Lecture 5
Feedforward Neural
Network

Lei Li and Yuxiang Wang

UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and
Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

Project Ideas

 https://docs.google.com/document/d/
1evWwPACHQ96UKZzOSdANQ629cYI-RUzIIPNU9uSJl_YiNw/

* Proposal due today:
— 1 page
— your team members
— What problem you will do
— Why is it important
— Rough exploration direction
— How will you evaluate (dataset, metric)

> if you are reading/interpreting a classic paper, try to apply to a new
dataset

* You are encouraged to discuss your project at any of our
office hours

https://docs.google.com/document/d/1evwPACHg96UKzOSdNQ629cYl-RUzIIPnU9uSJl_YiNw/
https://docs.google.com/document/d/1evwPACHg96UKzOSdNQ629cYl-RUzIIPnU9uSJl_YiNw/

Scribing Notes

* \olunteers to scribe the lecture notes, and
type it in Latex

* Earn 10% bonus points for each scribed
note

Recap

* General framework to formulate a learning task
Is through empirical risk minimization (ERM)

* Risk Bound for general bounded loss functions

n

— using Hoeffding’s inequality and union bounds
* Model selection, cross validation
« Optimization algorithm:

— Stochastic Gradient Descent

Logistic Regression

output: prob. of class y
h=W:x

exp(h,)

2., exp(hy) (1)

p(y|h) = softmax(h), II

\é:\
3

Softmax

softmax(h); =

Logistic Regression for Binary
Classification

output: prob. of class y @ I/

h=w-X : .

i Sigmoid
h) =oc(h) = elral
p(y|h) =o(h) o+] G Sigmoid

Cross-Entropy Loss for Classification

I & I
min £(60) = — ¥’ H,. f(5,)) = — 3’ = log f(x,),,
n=1

n=1

Limitation of Logistic Regression

» Single layer has
limited capability
— cannot learn XOR

* The decision
boundary is linear

— cannot learn a
nonlinear decision
boundary

— why?

How to build more expressive models?

* Inspiration from human brain
— The human brain is a connectionist machine

— neuron o
“‘::.\"\-o/'/g\ - “Cm N4
e N\ Iz
K= \\a 4
& T - U}; - 7
o A 7 o8 QCQ:::)(/ yyyyy
- i 29 ‘%;Z\P

Terminal buttons
(form junctions
with other cells)

Cell body Dendrites
(soma) (receive messages)
from other cells) Dendrites

(from another
ﬂ neuron)

Axon
__ (passes messages away
from the cell body to ,
other neurons, muscles,
~_ orglands) 4

Action potential
(electrical signal

traveling down Myelin sheath

the axon) (covers the axon of some
neurons and helps speed
neural impulses)

A single Artificial Neuron

input Activation function o

welght

=0

Inputx E Rd

Weight:

WEIRd,belR

Perceptron

* Frank Rosenblatt
— Psychologist, Logician
— Inventor of the solution to everything, aka the Perceptron (1958)

Inputs Weights

Threshold T

* Number of inputs combine linearly
— Threshold logic: Fire if combined input exceeds threshold

Y—{ Lif Y wx,—T >0
0

12

else

Feedforward Neural Net (FFN)

 also known as multilayer
perceptron (MLP)

« Layers are connected
sequentially

« Each layer has full-connection
(each unit is connected to all
units of next layer)

— Linear project followed by hy

— an element-wise nonlinear
activation function

 There is no connection from
output to input

Feedforward Neural Net (FFN)
 also known as multilayer O O O

perceptron (MLP)
x € R?

hl — G(Wl - X + bl) < Rdl

Parameters

9 — {Wl,bl,W2, bz, }

Hidden layers

) hl ZG(WI x+b1) = Rdl
hl = G(Wl . hl—l + bl) & Rdl

o IS element-wise nonlinear
activation function

Why do we

need an a
nonlinear

What-if Layer with no activation?

hl — W1X+b1
h2 — Wghl + bz

hence h, = w, W x + b’

Why do we

need an a
nonlinear

Sigmoid Activation

Map input into (0, 1), a

1 ifx>0

o) = 0 otherwise

soft version of{

sigmoid(x) =

1 + exp(—x)

— — — — — — — — _1_0_.

