cons of Word-level
Tokenization

« Easy to implement
« Cons:
— QOut-of-vocabulary (OOV) or unknown tokens, e.g. Covid

— Tradeoff between parameters size and unknown chances.

> Smaller vocab => fewer parameters to learn, easier to generate
(deciding one word from smaller dictionary), more OOV

» Larger vocab => more parameters to learn, harder to generate,
less OOV

— Hard for certain languages with continuous script:
Japanese, Chinese, Korean, Khmer, etc. Need separate
word segmentation tool (can be neural networks)

RADIRRAEIXIN %M IEFERZE 5,000 44 mIHLZ 5% E 5o B .

Character-level Tokenization

T h e m

 Pros:

— Very small vocabulary (except for some
languages, e.g. Chinese)

— No Out-of-Vocabulary token
» Cons:

— A sentence can be longer sequence
— Tokens do not representing semantic meaning

 Each letter and punctuation is a token
o s t e a g e r i1 s O r e g ..

Subword-level Tokenization

~ _ 1
The most .eager is Oregon which is en listing 5,000 driver s in the country ’s big g est experiment.

— moderate size vocabulary
— no OOV

e |dea:

— represent rare words (OOV) by sequence of
subwords

» Byte Pair Encoding (BPE)

— not necessarily semantic meaningful
— Originally for data compression

10
Philip Gage. A New Algorithm for Data Compression, 1994

Byte Pair Encoding

« Use smallest sequence of
strings to represent original
string. Group frequent pair
of bytes together.

e Put all characters into
symbol table

* For each loop, until
table reach size limit
— count frequencies of
symbol pair
— replace most frequent

pair with a new symbol,
add to symbol table

11

Byte Pair Encoding (BPE) for Text
Tokenization

1. Initialize vocabulary with all characters as
tokens (also add end-of-word symbol) and
frequencies

2. Loop until vocabulary size reaches capacity

1. Count successive pairs of tokens in corpus
2. Rank and select the top frequent pair

3. Combine the pair to form a new token, add to
vocabulary

3. Output final vocabulary and tokenized corpus

12
Rico Sennrich et al. Neural Machine Translation of Rare Words with Subword Units. 2016

Example

‘lTow</w>":5 ‘lower</w>":2 ‘newest</w>":
6 ‘widest</w>":3
l,o,w,e,r,n,s, t,1,d,</w>, ‘low</w>":5 ‘lower</w>":2 ‘newest</w>":6

l,o,w,e,r,n,s, t,1,d, </w>

es ‘widest</w>":3
l,o,w,e,r,n,s, t,1,d,</w>, ‘low</w>":5 ‘lower</w>":2 ’newest</w>":6
es, est ‘widest</w>":3
l,o,w,e,r,n,s, t,1,d, </w>, ‘low</w>":5 ‘lower</w>":2 ’‘newest</w>":6
es, est, est</w> ‘widest</w>":3
l,o,w,e,r,n,s, t,1,d,</w>, ‘low</w>":5 ‘lower</w>":2 ’newest</w>":6
es, est, est</w>, lo, ‘wi1dest</w>":3
l,o,w,e,r,n,s, t,1,d, </w>, ‘low</w>":5 ‘lower</w>":2 ’newest</w>":6
es, est, est</w>, lo, low ‘widest</w>":3

13

Predict Next Token Probability

There are many methods to predict the next token:
e N-gram: assuming

P 1 10) = 2o e 31

, and estimate it directly
Context MLP: use DNN to estimate

p<xt xt_k, °c o 09 xt_l)

CNN-LM (previous lecture)
RNN-LM, LSTM, GRU
GPT

14

Word and Bigram

Statistics from English Wikipedia and books

the

N | cond. prob. p(x2|Xi
n — HEEEEIRNEY
I
was 0.014 0.006
on (.
he |mmmm 0.283 0.030
[|
that | 0.191
it —
A — 0.187 0.122
[|
by |me=
[|

0 1.5% 3% 4.5% 6%

X

15

Challenge of n-gram LM

Vocabulary: V

n-gram needs a probability table of size Vn
Common V size 30k ~ 100k

Hard to estimate and hard to generalize
Solution: Parameterization with generative
model

— Py s Y15 0) = fo(ps 5 Y1)

— f can be a carefully designed and computationally
tractable function, e.g. a neural network (later
lectures).

