Lecture 4 Optimization
for Machine Learning

Instructor: Lei Li, Yu-Xiang Wang

Recap: Supervised learning

* Data (1, Y1), ooy (Tpy Ypn) € X X Y
* Hypothesis h: X —) from H
* Loss function Z(h, (x, y))

* Example:
* Linear regression
* Linear classifiers
e Decision tree classifiers

Recap: Unsupervised learning

oData :,E]_,...,xn E X
e Hypothesis h € H
e Lossfunction /: H X X — R

* Examples:

* k-means clustering
 PCA

Recap: Risk, Empirical Risk

e Loss function

£(h, (z,y))
* Risk function
R(h,D) = Ep[l(h, (z;,y;))]

* Empirical risk

A

R(h,Data) = = Zah, (24, y5))

Recap: “One algorithm that rules them
all” --- Empirical Risk Minimization

* ERM

A

h = argmin R(h, {(zi, y:)|i € [n]})

* Regularized ERM

A

h = in R(h, Dat h
arg min R(h, Data) + g(h)

This lecture
 Risk bound for general bounded loss functions

* Model selection

* Optimization methods for machine learning

Recap: Theorem for (fixed design)
Inear regression

Theorem: Assume (A1) and (A2), the ordinary least square
estimator for linear regression satisfies:

E[R(0)] — R(6") <

io®

(1

* Observations:
* No assumptions on the design matrix X

* The bound is exactly tight:
+ Recall that E[R(A)] — R(0*) = E[||0 — 0" || %+ +]

.1 &
. = == .~ N(0%,6°1
When X = . n;y (60%,0°1y)

The result relies on strong assumptions
on how the data is generated

e e.g., it does NOT apply to the case for fitting a
polynomial to a noisy sine function we gave earlier!

* The statistical learning problem:
* Assumption B1:iid samples

* Assumption B2: Bounded loss function

* Assumption B3: Finite hypothesis class

The goal again is to bound the
excess risk . This time we want a
high probability bound.

* With probability at least 1 — §

A

R(h) — R(h™) < ¢

 Parameterize € as a function of
* Number of data points
 Size of the hypothesis class
 Boundedness of the loss
 Failure probability

Introducing two powerful “hammers”:
Hammer 1. Hoeffding’s inequality

Theorem D.2 (Hoeffding’s inequality) Let Xi,..., X, be independent random wvariables with
X; taking values in [a;,b;] for all i € [m]. Then, for any € > 0, the following inequalities hold for
Sm — Z;Zl XZ .

P[Sm — E[Sim] > ¢] < e~26/ ZiZa(bi=ai)® (D.4)
—€

P[Sm — E[Sim] < —¢] < e~2¢7/ XiZi(bi—ai)® (D.5)

IA A

(see Appendix D.1 of FML textbook for a proof)

Roughly saying that the empirical averages of independent random
variable converges to the mean at a O(1/sqrt(n)) rate, with high probability.

Introducing two powerful “hammers”:
Hammer 2. Union bound

Lemma (Union bound): For any probability distribution and
any event E1, E2:

PEy U Ey| < PE;| 4+ P EsS]

Now let’s apply these two hammers
to solve statistical learning

1. For each hypothesis h, apply Hoeffding’s
inequality

2. Union bound over all hypothesis

Now let’s apply these two hammers
to solve statistical learning

Theorem: Assume (B1),(B2) and (B3), with probability at least
1 — 6 (overthe distribution of the data), ERM satisfies

R — B(h) = O (\/1og|m +1og<1/5>>

n

Quiz 2: Application to decision
tree classifier

* d-dimensional discrete feature (L-levels for each)

* H-layer decision tree, binary decision in one layer
* K Labels

e Upper bound of the size of hypothesis class?

14

Quiz 3: Application to generic
classification (no restriction on the
hypothesis class)

* d-dimensional discrete feature (L-levels for each)
* Klabels
* Total number of unique classifiers?

15

Computation-approximation tradeoftf
in the choice of hypothesis class

model p* (y‘gj) Linear learners Neural networks
) Depends on how .. Not efficient in the
Computation > . Efficient
complex p* is worst case, but...

Approximation | No approximation | Large approx. error | Small approx. error

Statistical Depends on how

. . Need less data Need more data
efficiency complex p* is

“All models are wrong, but some are useful.”

George Box
(1919 - 2013)

17

Checkpoint: Theory of learning

 Risk bounds for linear regression model

. do?