0.8 A1

0.6 1

~10.0 -75 =50 =25 0

0 2.5 5.0 7.5 10.0
17

Tanh Activation

Map inputs into (-1, 1)

- 2020
1.0 -
0.5 A
% 0.0 A
) —0.5 -
—1.0 - :

18

RelLU Activation

RelLU: rectified linear unit

ReLU(x) = max(x,0)

19

Gaussian Error Linear Units (GELU)

smoothed version of RELU

GELU (x) = xP (X < x) = x® (x) = x - % [1 + erf(x/\/i)]

GELU(x) =~ 0.5x <1 + tanh <\/2/7z(x + 0.044715x3)>>

20

Feedforward Network for Classification

Softmax as the final output
layer.

x € RY

hl — U(Wl - X + bl) - Rdl
hl = G(Wl . hl—l + bl) — Rdl
Parameters N\

9 — {Wl’bl’WZ’ bz, }

OXOX©

Hyperparameters for FFN

 Number of layers

 Number of hidden
dimension for each
layer

 These determine the
hypothesis class

QO

N - -~ 4‘," 1\ ~
~ .

Application: Sentiment Analysis

“We enjoyed our stay so much. The weather was not great, but everything else was perfect” &)

“There were no clean linens when | got to my room and the breakfast options were not that many.” &

“Best weekend in the countryside I've ever had.” &)
“Terrible. Slow staff, slow town. Only good thing was being surrounded by nature.” (%)

‘It was a peaceful getaway in the countryside.” &)

Pytorch implementation:

model = torch.nn.Sequential/(
torch.nn.Linear (10000, 10),
torch.nn.RelLU(),
torch.nn.Linear (10, 2)

23

Application: Recommendation Model

« Recommending videos on
Tiktok

1.5 billion users (growing
from 10 million in 2017)

« > 10 million videos for
recommendation

» Response time: < 50ms

Deep&Wide Model

7 prob. of clicking/watching

o4 & o

o o

sparse feature

user features (e.g., country, language, demographics),

contextual features (e.g., device, hour of the day, day of the week)
impression features (e.g., historical statistics)

Content features (e.g. item id, extracted image feature, title feature)

The Learning Problem

 Given a training set of input-
output pairs D = {(x,,y,) }2’:1 Y

* To find the model parameters | /‘»‘\'

R | S
such that the model produces (‘\!‘g‘,g,‘&,,‘!}
most accurate output for each =/

— X, and y, may both be vectors

» o0 o0 oo0O0O

training input X

— Or a close approximation of it

* Learning the parameter of a
neural network is an instance!

— The network architecture is given

26

Recap: Risk

* The expected risk is the average risk (loss)
over the entire (X, y) data space

R©O) = Ey yep [£0 fx:0))] = Jf(y,ﬂx; 0))dP(x,)

27

Empirical Risk Minimization (ERM)

* |deally, we want to minimize the expected
risk
— but, unknown data distribution ...

* Instead, given a training set of empirical

_ N
data D = {(x,,y,)}, _;
* Minimize the empirical risk over training data

0 — aremi L(H)—iZK((x.; 0))
arg an Y, 4 Y, J(X,;

28

Learning the Model

* Ideally, we want to minimize the expected Risk
RO) = Ei, pep |20 f(x:0))| = [f (v, f(x; 0))dP(x, y)

» Finding the parameter 6 to minimize the empirical
risk over training data D = {(x,,y,) }]le

) — argmin L(6) = — 3\ £0 f05,:0)
argmgm =N 4 Voo J(X,5

* This is an instance of function optimization problem
 optimization algorithms from previous lecture

29

Loss for Classification

* The empirical risk (loss) is determined by the
error function

* |deal error for classification: 0-1 loss

| O ify =argmax; f(x),
0 10) = {1 otherwise

* Cross entropy is one common error function for
classification

I I
min Z(0) = — > HO,p) = — > =, log f(x,)

30

Other Loss for Classification

e Hinge loss

- Binary classification:
£(y,y) = max(0,1 — yy)

When ground-truth y 1s +1,
prediction y<O0 lead to larger

penalty
- Multi-class

£(y,9) = Y max(0,1 - §, + H)
kFy

31

Loss for Regression

 Continuous outcome

1 & ’
LO) == 2, 0w) j MSE
n=1

1
. squared loss: £(y,) = > | f—y |§

1
. L1loss: £(y, f) = 5 |f =¥l

==y 1 f=yl, <8
Huber loss: £(y, f) =

o(|f—y|— g) otherwise

32

Recap: Optimization

« Consider a generic function minimization

problem
min f(x) where f : R - R \/

w

« Optimality condition:

5 0 2 a

Vil = 0, where i-th element of Vf| is —f
0X;

 Linear regression has closed-form solution

* In general, no closed-form solution for the

equation.

33

Stochastic Gradient Descent

. flx,+ Ax) = f(x,) + AxTVflxt
. To make AxTVflx smallest
« = Axin the opposite direction of Vf| i.e. Ax = — Vf|

. Update rule: x,,.; = x, —n Vf]|

Gradient Vflx IS computed over a minibatch of
samples.