16

CNN Language Model

POyt 1V oY) ® CNNY(y,_po ..o y)Predct e But,

next token

I like the cat on a r‘ed?«ao& Ilmlted Cont

No pooling between
convolutions: do notwantto [:] O R

lose positional information convolution

convolution

convolution

Padding to shift tokens: we
need to prevent information

flow from future tokens Stack several

convolutions

<pad><pad> <bos> I |ike the cat on a red|mat

condition on the previous tokens

https://lena-voita.github.io/nlp_course/models/convolutional.html

17

Limitation of CNN-LM

CNN-LM only has a fixed-length receptive field

— probability of next token only dependent on a
fixed-size context

But sentences are of variable length
How to handle sentences with variable length?
|dea:

— adding memory to network
— adaptive updating memory

18

Recurrent Memory

e Introduce memory representation
e RNN-LM: use RNN to estimate

p(xt | X1y --ns xt_l) = softmax(W - h,)

h, = RNN(h,_;, Emb(x__,))

* RNN cell can be
e Simple feedforward neural network
e Long-short term memory
e Gated recurrent units

19

Recurrent Neural Network

p(xt|x1,..., X_1) = softn_lax(U-ht) a\‘ cat\‘ SItS\‘ on, o

\ \ \

h,_ wol b bl t bl d Iy

h=c(W- + b 14 (%21 [%a]) | %a

A - iy - -
L - 1 1 1

| | 1 1 1 | .
1 1 1
: : :
1 1 1

O_>h1 i:hz i:h3 i:h4
| | |
| | |

-/ 1 -/ 1 -~ J 1 -/

A 1 A 1 A 1 A

U A R B

(e i(€e]i[€
| | |

LA LA LA

_,’ _¢, \-ll

Elman, Finding Structure in Time. Cog. Sci. 1990.

20
Mikolov et al, Recurrent neural network based language model. Interspeech 2010.

Training RNN-LM

* Empirical Risk:

— Loss: cross-entropy for every next-token given
prefix context

— CE(x_t+1,f(x_1, ..., x 1))
« SGD

— Calculate gradient: Back-propogation through
time (BPTT)

_ VE,

21

Back-propagation for RNN (python)

def bptt(self, x, y):
T = len(y)
Perform forward propagation
o, s = self.forward_propagation(x)
We accumulate the gradients in these variables
dLdU = np.zeros(self.U.shape)
dLdV = np.zeros(self.V.shape)
dLdW = np.zeros(self.W.shape)
delta_o = o
delta_o[np.arange(len(y)), y] -= 1.
For each output backwards...
for t in np.arange(T)[::-1]:
dLdV += np.outer(delta_o[t], s[t].T)
Initial delta calculation: dL/dz
delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
Backpropagation through time (for at most self.bptt_truncate steps)
for bptt_step in np.arange(max(@, t-self.bptt_truncate), t+1)[::-1]:
Add to gradients at each previous step
dLdW += np.outer(delta_t, s[bptt_step-1])
dLdU[:,x[bptt_step]] += delta_t
Update delta for next step dL/dz at t-1
delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
return [dLdU, dLdV, dLdW]

22

Computational Issue: Gradient Vanishing

e tanh has derivative close to zero at both
ends

Gl

Pascanu et al. On the difficulty of training recurrent neural networks. ICML 2013

23

Gradient Exploding

Use gradient clipping

Two options: clip by absolute value or
rescale norm

if |[g|>n, 2«7

if |g|>n, g < ! g
| g]

24

Long-Short Term Memory (LSTM)

* Replace cell with more advanced one
* Adaptively memorize short and long term

iInformation
Xi+1 ht Xi+1 hz .
| / I iy = 0(M;x, 1 + Myh, + b))
L _ .
Input Gat Output Gat Q fH_l _ G(foxH_I N thht N bf)
P : HpHE bate : 0t+1 = O-(Moxxt+1 + Mohht + bo)
hy N Memory Cell
xt+l_@7>é_> - (:) ’é__> ht+1
CIHA\@) ¢ at+1 = tanh(McxxH_l -+ Mchht + ba)
1= [@ +i ®ay,
Forget Gate ht+1 = 04 ® tanh(ct+1)
71
ht Xi+1

Hochreiter & Schmidhuber. Long Short-Term Memory, 1997

25
Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000

Jurgen Schmidhuber

 Many
fundamental
contributions in
deep learning,
esp. LSTM

* heavily influence
deepmind through
his students

26

Gated Recurrent Unit (GRU)

* Adaptively memorize short and long term
iInformation
* like LSTM, but fewer parameters

