HE?({Q (
Lecture 2:
Supervised Learning

Instructor: Lei Li, Yu-Xiang Wang



Announcement

* Thank you for sharing your motivation and goals for
taking the course!

* Please keep providing feedback during the course.

* HWO due date on Thursday instead.

 Late days policy: 4 late days in total.



Recap: Last lecture

* Machine learning overview

e Supervised learning: Spam filtering as an example
* Features, feature extraction

Models, hypothesis class
* Free parameters of a hypothesis class
Choosing an appropriate hypothesis class

Performance metric
Overfitting and generalization



Recap: Supervised learning is about
oredicting label y using feature x by
earning from labeled examples.
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Recap: Modeling- Learmng inference

in @ machine |

rkflow

Modeling

\_

Inference

J

Deployment to email client

Learning

Learning the best performing classifier
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Recap: Mathematica
the supervised learni

e Feature space: X — Rd

v defining

8

oroblem

e Labelspace: ) = {0,1} = {non-spam, spam}

e A classifier (hypothesis): h: X — y

e A hypothesis class: H

* Data: (x17y1)7 ree (mnayn) cX x)

e Learningtask: Find h € ﬁ

that “works well”.




Recap: The “free parameters” of the
two hypothesis classes we learned

* Decision trees
e “Which feature to use when branching?”
* “The threshold parameter”
* “Which label to assign at the leaf node”

e Linear classifiers
e “Coefficient vector of the score f ion”
e a (d+1) dimensional vector.



Answers for the quiz

%\”‘7

* Consider a problem with 4 binary features

* How many decision trees of 3 layers are there? I eac
decision uses only one feature? (you may repeat
features) 7 4 27

4°Z;

—

* How many possible feature vectors are there?
2

* How many classifiers are there (without restrictions)?

224 — 2/6 - éﬁ“&“ﬁé



Recap: What do we mean by
“working well”?

* What’s the “Performance measure” for a classifier
agent?

* Really the average error rate on new data points.
* But all we have is a training dataset.

* Training error: (empirical) error rate on the training
data.

* When does the learned classifier generalize?
 How to know it if it does not?



This lecture

* Supervised learning:
* formal notations and problem setup
* Loss function, Risk, Empirical Risk
 Examples

* Theory of supervised learning
* Risk bounds for ‘fixed design’ linear regression model
* Risk bounds for a general supervised learning problem

* Model selection



Mathematically defining the
supervised learning problem

e Feature space: X

e Labelspace: )

e A classifier (hypothesis): h: X — y

e A hypothesis class: H

* Data: (x17y1)7 ree (mnayn) cX x)

e Learning task: Find h & 7—[ that “works well”.

?/




Notations from probability
Fu. ><v\>

Ep [Function of an r.v. X]

——=

E? |[Event] [( ' L > S]

fxom (@) or ply= Dy Hete]

EXND (33) _

- >(><<>‘J

Conditional expectation / conditional probability / density
E [Func(X,Y) Dﬁ
—
P [Event_of(X,Y)|Y]

f(z]y)

p(xly)
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Notations from linear algebra

aij; Q12 a1y, | G HZ 1
21 Q22 -+ A2y a= |2 € R?
A — . . . , CLZ'j - R .
M| ; : 3
Om1 Om2 - Umn

* Transpose and inverse
AT erm AN ATTA =
* Inner product / dot product y
P = XY =2y szyz. |

¢ [Uo\rmf, < L‘:j,ﬁ XS l><[ (E(K )

)~
1)
G~
V)
L )




Other useful notations

B = (b1, by,b3) (Ordered) tuple
—>B = |by, by, bs] Matrix of column vectors stacked horizontally
B = {b;,by,b3} Set of vectors (unordered)

Z,IN Integers and natural numbers, respectively
R,C Real and complex numbers, respectively
R" n-dimensional vector space of real numbers
YV Universal quantifier: for all

dx Existential quantifier: there exists x

\g \ C@Mm(t\{y = ]fg
o=
"

S
g s ol

r (one-zero) function:

[[condition]| =

def | 1 if condition is true
0 otherwise.
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Conventions and typical meaning of
specific variables in machine learning
— x: 1Input
— q: output