1 is a hyper-parameter to control the learning rate

34

How to compute the Gradient for
Feedforward Any Neural Network

Computing Gradient for Neural Net

* Forward and back-propagation
« Suppose y=f(x), z=g(y), therefore z=g(f(x))
 Use the chain rule,

Ve(fol, = (VfI) Vgl

» For a neural net and its loss £(60)

* First compute gradient with respect to last
ayer

then using chain-rule to back propagate to
second last, and so on

36

Example

37

Computing the Gradient

ot (v, y
What is: S ky)
(3wl-(, J-)

38

o= The “forward pass”

]

f

A\?I/A A (N

i o
Vi M M

V0N (7 N (R A%

N e h
9.9

We will refer to the process of computing the output from an input as
the forward pass

We will illustrate the forward pass in the following slides 25

y«»/:x The “forward pass”

Z() y(1)

A\v }m“

J \«'/

"C‘/A
"v

// /

Setting yl.(o) = x; for notational convenience

Assuming wéf) = b;k) and yék) = 1 -- assuming the bias is a weight and ex’reggiing

the output of every layer by a constant 1, to account for the biases

w=x The “forward pass”

%
NV

(N A
, N

) @ %
/}0 {)o {)o
A

W\
/N O 1///}

N
-

(1) (1) ,(0)
2= Z Wi i
i

42

y(0) =X %

/ z(1) y(1) 5

AN
A\m a A\?!/L é A\?!/L
W O O
AN (7 AN 0 /N
NI l};}y l};}y
OO~

(1) — (1),,(0)
7V = 2wy, y = f1(2}1)>
I

43

VAAVYAAY
\«W ')

W Wi
AN A({)?/é
/

M R

i OO
////'& /A il
s O 72O

It
/ N

44

‘ ‘ y() zZ) @ y2) Z) y@)
TN
AYN @ A\!l/; @ A@/A
MO O
4N (M /i (7 /N
V[&V I;;}V l@y
Pt D an O ai o

1

(1) DO (1) _ | @) _ @) ,(D
L= Z W'Y = f1<2})) Zj Z Wi = fz(zj@)
i i

45

\/

A’A
‘M

»‘/A

\/
X
’M
‘/;’/A

y(0) =X

/
Vi

AYN
W
AN
N/

N
A

Vi

1/ 4\'9"/}
WK WK
PO A SN

Ko
I g

(1) — (1),,0) 1 1 2) — (2),,(1) 2 2
% _sz‘j Yi y;)=f1<2;)> % _sz‘j Yi y;)=f2<2;))
j j

Vi

AR

47

(3) — (3),,(2)
7= w, G = £.(®
: Y 3\ %

y(0) =X

/ z(1) ym o z(2) y2 26 y(3) z(N-1

M TN TN
AW AW S
WO O
AN

Kol
I e

(N) — (N),,(N=1)
“ o sz‘j Yi
i

N-1) _ N-1 J
;)_fN—l(Z}))

/N (7 /N

i
N
N

0=x Forward Computatlon

/ (1) y(1) 2(2)/f\ y(2) z3) y(3) z(N- 1)%\ y(N-1)
2

—- fi 3
M ooy M oy M

‘W‘ 0”‘ AN YA

AN\ AN 7\ AN lﬁ"
/"v @ ["’W) I""% O ’

//*e/ @"G //

ITERATE FOR k= LN ¢. j = 1:layer-width

(k) — 1K)y (k=1)
yO = x, T i

z(N)

I

(k) _ (k)
y] _fk<zj)

49

Forward “Pass”

Input: D dimensional vector X = [xj, j=1...D]

Set:

— Dy = D, is the width of the Ot" (input) layer

0) — : .
=X = 1...D;

(k=1...N) _

Y xp=1

Forlayerk = 1...N

—Forj=1...D,

D, is the size of the kth layer

Dk—l

i=0

k) _ k
N y})—fk<2;)>

() — (), (k=)
y % T > Wijdi

Q1 l’rpu’r'

_Y=y", j=1..Dy

50

o=, Computing derivatives

y(N-2)

We have computed all these intermediate values in the
forward computation

We must remember them - we will need them to compute
the derivatives

51

Calculus Refresher: Chain rule

For any nested function I=f(y) where y = g(z2)
dl dl dy
dz dy dz

Forl= f(z,2,, ..., 2) y @ z
where z; = g,(x) v

dl ol dz; adl dz, ol dz,,

— + + ...+
dx 0zy dx 0z, dx 0z dx 52

-, Computing derivatives
yiN-2) EE——

; z(1)

of 9 of
oz 9™ g

53

) 5
A’A

Direct compute

o6 0y [of
0z 9z W\ gpV)

54

A(E)