!"’“/ht Input: X,
Memory:
1 Reset Gate]/’t+1 = 0(%&:1‘+1 + Mrhht + br)
ht N i1 = G(szxt+1 + Mzhht + bz)
- Et+
xt+1—_ >? :® g ht+1
" ey = tanh(M),, x| + My, (riy ® hy) + by)
— 24
Update Gate (_z,; —
Il . ~
ya [ht+]:Zl+]®hl+]+(1_zt+l)®ht

ht .xt+l ht

Cho et al. Learning Phrase Representations using RNN Encoder—Decoder for Statfstical
Machine Translation. 2014

LSTM Language Modelling

A cat sits on a mat . Softmax
N S S S S I
. . . . Linear
il Y Y Y il Y T
I pul I I pul I L
- . LSTM
e e e 'yl e e e
L L L L L L T
Embedding
I A A A M 1
[BOS] A cat sits on a

28

LSTM Generation

A cat, SAIth‘ on-, a-, njat . Softmax

B O N P A T T

- o Lo Linear

g s O S O o B 3 LS;M

Poir iy iF i iy Embedding
[BOS] *A *cat 3*sits *on * a |

29

LSTM: More layers

A cat sits on a mat

1 1 1 1 1 1

il Y il Y ul e Y

I pl I I I I L

e e 'yl e e e

I I I I I I

e e e 'yl N e ul

I I I I I I

r f ¥ ¥ T 7T
[BOS] A cat sits on a

Softmax

1

Linear

!

LSTM

!

LSTM

1

Embedding

!

30

Expressive Power of RNN-LM

Perplexity:
1 N
PPL =P - —VYloeP
(X5 - s Xy) exp N og P(x, | x{...x,_,
n=1
MODEL TEST PERPLEXITY NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JIET AL., 2015A) 68.3 4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6 1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 52.9 33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) 51.3 20
LSTM-512-512 54.1 0.82
LSTM-1024-512 48.2 0.82
LSTM-2048-512 43.7 0.83
LSTM-8192-2048 (NoO DrROPOLT) 37.9 33
LSTM-8192-2048 (50% DROPOUT) 32.2 3.3
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6 1.8
BIG LSTM+CNN INpPUTS 30.0 1.04
BIG LSTM+CNN INPUTS + CNN SOFTMAX 39.8 0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION 35.8 0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS 47.9 0.23

Jozefowicz et al. Exploring the limits of language modelling, 2016 3!

Sequence Labelling

Understanding Query Intention

Noodle house near Santa Barbara
[Keyword] [Location]

How to go from Santa Barbara to Log Angeles ?
[Origin] [Destination]

Sequence Labelling

33

Named entity recognition

date Location
In April 1775 fighting broke out between Massachusetts

militia units and British regulars at Lexington and Concord .
Geo-Political

34

Sequence Labelling

* Named entity recognition
In April 1775 fighting broke out between

militia units and regulars at
and :
« Semantic role labeling
The excess supply pushed down in that period .
subject verb object

» Question Answering: subject parsing
Who created Harry Potter ?

35

Represent the Output Labels

 BIO scheme

O O O B-GPEI-GPE O B-PERI-PER O

The governor of is Cathy Muirillo .
1640 897 45 1890 78 943 3521 782 533

36

RNN/LSTM for Sequence Labelling

O O O B-GPEI-GPEO B-PERI-PER O
T 1t 1t 1 1 1t 1t 1 1

[Linear]
R

[LSTM]
o

[LSTM

E

: |
U (eseine | [[L

The governor of Santa Barbara is Cathy Murillo .
1640 897 45 1890 78 943 3521 782 533 *

Bi-LSTM

O O O B-GPEI-GPE O B-DERI PER O

B R B R Lir@ar R R B R

1 1 1 T 1 T T T
<t > > . {rM 2 2 >

T T T 1 M. 1 T T T
e —— AL{I- — | —— ——>

r t I A I

efibedging

The governor of Santa Barbara is Cathy Murillo

1640 897

45 1890

78 943 3521

782 5(.33

38

Sequence Labelling using LSTM

(Pytorch)

class LSTMTagger(nn.Module):

def

def

__init__ (self, embedding_dim, hidden_dim, vocab_size, tagset_size):

super (LSTMTagger, self).__init__ ()
self.hidden_dim = hidden_dim

self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)

The LSTM takes word embeddings as inputs, and outputs hidden states
with dimensionality hidden_dim.
self.lstm = nn.LSTM(embedding_dim, hidden_dim)

The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)

forward(self, sentence):

embeds = self.word_embeddings(sentence)

lstm _out, _ = self.lstm(embeds.view(len(sentence), 1, -1))
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
tag_scores = F.log_softmax(tag_space, dim=1)

return tag_scores

39

Training in Pytorch

model = LSTMTagger (EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

See what the scores are before training
Note that element 1i,j of the output is the score for tag j for word 1i.
Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs)
print(tag_scores)

for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
Step 1. Remember that Pytorch accumulates gradients.
We need to clear them out before each instance
model.zero_grad()