(,Yz: Input-output pair
— d: dimensionality

— n: number of examples

. R AN associated with being an estimate
The “hat” notation, e.g.: : ’
& h’ f’ 9’ K computed as a function of the data

o V24 . * * * >I< >I< . . . o M V24
The “star” notation, e.g.,: h , f ,(9 s P ,R associated with being “optimal



Loss, Risk, Empirical Risk: What do
we mean by working well?

e Loss function

<. 1 (he#y
(h, () )

: C e ( %Q()\ (:DZ
* Risk function (X/ ) V\D
(h B) Ep (R, (s, Ys))]
cl ?@@ D/éwlnf <Y, e 1/\ : X — >/

* Empirical risk

R(h M Z€ (24, 9i))
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Example 1: Regression

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation i
of the input variable = along with o
the corresponding target variable ¢
t. The green curve shows the o)
function sin(27z) used to gener- o\ O
ate the data. Our goal is to pre- Or
dict the value of ¢ for some new
value of z, without knowledge of 0

the green curve. o)
—1rF

g= Mg 4 0,67 :
* What are the feature space, label space?
= Lo \1/2 o U,
 What is a reasonable hypothesis class to use and its
free-parameter?



Examples of hypothesis classes for
this problem

* Polynomials 7% J) %(KW)/ e E HB

h(z,w) = wy + wix + woz® + . 4wy M —ijazj

* Sine function
IS 4
h(x,t) = sin(27t)

ri =gl e R,

Ny S

* Anything else?
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What are some reasonable loss
functions for regression problems?

e Square error loss function
 JhGsg)) = (hoo 4%

e Absolute deviation loss function

lors M
 Huber loss functlon &

I lal< ¢ ‘2(\
= \3&*/@( ) ﬁ [a 2 Ofﬂlm% qgaa/\,tl{c

« epsilon-sensitive loss function
e aka support vector regression \/
5 wdyey= ) O WISk

7 Mf" Q@\CVW((



Learning is often achieved by solving
the Empirical Risk Minimization

h = ar minRh, T, Yi )|l €
gmin R(h, {(z:.9:)li € o]}
L[/Ezﬁ (M,(Kz’/%.)

* Sometimes with an additional regularization
functional (also known as a penalty term)

A

h = arg mm R(h,Data) + g(h)
cH ) Tﬁ

( Sf¢ /2( QL[OLV(’Zafw



Polynomial regression under
square loss

T

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2. 21



Appropriately regularized fit of a
9th order polynomial.

Figure 1.17 The predictive distribution result-
ing from a Bayesian treatment of
polynomial curve fitting using an

M = 9 polynomial, with the fixed \
parametersa =5x 10" and 8 = ¢ /g/

11.1 (corresponding to the known o

noise variance), in which the red o\\O
curve denotes the mean of the OF
predictive distribution and the red

region corresponds to +1 stan-
dard deviation around the mean.

0]

—1F

2 I

Regularization prevents overfitting!



Example 2: Linear regression

* Feature space o

* Label space

* Hypothesis space " Wé“((za{ ]
qﬁ”ﬁ% = Swix, =
. - |
* Loss function B >
W' —3)



Quiz 1: Can we reformulate Example

1 as a linear regression task?
W/y)

—

* Q1: When hypothesis class is polynomial? ;Z/ﬁzw.x
AN

X—(O{] 45(»3)[42 Tty ™
XK= @ﬂ o3| Xc@lﬂy ~ Wi
* Q2: When the hypothesis class is sine function with
parameter t? (5x = Sta GfK“>
JW&) 57»\@&(()

per

Gl -
»71 :%W/ [/M/Vi/éf/ 3 <% f‘“(*KWD



Empirical risk minimization for linear
regression under square |0ss

A 1

f = arg min — Z (27 6 — y;)*

6 n
1€ [n]

e aka: Ordinary Least square (OLS), MLE under Gaussian noise

e A convenient form using Iinear algebra

xow

i ik

YT Ok
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Regularization helps to reduce
overfitting and induce structures in

the solution.
* Example: p-norm regularized least square

. 1
0 = arg meln EHXH — y”% T AHHHZI;

 when p=2, this is called “Ridge Regression”

* when p=1, this is called “Lasso”
* when p=0, this is called “Best subset selection”



Regularization helps to reduce
overfitting and induce structures in

the solution.

* Ridge regression induces solutions that are small but dense.