E[R(D)] - R(0") < —
 Risk bounds for a general learning problem with
bounded loss

R() — R(h*) = O (\/mg #] + 1og<1/5>>

n

* Observations:
* Not directly comparable for several reasons
e Strong assumption => Strong results
* Weak assumption => Weak results

This lecture

* Model selection

* Optimization methods for machine learning

Typical problems in model
selection

* Choose hypothesis class
e Decision tree? Linear classifier? Or neural networks?

* Choose hyperparameters
* Depth of decision tree
* Regularization weights for Ridge / Lasso

* Choose which set of features of include

Model selection is challenging
because we do not observe the

actual risk!
* Empirical risk is often a poor surrogate due to the

optimization bias
 Example: 1-Nearest Neighbor classifier

* Two ideas for estimating the risk
* Calculate or bound the actual risk in theory

e Simulate the actual risk on a dataset not used for
training.

Empirically measuring the Risk by
splitting the data into: Training, Test,

and Validation Sets

Set

Dataset D
e N
~— S
A J
~ Y Y
Training Validation Test

Set

Validation set is used for model-selection:
- choosing decision tree vs. linear classifier
- Select features, tune hyperparameters

Test set is used only once to report the final
results.

22

Cross-validation

Figure 1.18 The technique of S-fold cross-validation, illus-

trated here for the case of S = 4, involves tak-

ing the available data and partitioning it into S
groups (in the simplest case these are of equal

size). Then S — 1 of the groups are used to train

a set of models that are then evaluated on the re-

maining group. This procedure is then repeated

for all S possible choices for the held-out group,

indicated here by the red blocks, and the perfor-
mance scores from the S runs are then averaged.

* Pros:

* No assumption on the data generating distributions, except iid.
* Do not waste data, comparing to holdout.

* Cons:
* |t evaluates the model applying to (S-1)/S fraction of the data
 Computation cost = O(S * number of models to select from)

run 1

run 2

run 3

run 4

23

Other approaches for model
selection

 AIC (Akaike Information Criteria) / BIC (Bayesian
information criteria)
e (see PRML Section 1.3 and 4.4.1)

* Effective degree of freedom
* Measuring the effective number of parameters

* For fixed-design regression with square loss + Gaussian
noise, any estimator:

A A

R(h) ~ ELR()] = ~7~df i)

So if one can estimate df, then can use it for model selection

Effective degree of freedom for
Regularized Linear Regression

* Ridge regression
df (X0) = tr(X(XTX + X)X T)
 Number of parameters, if no regularization
* Independent to datay, can be computed ahead of time

* Lasso {ZM #0}

j€Eld]

e Expected number of non-zero weights -- Sparsity.

* This is truly remarkable that we get this via L1-
regularization

See e.g. : https://www.stat.cmu.edu/~ryantibs/papers/lassodf.pdf

https://www.stat.cmu.edu/~ryantibs/papers/lassodf.pdf

Checkpoint: model selection

* Three approaches for model selection

e Holdout
e Cross validation
 Penalize information criteria

* Cross validation is what is most commonly used in
practice.

Remainder of this lecture

* Optimization methods for machine learning

How do we solve ERM?

-

o

Modeling

~

)

- Feature engineering
- Specify a family of classifiers

Inference

\

N 4

Apply the classifier to emails

/ o

Learning

)

Learning the best performing classifier

—

Recap: Linear classifiers

* Score(x) = wgy+ w; * 1(hyperlinks) + w, * 1(contact list)
+ w3 * misspelling + w, * length

* A linear classifier: h(x) =1 if Score(x) >0and 0
otherwise.

e Question: What are the “free-parameters” in a linear
classifier?

* If we redefine) = {—1, 1}

* A compact representation:

h(z) = sign(w’[1; z])

Recap: Geometric vi

ew: Linear
classifier are “half-s

naces”’ |

{x| wo+ws*x1+w, *x2+ws3*x3 + w, *x4 >0}
The set of all “emails” that will be classified as “Spams”.

Non-spam \
\
\
Proportion [] [] ‘| o
of misspelled \ O
words . ‘\‘ ‘
\
[o
m °
= \
\
L] \ spam
\
\
1

Length of the message

30

In the case when the training data is
linearly separable, there is a
polynomial time algorithm.

