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291K Machine Learning



• Linear Regression
• Linear classifier
• Both need pairs of data-labels <x, y> to 

train
• What if we do not have labels y

– Can we still train a model to predict data class?
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Recap



• Basically finding “patterns” of data
• No golden labels to teach the model

– Only raw data x, but not y
• Instances: 

– Clustering: Give data samples, find groupings 
– Dimensionality Reduction: Given high-

dimensional data, compress them into low-
dimensions
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Unsupervised Learning



• No human annotated 
data (too expensive)

• Do not have clear 
target, but still want to 
find “meaningful” 
patterns

• Just fitting the data with 
most likely distribution
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Why Unsupervised Learning



• Informally: find 
natural groups of 
data

• Organizing data 
into clusters such 
that 
– High intra-cluster 

similarity
– Low inter-cluster 

similarity
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Clustering



• Benjamin Netanyahu Questioned in Israel Graft Inquiry
• Rockefeller Foundation Picks Rajiv J. Shah, a Trustee, 

as President
• lare Hollingworth, Reporter Who Broke News of World 

War II, Dies at 105
• Danielle Brooks: The First Time I Saw Myself on a 

Billboard
• For Troubled Student, a Change of School and Direction
• 10 Key Moments and More From Trump’s News 

Conference
• California Today: The Tale of the Laguna Beach Jumper
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Grouping News Articles



Pizza Hero wants to open 
a few stores at Los 
Angeles. 
• Through survey they 

collected pizza ordering 
requests from locations 
across the city. 

• How to decide the 
proper sites? 
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Choosing Pizza store sites



• Organizing data into clusters provides 
better interpretation of the data
– Reveal internal structure of data samples

• Partition the data itself can be the goal
– Image segmentation: separating objects from 

background
• Knowledge discovery in data

– E.g. reoccurring patterns, topics, etc. 
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Why Clustering?
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What is a natural grouping among these objects?
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Clustering is subjective



Similarity is hard to define. But we know it when we see it.
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How to measure Similarity?

The real meaning of similarity is a philosophical question. We will take a more 
pragmatic approach - think in terms of a distance (rather than similarity) between 
vectors or correlations between random variables. 
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Distance Metrics

• Euclidean distance 𝑑 𝑥, 𝑦 = ∑! 𝑥! − 𝑦! "

• Manhattan distance 𝑑 𝑥, 𝑦 = ∑! 𝑥! − 𝑦!
• Cosine similarity 𝑑 𝑥, 𝑦 = #⋅%

# %

𝑥 = 𝑥!, 𝑥", … , 𝑥#
𝑦 = 𝑦!, 𝑦", … , 𝑦# 3

4
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• Partition algorithms
– K-means clustering
– Spectral clustering
– Mixture-model

• Hierarchical algorithms
– Bottom-up
– Top-down
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Types of Clustering



• Scalability
• General
• No requirement for domain knowledge 
• Interpretability and Usability
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Desirable Properties of 
Clustering Algorithm



• Group N data samples (m-dimensional) 
into K non-overlapping groups

• The user has to specify K the number of 
clusters. 
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K-Means Clustering



1. Start with initial K cluster centers 
randomly
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K-Means Clustering Algorithm



2. Assign each data point to its nearest 
center

17

K-Means Clustering Algorithm



3. Update each group center with the mean 
of its members 𝜇! =

&
'!
∑(∈'! 𝑥(
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K-Means Clustering Algorithm



4. Repeat steps 2-3 with many iterations.
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K-Means Clustering Algorithm



5. Finish when members in clusters do not 
change. 
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K-Means Clustering Algorithm



1. Start with initial K cluster centers 
randomly

2. Assign each data point to its nearest 
center using distance function

3. Update each group center with the mean 
of its members

4. Repeat steps 2-3 with many iterations 
until members in clusters do not change. 

Demo:https://www.naftaliharris.com/blog/vis
ualizing-k-means-clustering/ 21

K-Means Algorithm

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


1. Start with initial K cluster centers 
randomly

2. Assign each data point to its nearest 
center using distance function

3. Update the center with the point bearing 
the smallest total distance to all other 
points in the same cluster 

4. Repeat steps 2-3 with many iterations 
until members in clusters do not change. 
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Variation – K-Medoids



• What is a good partition?
– High intra-cluster similarity

• K-Means optimizes
– The total sum of distance from 

members to the cluster centers

f(𝜇!…𝜇" , 𝐶) = )
"#!

$

)
%∈'!

𝑥% − 𝜇" (

• Optimal solution
min
*
min
'
𝑓(𝜇, 𝐶)
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Why K-Means Works?