* Lasso induces solutions that are “sparse”.
& =Hlvo-yll
ot (Ole=u

Figure 3.4 Plot of the contours W2 5
of the unregularized error function
(blue) along with the constraint re-

gion (3.30) for the quadratic regular-
izer ¢ = 2 on the left and the lasso
regularizer ¢ = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w*.

The lasso gives a sparse solution in
which wi = 0. w*




Example 3: Multi-class classification

Figure 1.1 Examples of hand-written dig-

ts taken from US zip codes. o / 2— (b q
¢ [6][7][2]a

 What are the feature space, label space?

X = @@[JM @) XC—[({VHM’

¥ 24@/ 2~ 7] W

—————
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Hypothesis class for multi-class
classification problems

e Decision trees &2\2

29



llustration of the decision boundary
in multi-class linear classification

ANV L L LR LA/ LA LR L L
0 ] 5 1 PR I ] ) e g g O B O O o A D = BV
2115151131 151 <1 oLl 9313 SLA 3L RIS ST S 2L SESLIL S <
AN AT HAAAAANAA N A A AT
OISICISIOISIS PSS S ISIS1S] LSS0 | LIIT SIS ISEOISLS o |
PA Y [ A T 12 (@) V2 Tl P4 12 ) 122 72 (W P2 P P VA VA 2 TA PR P A T2 T4 2 (A T2
24 VAV 4 V2 VW WP V7 V7t P 2 0 V7 W 0 e Ve VA A VA W W e v W B
¥ N2 RIXIAIG S L IZ LSS LS L LASLAZ I LA S Pl )
A A7 T A A AN A7 121U
OIKNAANOIOI0I0IIATIICIII NN N0

map image x to digit y
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Loss functions for classification tasks
when the predictions are discrete

e 0-1 loss

1

A

* Cost-sensitive loss

J

31



Soft-(arg)max transform helps to
convert real-valued predictions to a
probability distribution

(You should’ve seen from HWO for why
this is soft-max)

e Softmax function

(@, ) =log 3 exp(a).
=1

e Soft-a rgmax transform (Compare this to argmax in One-Hot
representation)
el ..., e n \
=1 e (f

-
4

Yy

32



Loss functions for classification
tasks for soft-predictions ~

* log-loss s (O%ﬁ@(“‘ﬂﬂ(ﬁ:ﬂ OV SCOW%[X)

* Cross entropy loss
5 v > Plq
’2”( [o5(pl) * PG5 )

T free
* Logistic loss in the binary case ol 'LQ/

=4, 13 o (14 é“m@>

* Hinge loss
\ggg

o 6 ‘i‘s(‘eﬂ.(ﬁ\/

33



Visualization of the loss functions
for classification

g Misclassification
Exponential
Binomial Deviance
N —— Squared Error Kk | ”
o . . .
Support Vector . Bmomlla‘dewance
5 is the “logistic loss”
~ from the previous slide.
a
o v |
— -
o ]
™ fA
Te)
L
o
S
| | | | |
-2 -1 0 1 2

FIGURE 10.4. Loss functions for two-class classification. The response is
y = =1; the prediction is f, with class prediction sign(f). The losses are
misclassification: I(sign(f) # vy); exponential: exp(—yf); binomial deviance:
log(1 4 exp(—2yf)); squared error: (y — f)?; and support vector: (1 — yf)+ (see
Section 12.3). Fach function has been scaled so that it passes through the point
(0,1).

(Section 10.4 of "Elements of Statistical Learning”) 34



Empirical risk minimization for
multi-class classification

h = in RR(h, {(z,y:)]i
arg min R(h, (24, i)|i € [n]})



Computation-approximation
tradeoff in choosing loss functions

0-1 loss / cost-sensitive
Log loss / cross-entropy loss

loss
Computation NP-hard in general More efficient
Approximation No approximation Used as a surrogate

—_——

Also, depends on the choice of hypothesis class.
We will see more of this tradeoff later.