Step 2. Get our inputs ready for the network, that is, turn them into
Tensors of word indices.

sentence_in = prepare_sequence(sentence, word_to_ix)

targets = prepare_sequence(tags, tag_to_ix)

Step 3. Run our forward pass.
tag_scores = model(sentence_in)

Step 4. Compute the loss, gradients, and update the parameters by
calling optimizer.step()

loss = loss_function(tag_scores, targets)

loss.backward()

optimizer.step()

40

Testing in Pytorch

See what the scores are after training

with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)

tag_scores = model(inputs)

41

Better Loss Function (advanced)

* Loss using Conditional Random Fields

—log(P(y | X)) = —log

exp (Y_y Uk, yk) + D0t T (ks Y1)
Z(X)

¢ (—1
= log (Z(X)) — log (exp (Z U(xp.,y) + Z Ty, yk+1)))
k=1

k=1
((-1
= log (Z(X)) — (Z U, k) + > T(Yr Yrr1))
k=1 k=1
((-1
= Ziog(X) — (Z U(Xk, Yr) Z (Yk, Yr41))

k=1

42

will revisit in graphical models lecture

Encoder-decoder framework

Ouaput A generic formulation
ImageCaption
Decoder Text-to-Image Generation
A ASR (speech-to-text)
Encoder MT (text-to-text)
)

iInput

43

Sequence To Sequence (Seq2seq)

* Machine translation as directly learning a
function mapping from source sequence to

target sequence

target:
The weather is nice

Encoder: LSTM ‘ ‘

II’I-I-’ -
]

A

Source:% 5 Decoder: LSTM
B

44
Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Sequence To Sequence (Seq2seq)

* Machine translation as directly learning a
function mapping from source sequence to
target sequence

target: P(Y|X) = HP()’zl)’q, X)
the weatheris nice Training loss: Cross-Entropy
OB l l |

Encoder: LSTM ‘ ‘

H»l—»l—»

A

Source:?i 5 Decoder: LSTM
B’ ¥

==)") 108 £y Yy 15 - Yus1)
n t

Teacher-forcing during training.
(pretend to know groundtruth for prefix)

T

45
Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Performance (2014)

B SMT (moses) B SMT (Buck 2014)
W LSTM S2S (2014) B LSTM - UNK replace
38 —m tSTMensembl

285 ——

19 ——

95 ——

0

WMT 14n-#r

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014
Durrani et al. Edinburgh’s Phrase-based Machine Translation Systems for WMT-14. 201

46

Stacked LSTM for seq-2-seq

* More layers of LSTM

f——

P

——

N

B

B

Y A Y
— — A
x x x x x x
— — — — — —
x Y x A x A

47

LSTM Seqg2seq with Attention

Weather is nice

e
X " 1R ¥ [BOS] Weather

Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate

2015
48

Generation by Attention

A context vector c will be predicted before,
[\ which represents the related source context for
- current predicted word.
exp(D(s,, 1))

context

a,; = Softtmax(D(s,, hy 1)) =

J
The probability of word y_i is computed as:

p(yi) o exp(Wh;) Immail (y;) oc exp(Wh; + V)

Y., exp(D(s,, /)

Mnih et al. Recurrent Models of Visual Attention. 2014.

49

Decoding

Autoregressive Generation

greedy decoding: output the token with max

next token prob

| like singing <EOS>
\41— \/o— Q
| | | | [Sof:ma] [Sof:ma] [Sof:ma]
[EncodeJ [EncodeJ [EncodeJ [Encode] —>[Decod] [Deco d} [Decod]
|
1 L Aike

But, this is not necessary the best

51

Inference

Now already trained a model &

Decoding/Generation: Given an input sentence x, to
generate the target sentence y that maximize the

probability P(y | x; 0)

argmax P(y |x) = fy(x,y)
y

Two types of error

— the most probable translation is bad — fix the model

— search does not find the most probably translation — fix the
search

Most probable translation is not necessary the highest
BLEU one!