ﬂ""
Derivative of
ot :(/aj}\ 57 activation function '

ozV) y(N) Computed in forward
L pass

55

56

o 0T or

57

owd awlg-N) 8Z]-(N)

awlgN) awlgN w Just computed)

ﬁzj(]\ng-\A Because

(N-1) _
or . Vi z}N) = wl.(jN)y(-N Y+ other terms
N\ AN 5.V \ |
o g 59
Computed in forward pass

For the bias term yO(N_l) =1

61

oz or

or Z
dyl-(N -1 I 6yl-(N -1 6ZJ.(N)

62

o

ayl_(N —1)

2

J

55 /o2

oy o,

—__ Already computed

63

—1 = —1
ayl-(N) - ayl’(N)aZj(N) 64

)~)~
% Because
oz{V) (V) _
or zw(Zj or Wi Z}N) = wi(jN)y(-N Y+ other terms
J

N

65

66

Z(N-Z) z(N-l)
N-2 N-1
°ceoe N=2 In-
= Tn-)
T N-2 T N-

We continue our way backwards in the order shown

ot ot
L (N-1)
azi(N—l) _fN_l(Zi) aAgN—l)

z(N)

67

We continue our way backwards in the order shown

or s
oD

ot

(N-1)
0zj

2(N-1) y(N-1)
N-1
z(N)
a
Tn-)
A
the bias term yV=2 = |

0

68

z(N)
oo o N-=-2 fN—
= Tn-)
fN—2 fN—

We continue our way backwards in the order shown

ot ot
= E w.(.N_l)
] aZj(N—l)

IN-

TN

JN-

We continue our way backwards in the order shown

or
o~ Iv-2lG

(

ot
aAgN—Z)

N—Z))

z(N)

70

y(N-2)
z(N-2) z(N-1) y(N-1)
TN=2 N-1
z(N))A,(N)
fN
oo o N-=-2 fN—
>
= Tn-) fy
y
f N-2 T N-
We continue our way backwards in the order shown
— E Ww..
(1) I (2)
ay; . 0z; o

z(N-2) z(N-1)
= N-1
oo N=2 In-
= Tn-)
f N-2 7 N—

We continue our way backwards in the order shown

ot ot

9C)
1550

z(N)

72

We continue our way backwards in the order shown

ot

owi)

Xi

%
oz("

y(N-2)
z(N-2) z(N-1) y(N-1)
(= -1
z(N))A,(N)
f
oo N=2 Tn- N

£ >
i N=2 i N-1 fN

y
f N=-2 f N—

73

Backward Pass

« Output layer (N) :

— Fori=1...Dy
of o O Called "Backpropagation” because
* 52 =Nz,)aA(N) the derivative of the loss is
aic o) OF); : . propagated "backwards” through
awgV) — i azj(N> or e the network
« Forlayerk = N — 1 downto 1
_ Fori=1...D, Very analogous to the forward pass:
ud — Z W_(]c)i Backward weighted combination of
. (k—=1) lJ (k)
0y;- ; 0z; next layer
0 ot
A P N
. azj(k) =15 PG Backward equivalent of activation
Lﬂ l
= y.(k_l)i for each j
ow® 1 0z®

74

Example

* simple _model.html

75

Autograd

* No need to write forward and backward
explicitly

* Only need to specify the network

* Supported in pytorch and tensorflow

76

FFN in Pytorch

import torch
import math

X
y

model = torch.nn.Sequential(
torch.nn.Linear (2, 3),
torch.nn.RelLU(),
torch.nn.Linear(3, 1)

)

loss_fn =
torch.nn.MSELoss (reduction="'sum')

learning_rate = le-3

optimizer =
torch.optim.SGD(model.parameters()
, lr=learning_rate)

for t in range(2000):

Forward pass
y_pred = model (xx)
loss = loss_fn(y_pred, y)

if t % 100 == 99:
print(t, loss.item())
model.zero_grad()

Backward pass
loss.backward()

Update the weights using
stochastic gradient descent.
optimizer.step()

You can access the first layer
linear_layer = model[0]

For linear layer, 1its parameters
are stored as "weight and "bias .
print(f'Result: y =
{linear_layer.bias.item()} +
{linear_layer.weight[:, 0].item()}
x + {linear_layer.weight[:,
1].item()} x*2 +
{linear_layer.weight[:, 2].item()}

x*3"') 27

Summary

Single artificial neuron
Logistic Regression and its limitation

Feedforward neural network (multilayer
perceptron)

Successful example of FFN: Deep&Wide
model

Computing Gradient for FFN —
backpropagation

78

Next Up

e Lecture 6: Convolutional neural network

— Application in image classification and object
detection

* Lecture 7. Sequence modelling, recurrent neural
networks

* Lecture 8: Transformer (very powerful model)

* pretraining

79