* Why?

e Easiest way to see it is that it is a linear program.
* Polynomial time algorithm exists for all LPs.

find w € R¢

subject to:
whz; >0Vie {1,2,...,n}sty; =1
wlz, <0OVie {1,2,...,n}sty; = —1

Also, check out the Rosenblatt (1958)’s Perceptron algorithm from PRML 4.1.7,
as well as its “mistake” bound analysis in FML-8.3.1.

31

Best linear separator in general
(linearly non-separable cases) is NP-
hard.

Non-spam \
\

\
Proportion [] [] ‘\ ®
of misspelled \ n O
words ‘ ‘\ ‘

1

1

\

H g
- ‘\ ¢
\
O \ ® spam

Length of the message

32

Just “relax”: relaxing a hard
problem into an easier one

min Error(w) = % Z 1(Sign(wT3?z') #* Vi)

weRd

min —Z€ w?! Ti,Yi).

weERT N

33

Why are “surrogate losses” easier to
minimize?

* They are continuous.
* Differentiable (except hinge loss).
* Convex.

Misclassification

Exponential

Binomial Deviance
—— Squared Error
—— Support Vector

Loss
00 05 10 15 20 25 30

N

34

Convex vs Nonconvex

optimization

o
T
{\\\\\\ \\‘“

A0
L

LAY 77
R
AL

L

@ Unique optimum: global/local.

e ;
R
"0‘::‘::“\‘\‘\‘{“\’\?%]
=
ke

o

\
w0

{;/
\

‘ I’ ’ o ‘ (7
N

/A
e

N

8
S

@ Multiple local optima

In high dimensions possibly
exponential local optima

* Be careful: The surrogate loss being convex does not imply all ML problems using
surrogate losses are convex. Linear classifiers are, but non-linear classifiers are

usually not. Take “convex optimization” to know more.

35

How do we optimize a continuously
differentiable function in general?

* The problem: m@in f(6)

* Let’s just optimize it anyway!
* With gradient descent.

* Assumption: The objective function i/g?\
differentiable almost everywhere. f N
()Y

Ory1 = 0: — 0V f(01)

Gradient Descent Demo

209

02

016 365136

Org

DY?

02,

8
~

* Play with this excellent tool yourself to build intuition

37

1Z

//github.com/lilipads/gradient descent v

https

https://github.com/lilipads/gradient_descent_viz

Gradient of logistic loss for
learning a linear classifier

* The function to minimize is

min — Zlog (1 + exp(—y; - 27 w))

weER N
1=1

* How to calculate the gradient?
e Take out a piece of paper and work on it!
* (you have 3 min)

Hint:

e Apply the chain rule.
* dlog(x) /dx=1/x

* dexp(x)/dx=exp(x)

38

Gradient of logistic loss for
learning a linear classifier

n

1 exp(—y; -] w)
\Y% - E : —YiLg
f(w) n— 1+ exp(—y; - v} w) (=yizi)

* What is the time complexity of computing this
gradient?

Stochastic Gradient Descent
(Robbins-Monro 1951)

e Gradient descent

Ht_|_1 — (975 — ntVf(et) Herbert Robbins

1915 - 2001

* Stochastic gradient descent
Orr1 =00 — 1.V f(0r)

e Using a stochastic approximation of the gradient:

5[V £(6,)]60:] = V f(6;)
Var[V f(0,)]0;] < o?

40

One natural stochastic gradient to
consider in machine learning

e Recall that

* Pick a single data point i uniformly at random

* Use VQK(H, (ngyz))

 Show that this is an unbiased estimator!

lllustration of GD vs SGD

20

10

-10

-20

/ :

e

Rule of thumb for stochastic
methods:

® generally thrive far
from optimum

T/ ® generally struggle close
/ to optimum

I I I I I
-20 -10 0 10 20

Observation: With the time gradient descent taking one step.
SGD would have already moved many steps.

42

Intuition of the SGD algorithm on
the “Spam Filter” example

Contains hyperlinks Proportion of misspelled words

y '
1 0 0.0375 80

f r

Whether the contact list Length of the message

* Score(x) = wy+ wy * 1(hyperlinks) + w, * 1(contact list) + wj
* misspelling + w, * length

* Meaning of these weight?

* The more positive, the more we think the feature is associated with
Spam email.

* The more negative, the less that we think the feature is associated
with Spam email

Intuition of the SGD algorithm on
the “Spam Filter” example

exp(—y; - a:Tw)
/ i Yi)) = : —YiT;

Scalar > 0: : :
: e Vector of dimension d:
= 0 if the prediction is . . :
provides the direction of
correct :
. the gradient
= 1 otherwise

If we receive an example [1, 0, 0.0375, 80] like the one before.
And a label y = 1 saying that this is a spam.