Loss function is often domain-
specific. It is often part of the design

of an ML workflow
 Discussion: Loss function for stock price prediction

e Square loss?

e 0-1loss? 2

@bﬂ Wl 0\(&)] A= —]o, P=q

< @ ——

/o oq A = X [9:ﬂ
& oo Tlapey)
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Checkpoint: Supervised learning

* Formal problem setup

* Feature space, label space, hypothesis class, loss
function, risk function

* Examples:
* Regression, Linear regression, multi-class classification
* Regularization

e Choices of loss functions



Remainder of this lecture

* Theory of supervised learning
* Risk bounds for ‘fixed design’ linear regression model
* Risk bounds for a general supervised learning problem

* Model selection



Theory of linear regression

 What are the assumptions?
* Al. Linear model + iid noise

Yi = Zi 0% + €i, Ele;] = 0 Varlg] = o
[

A2 Fixed design matrix with full rank ’

/Q DX\QXU( ~X@3¢€>@(
« Risk function in this ca

= {E[ﬁ[@,(&wﬂl MZ@EGK +“7 gP

/1 — h?E[ eﬁ(‘ 9& ] o

5 ‘QJ

9 ujﬂ/(@@* rrﬁ\@_cj ;




What are we hoping to achieve?
o= B

2
* Excess risk --- the difference between the the G

performance of the learner and that of the oracle.

R(e) — %\4 R6) = [RA9) — 9(647 \“ﬁ [?(7(/(@—@7 ]

i>: ’m@ ‘%ﬂ% X@_@j}

A - A I
0= B = X)W
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Recall the empirical risk minimizer
nere for this problem.

A 1
§ = arg min — Z (] 0 — ;)7

6 n
1€ [n]

e aka: Ordinary Least square (OLS), MLE under Gaussian noise

* A convenient form using linear algebra
" 1
0 = argmin — || X0 — y|3
0 N
* A closed-form solution

0= (XTX)1xTy

I —




Deriving an expected excess risk
oound for the ERM estimator

def - = (A
A m

1. Worklng out the excess risk T Nkl T
R(e\ M=% (689 )Xo | r![Qé[ o \(JQC )=

TN -— - e e @{V\)
s () RG-e U = @/\&‘ N
WAVV"DV‘ — /[ Y T %
m&me - V\)lQW x§e) fﬂlx :
x“ X X g(/ )&( ~ l cmoﬁ{,\ﬁom\w]cﬁg +o"{‘L;Q
T [L\@X@ &+ BN [l Ve P Lm%
W o (S \m"‘ vnt i-—— QXCK(%) KXC\){}&) )\ "‘V_l T 7&&@7\ < M%XV )q\

> Take expectatlon (7% (4T ; n Jff( i Qi)
LBZ(@ *‘P& V{ %i ] 7 Tvoce Twoce (AB= Tfaa(B(A)

= 4T
e M L é?
0| — >+ /A L] 2= A7

[1a



Theorem for (fixed design) linear
regression

Theorem: Assume (A1) and (A2), the ordinary least square
estimator for linear regression satisfies:

E[R(A)] — R(6") < 20 = o(;%/

44



The result relies on strong assumptions
on how the data is generated

e e.g., it does NOT apply to the case for fitting a
polynomial to a noisy sine function we gave earlier!

* The statistical learning problem:
* Assumption B1: iid samples

Cri, ) L) b By,

e Assumption B2: Bounded loss function

ol ) < B oy

e Assumption B3: F|n|te hypothesis class
) H« €00

45



The goal again is to bound the
excess risk . This time we want a
high probability bound.

* With probability at least 1 — §

A

R(h) — R(h™) < ¢

 Parameterize € as a function of
* Number of data points
 Size of the hypothesis class
 Boundedness of the loss
 Failure probability



Introducing two powerful “hammers”:
Hammer 1. Hoeffding’s inequality

Theorem D.2 (Hoeffding’s inequality) Let Xi,..., X, be independent random wvariables with
X; taking values in [a;,b;] for all i € [m]. Then, for any € > 0, the following inequalities hold for
Sm — Z;Zl XZ .

P[Sm — E[Sim] > ¢] < e~26/ ZiZa(bi=ai)® (D.4)
—€

P[Sm — E[Sim] < —¢] < e~2¢7/ XiZi(bi—ai)® (D.5)

IA A

(see Appendix D.1 of FML textbook for a proof)

Roughly saying that the empirical averages of independent random
variable converges to the mean at a O(1/sqrt(n)) rate, with high probability.