• Optimize the objective

min
)
min
'
𝑓(𝜇, 𝐶) = )

"#!

$

)
%∈'!

𝑥% − 𝜇" (

• K-Means is a coordinate descent algorithm
1. (cluster assignment) Fix 𝜇, optimize 𝑓 w.r.t. 𝐶
2. (cluster centering) Fix 𝐶, optimize 𝑓 w.r.t. 𝜇

• We will revisit this style of algorithms later 
(e.g. EM alg. for Gaussian Mixture Model)
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K-Means algorithm



• On Edstem

25

Quiz



Results are quite sensitive to seed selection
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Seed Initialization

Does k-means always succeed?

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
Try example for Gaussian Mixture

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


Results are quite sensitive to seed selection
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Seed Initialization

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
Try example for Gaussian Mixture

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


• Results can vary based on initial cluster 
assignments

• Some initializations can result in poor 
convergence rate, or converge to a sub-
optimal result
– Try multiple starting points (very important!!!)
– K-means++ algorithm 

• Key idea: initialize centers that are far apart
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Seed Initialization

David Arthur and Sergei Vassilvitskii, K-means++: the advantages of careful seeding. SODA 2007



• What is the objective for different k? 

𝑠 = )
"#!

$

)
%#!

*!

𝑥"% − 𝜇" (

29

How to decide the number of clusters?



𝑠 = -
!"#

$

-
%"#

&!

𝑥!% − 𝜇! '

When 𝑘 = 1, the objective s is 873.0
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How to decide the number of clusters?



𝑠 = -
!"#

$

-
%"#

&!

𝑥!% − 𝜇! '

When 𝑘 = 2, the objective s is 173.1
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How to decide the number of clusters?



𝑠 = -
!"#

$

-
%"#

&!

𝑥!% − 𝜇! '

When 𝑘 = 3, the objective s is 133.6
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How to decide the number of clusters?



• It is not always obvious to choose the 
right K in high-dimensional data.

• “Knee finding”- abrupt change of 
objective at k=2
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Is larger K always better?
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When K-Means fails?



35

Even setting the right K, K-Means 
could not find the right clusters!



• Strength
– Simple, easy to implement and debug
– Intuitive objective function: optimizing intra-cluster 

similarity
– Efficient: complexity ?

• Weakness
– Applicable only when mean can be calculated

• What about Categorical data? 
– Terminates at a local optimum. 
– Initialization is important
– Sensitive to noisy data and outliers
– Not able to find clusters with non-convex shape 36

Summary: K-Means Clustering



• High-dimensional data
• Document classification/clustering: How 

many features to represent a document?
– Words (unigram), bigrams, n-gram

• Features for representing a user on 
Youtube?
– Each visited video id can be features
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Dimensionality Reduction



• Why are more features bad?
– Redundant/noisy/useless features 
– Need more storage space and computation
– More model parameters (even if using 

decision trees or linear models)
– Impossible to visualize (> 3 dims)
– As dimensionality increases, the distances 

between data points are indifferent. 
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Curse of Dimensionality



• Reveal latent features
– Assuming data points stay in a low-

dimensional manifold
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Dimensionality Reduction



• A linear/nonlinear combination of features 
that capture essential factors of data

• Do not necessarily have physical meaning
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Latent Space

Linear Nonlinear



• Linear:
– Principal Component Analysis (PCA)
– Independent Component Analysis (ICA)
– Non-negative matrix factorization (NMF)

• Nonlinear:
– Kernel PCA
– Local Linear Embedding (LLE)
– t-distributed Stochastic Neighbor Embedding 

(T-SNE)
– UMAP 41

Dimensionality Reduction



• Assuming data lie 
in a linear low 
dimensional 
subspace

• Axes of this 
subspace are 
known as principal 
components
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Principal Component Analysis



Data X: 𝑛×𝑑 matrix
1. Compute the mean:

�̅� =
1
𝑛
+
$%!

&

𝑥$

2. Subtract the mean:
,𝑥$ = 𝑥$ − �̅�

3. Compute the covariance

𝑆 =
1
𝑛
+
$%!

&

,𝑥$ ⋅ ,𝑥$' =
1
𝑛
0𝑋' 0𝑋

4. 1st Principal Component – the max variance 
direction, which can be computed by 
eigenvalue decomposition 43

Principal Component Analysis



𝑣 is 1st Principal Component (unit 
length vector)
How is 3𝑥 represented along 1st

principal component direction?
3𝑥'𝑣

Sample variance along 1st principal 
component direction?

1
𝑛
+
$%!