How will the SGD update change the weight vector?

Then by moving w towards the negative gradient direction, we are changing the
weight vector by increasing the weights. i.e., increasing the amount they
contribute to the score function (if currently the classifier is making a mistake on
this example)

Interpretation of Gradient Descent

1. Taylor approximation of the
objective function:

F) & 1)+ VH@ 5~ 2) + oy — 3

2. Choose the next point by Blue point i , red point is

+ T

« e e . . . 1
minimizing the expansion z" = argmin f(z) +Vf(@)" (y —2) + glly =l

Y

Convergence analysis of GD for
smooth & non-convex objective

* Problem setting: min f(@)
0

e Assumption: fis L-smooth (but not necessarily convex)

e How to measure success?
* g-stationary point:
* |teration complexity:

» Algorithm Ory1 = 0: — 'V f(0;)

Convergence analysis of GD for
smooth & non-convex objective

* Descent lemma

* Telescoping

Convergence analysis of SGD for
smooth & non-convex objective

* Expected Descent Lemma

* Telescoping

What happens if we assume the
objective function is convex?

* One region of solutions, thus stronger goal possible:

* A summary of results (in iteration complexity)

Convex + G-LIpSCh.ItZ Convex + L-Smooth p-strongly convex +
+ Bounded domain L-smooth
GD

SGD

49

How to choose the step sizes /
earning rates in practice?

* |n practice:
* Use cross-validation on a subsample of the data.
* Fixed learning rate for SGD is usually fine.
 If it diverges, decrease the learning rate.

* If for extremely small learning rate, it still diverges,
check if your gradient implementation is correct.

The power of SGD

e Extremely general:

» Specify an end-to-end differentiable score function, e.g., a
complex neural network.

* Beyond the context of machine learning

* Extremely simple: a few lines of code.

* Extremely scalable
 Just a few pass of the data, no need to store the data

* People are continuing to discover that many methods
are special cases of SGD.

Gradient Boosting

The Annals of Statistics
2001, Vol. 29, No. 5, 1189-1232

1999 REITZ LECTURE

GREEDY FUNCTION APPROXIMATION:
A GRADIENT BOOSTING MACHINE!

By JEROME H. FRIEDMAN

Stanford University

Function estimation/approximation is viewed from the perspective of
numerical optimization in function space, rather than parameter space. A
connection is made between stagewise additive expansions and steepest-
descent minimization. A general gradient descent “boosting” paradigm is
developed for additive expansions based on any fitting criterion. Specific
algorithms are presented for least-squares, least absolute deviation, and
Huber-M loss functions for regression, and multiclass logistic likelihood
for classification. Special enhancements are derived for the particular case
where the individual additive components are regression trees, and tools
for interpreting such “TreeBoost” models are presented. Gradient boost-
ing of regression trees produces competitive, highly robust, interpretable
procedures for both regression and classification, especially appropriate for
mining less than clean data. Connections between this approach and the
boosting methods of Freund and Shapire and Friedman, Hastie and Tib-
shirani are discussed.

Widely-used packages: Xgboost, LightGBM

Gradient Boosting

* Choose your favorite loss function
e Square loss, Huber loss, Cross-entropy, Hinge loss, etc.

* Score function is a weighted sum of decision trees.

ZBJ), t=1,...n

+ + ||
L TrEw LA

* ERM amounts to solving ™", 2! (%Z@Tmi))
j=1

1=1

Gradient Boosting as a “Projected”
SGD algorithm

1
min — ¢ (y;, f(x;)) with no restriction on f
jn s 2 ¢ f(2)

Take the gradient with respect to the predictions of f
l ag(ylﬁ uz)
n ou; SBWCEES 7

But f needs to be a linear combination of trees, so let’s use a tree to
approximate the gradient

dy =~

1=1,...,n

n

' d; — T(x;))?
nin i:1((7))

Not hard to (approximately) solve for a single tree

Update the current function by gradient descent:

f& = 4, T,

Summary

 Risk bound for general bounded loss functions
* Hoeffding’s inequality + Union bound argument

* Model selection

e Optimization methods for machine learning
* Gradient Descent
e Stochastic Gradient Descent
e Convergence analysis
* Gradient boosting as gradient descent.

Upcoming next: More
discriminative modeling

* Thursday: Feedforward neural networks

* Next Tuesday: Convolutional neural networks