Introducing two powerful “hammers”:
Hammer 2. Union bound

Lemma (Union bound): For any probability distribution and
any event E1, E2:

PEy U Ey| < PE;| 4+ P EsS]




Now let’s apply these two hammers
to solve statistical learning

1. For each hypothesis h, apply Hoeffding

2. Union bound over all hypothesis



Now let’s apply these two hammers
to solve statistical learning

Theorem: Assume (B1),(B2) and (B3), with probability at least
1 — 6 (overthe distribution of the data), ERM satisfies

R — B(h) = O ( \/1og|m +1og<1/5>>

n




Quiz 2: Application to decision
tree classifier

* d-dimensional discrete feature ( L-levels for each)

* H-layer decision tree, binary decision in one layer
* K Labels

e Upper bound of the size of hypothesis class?

51



Quiz 3: Application to generic
classification (no restriction on the
hypothesis class)

* d-dimensional discrete feature ( L-levels for each)
* Klabels
* Total number of unique classifiers?

52



Computation-approximation tradeoftf
in the choice of hypothesis class

model p* (y‘gj) Linear learners Neural networks
) Depends on how .. Not efficient in the
Computation > . Efficient
complex p* is worst case, but...

Approximation | No approximation | Large approx. error | Small approx. error

Statistical Depends on how

. . Need less data Need more data
efficiency complex p* is



“All models are wrong, but some are useful.”

George Box
(1919 - 2013)




Checkpoint: Theory of supervised
learning

 Risk bounds for linear regression model
. do?
E[R(D)] - R(0") < —
» Risk bounds for a general supervised learning

R() — R(h*) = O ( \/mg ] + 1og<1/5>>

n

* Observations:
* Not directly comparable for several reasons
e Strong assumption => Strong results
* Weak assumption => Weak results



Remainder of this lecture

* Model selection



Typical problems in model
selection

* Choosing hypothesis class
e Decision tree? Linear classifier? Or neural networks?

* Choose hyperparameters
* Depth of decision tree
* Regularization weights for Ridge / Lasso

* Choose which set of features of include



Model selection is challenging
because we do not observe the

actual risk!
* Empirical risk is often a poor surrogate due to the

optimization bias
 Example: 1-Nearest Neighbor classifier

* Two ideas for estimating the risk
* Calculate or bound the actual risk in theory

e Simulate the actual risk on a dataset not used for
training.



Empirically measuring the Risk by
splitting the data into: Training, Test,

and Validation Sets

Set

Dataset D
e N
~— S
A J
~ Y Y
Training Validation Test

Set

Validation set is used for model-selection:
- choosing decision tree vs. linear classifier
- Select features, tune hyperparameters

Test set is used only once to report the final
results.
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Cross-validation

Figure 1.18 The technique of S-fold cross-validation, illus-

trated here for the case of S = 4, involves tak-

ing the available data and partitioning it into S
groups (in the simplest case these are of equal

size). Then S — 1 of the groups are used to train

a set of models that are then evaluated on the re-

maining group. This procedure is then repeated

for all S possible choices for the held-out group,

indicated here by the red blocks, and the perfor-
mance scores from the S runs are then averaged.

* Pros:

* No assumption on the data generating distributions, except iid.
* Do not waste data, comparing to holdout.

* Cons:
* |t evaluates the model applying to (S-1)/S fraction of the data
 Computation cost = O(S * number of models to select from)

run 1

run 2

run 3

run 4
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Other approaches for model
selection

 AIC (Akaike Information Criteria) / BIC (Bayesian
information criteria)
e (see PRML Section 1.3 and 4.4.1)

* Effective degree of freedom
* Measuring the effective number of parameters

* For fixed-design regression with square loss + Gaussian
noise, any estimator:

A A

R(h) ~ ELR()] = ~7~df i)

So if one can estimate df, then can use it for model selection



Effective degree of freedom for
Regularized Linear Regression

* Ridge regression
df (X0) = tr(X(XTX + X)X T)
 Number of parameters, if no regularization
* Independent to datay, can be computed ahead of time

* Lasso {ZM #0}

j€Eld]

e Expected number of non-zero weights -- Sparsity.

* This is truly remarkable that we get this via L1-
regularization

See e.g. : https://www.stat.cmu.edu/~ryantibs/papers/lassodf.pdf




Checkpoint: model selection

* Three approaches for model selection

e Holdout
e Cross validation
 Penalize information criteria

* Cross validation is what is most commonly used in
practice.



Next two lectures

* Unsupervised learning
* Thursday

* Optimization methods for machine learning
* Next Tuesday