52

Decoding

: argmyax P(y|x) = fo(x,y)

* naive solution: exhaustive search
— too expensive

 Beam search
— (approximate) dynamic programming

53

Beam Search

start with empty S

at each step, keep k best partial
sequences

expand them with one more forward
generation

collect new partial results and keep top-k

54

Beam Search (pseudocode)

best_scores = []
add {[@], 0.0} to best_scores # @ is for beginning of sentence token

for 1 1n 1 to max_length:
new_seqs = PriorityQueue()
for (candidate, s) 1n best_scores:
1f candidate[-1] 1is EOS:
prob = all -inf
prob[EQS] = 0

else:
prob = using model to take candidate and compute next token

probabilities (logp)
pick top k scores from prob, and their index
for each score, index in the top-k of prob:
new_candidate = candidate.append(index)
new_score = s + score
1f not new_segs.full(Q):

55

Beam Search

forward by
network top-k
: singing 0.6
rward by ton-k lhke g'j _lllike 0.16 s top-k
network OP- ove 04T ep.16| forward by = I
am 0.1 netyosRoutin . ., ! like singing 0.
04 ' | lik 0.032
’ g ike song 0.
104 hate 0.01 | .
—BOSH We 0.3 We O want 0.01 I—)Ilke 016 FUlilg :
\ He 0.1 . love 0.16 |dancing 0.01
forwaxd by
She 0.1 ne O”ﬁke 04 .
They 0.01 do 03 _ |[Welke0.12 network N
are 0.2 We do 0.09 singing 0.5 | love singing 0.08
can 0.01 dancing 0.3 —p !love dancing 0.048
say 0.01 you O0.11
going 0.01
it 0.01

56

Seq2seq for Machine
Translation

Many possible translation, which is
better?

SpaceXE =ME(8#1T 7 —RXRGMES, KHARELMARER
AR ALTIEARTHIE,

SpaceX launched a mission Wednesday night to put four
amateurs with no space experience into orbit.

SpaceX conducted a launch mission on Wednesday night,
sending four amateurs with no aerospace experience into
space orbit.

SpaceX conducted a launch mission Wednesday night that
sent four amateurs with no spaceflight experience into orbit.

SpaceX carried out a launch mission on Wednesday night to
put four amateurs without Aerospace experience into orbit.

58

BLEU

Measuring the precision of n-grams
— Precision of n-gram: percentage of tokens in output
sentences

num . of . correct . token .ngram
_Pn =

total . output . ngram

Penalize for brevity
— if output is too short

— bp = min(1,e'777°)

BLEU=bp - (] [o
Notice BLEU is computed over the whole corpus, not on
one sentence

59

Example

Ref: A SpaceX rocket was launched into a
space orbit Wednesday evening.

System A: SpaceX launched a mission
Wednesday evening into a space orbit.

System B: A rocket sent SpaceX into orbit
Wednesday.

60

Example

Ref: A SpaceX rocket was launched into a
space orbit Wednesday evening.

System A: SpaceX launched a mission
Wednesday evening into a space orbit.

Precision bp=e1-12/11=0.91
Unigram — 9/11 B) EU=0.91*(9/11 * 4/10 * 2/9 * 1/8)1/4
Bigram 4/10 =28.1%

Trigram 2/9

Four-gram 1/8 61

LSTM Seq2Seq for NMT

* Machine translation as directly learning a
function mapping from source sequence to

target sequence
target: P(Y|X) = HP()’zl)’q, X)

The weather is nice

LLL

Encoder: LSTM % T |

| T

Source: EE /:l, B ;z} Decoder: LSTM

Training loss: Cross-Entropy
- = Z 2 logfé(xna yn,la --'9yn,t—1)
n t

Teacher-forcing during training.
(pretend to know groundtruth for prefix)

62
Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

LSTM Seq2Seq w/ Attention

40

30

20

10

i B

B SMT (moses) B SMT (best)
W LSTM S2S (2014) B LSTM w/ Att (RNNSearch)
— N

\WMT 14en-Fr En-De

Jean et al. On Using Very Large Target Vocabulary for Neural Machine

Translation. 2015
63

Performance with Model Ensemble

B SMT (moses) B SMT (best)
W LSTM S2S (2014) B LSTM w/ Att (RNNSearch)

40 — @ tSTMw/ Att (RNNSearcB 18 Il

30 — e
21.59
20 — —
o II N
0

En-Fr En-De
WMT14

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015
64

Summary

Recurrent Neural Network

Long-short term memory

Gated recurrent units

Attention between decoder and encoder
Sequence Labelling with LSTM

LSTM seg2seq for Machine Translation

65

Video Cover Selection

* Your manager assigns a task for you: build
a system to automatically select the cover
photo for a short video on Tiktok

* Please discuss in groups how you plan to
build the system

66

Next up

e Transformer

» What story you'd like to hear about?

— A robot writer that can write Olympic sport
news, or

— Lessons learned in building real MT product,
or

— an 8-week journey to develop Al component
for map product

67