&

( 3𝑥$
'𝑣)" =

𝑣' 0𝑋' 0𝑋𝑣
𝑛

1st Principal Component:
max
(
𝑣' 0𝑋' 0𝑋𝑣 s.t. 𝑣'𝑣 = 1
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Principal Component Analysis



1st Principal Component:
max
(
𝑣' 0𝑋' 0𝑋𝑣 s.t. 𝑣'𝑣 = 1

Lagrangian method:
max
)
𝑣' 0𝑋' 0𝑋𝑣 − 𝜆𝑣'𝑣

*
*) = 0è

0𝑋' 0𝑋𝑣 − 𝜆𝑣 = 0
è

( 0𝑋' 0𝑋)𝑣 = 𝜆𝑣
è𝑣 is the top-1 eigenvector of 

covariance matrix
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Principal Component Analysis



1st Principal Component 𝑣! is the top-
1 eigenvector of covariance matrix, 
with the largest eigenvalue 𝜆!.
How about the 2nd Principal 
Component, 3rd Principal 
Component, …?
𝑣" should be a unit vector orthogonal 
to 𝑣!, maximal variance direction 
after removing PC1
i.e. 2nd Principal Component is the 
eigenvector of covariance matrix 
associated with 2nd largest 
eigenvalue

46

Principal Component Analysis



Minimum reconstruction error: PCA 
finds vectors v such that projection 
on the vectors yields minimum MSE 

min
)

1
𝑛
+
$%!

&

,𝑥$ − 𝑣' ,𝑥$ 𝑣 "
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Alternative Interpretation



• Eigenvalue 𝜆 indicates the amount of 
variability along the principal direction

• Small eigenvalues mean tiny variability, 
therefore those directions can be removed

• Projecting data to the top-k principal 
components 𝑉 = 𝑣&, 𝑣", … , 𝑣+ ,

8𝑥! = 𝑉9𝑥! = 𝑉(𝑥! −
1
𝑛
;
(-&

𝑥()

Or in matrix form: <𝑋 = >𝑋𝑉,
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Dimensionality Reduction 
using PCA
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Example: Eigenface
Data: 7562 images of human 
faces

Top left image is linear 
combination of the rest.

Independently developed by 
Sirovich and Kirby, 1987
Turk and Pentland, 1991



• MNIST dataset: 28 x 28 images of digits
• Project to k dimensional principal components and then 

reconstruct to original space
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Example: handwritten digits
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Visualizing MNIST in 2D



https://setosa.io/ev/principal-component-
analysis/
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Interactive Illustration

https://setosa.io/ev/principal-component-analysis/


• Advantage: 
– Eigen decomposition, O(n3)
– No need to tune parameters

• Weaknesses
– Linear projection
– Second-order statistics (covariance)
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Properties of PCA



def pca(X):
# Data matrix X, assumes 0-centered
n, m = X.shape

# Compute covariance matrix
S = numpy.dot(X.T, X) / n
# Eigen decomposition
eigen_vals, eigen_vecs = numpy.linalg.eig(S)
# Project X onto PC space
X_pca = numpy.dot(X, eigen_vecs)
return X_pca
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Computing PCA with Python



𝑋 = 𝑈𝑆𝑉,
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Singular Value Decomposition

x = U
𝑠! 0
𝑠"
𝑠#

…
0                    𝑠$

…
0
…

VT

n×n n×m

m×m

U and V are orthonormal matrices.  
𝑈'𝑈 = 𝐼
𝑉'𝑉 = 𝐼

Diagonal matrix with 
singular values (ordered)

n×m



• Right singular vectors = Principal 
components

• Why? 
• So we can obtain dimensionality reduction 

by truncating singular values.
<𝑋 = 𝑈.×+𝑆+×+𝑉+×0,

56

Relation between SVD and 
PCA
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Dimensionality Reduction by 
SVD

x = U
𝑠! 0
𝑠"
𝑠#

…
0                    𝑠$

…
0
…

VT

n×n n×m

m×m

!𝑋 = 𝑈!×#𝑆#×#𝑉#×$%

n×m



• PCA can be computed using SVD
• Computing SVD with top-k singular values 

is faster than PCA with eigen 
decomposition. 

• SVD can be used to compute the pseudo-
inverse of a rectangular matrix
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SVD and PCA



• Principal Component Analysis
1. Center the data by subtracting the mean

2. Compute covariance matrix 𝑆 = !
*
2𝑋1 2𝑋

3. Eigen decomposition on covariance matrix
4. Eigenvectors are principal components, 

eigenvalues are energy
• Singular Value Decomposition

– Can be used to compute PCA, and faster
– Reduce the dimension by truncating at top-k 

singular values. 4𝑋 = 𝑈*×"𝑆"×"𝑉"×31 59

Summary: Dimensionality 
Reduction


