Hello

Lecture 2: Supervised Learning

Instructor: Lei Li, Yu-Xiang Wang

Announcement

- Thank you for sharing your motivation and goals for taking the course!
 - Please keep providing feedback during the course.

HW0 due date on Thursday instead.

Late days policy: 4 late days in total.

Recap: Last lecture

- Machine learning overview
- Supervised learning: Spam filtering as an example
 - Features, feature extraction
 - Models, hypothesis class
 - Free parameters of a hypothesis class
 - Choosing an appropriate hypothesis class
 - Performance metric
 - Overfitting and generalization

Recap: Supervised learning is about predicting label y using feature x by learning from labeled examples.

Recap: Modeling-Learning-inference in a machine learning workflow

Modeling - Feature engineering - Specify a family of classifiers Inference Learning

Deployment to email client

Learning the best performing classifier

Recap: Mathematically defining the supervised learning problem

- Feature space: $\mathcal{X} = \mathbb{R}^d$
- Label space: $\mathcal{Y} = \{0, 1\} = \{\text{non-spam}, \text{spam}\}$
- A classifier (hypothesis): $h:\mathcal{X} \to \mathcal{Y}$
- A hypothesis class: \mathcal{H}
- Data: $(x_1,y_1),...,(x_n,y_n) \in \mathcal{X} \times \mathcal{Y}$
- Learning task: Find $h \in \mathcal{H}$ that "works well".

Recap: The "free parameters" of the two hypothesis classes we learned

Decision trees

- "Which feature to use when branching?"
- "The threshold parameter"
- "Which label to assign at the leaf node"
- ...

Linear classifiers

- "Coefficient vector of the score function"
- a (d+1) dimensional vector.

Answers for the quiz

How many classifiers are there (without restrictions)?

$$2^4 = 2^{16} = 65536$$

Recap: What do we mean by "working well"?

- What's the "Performance measure" for a classifier agent?
 - Really the average error rate on new data points.
 - But all we have is a training dataset.
 - Training error: (empirical) error rate on the training data.
 - When does the learned classifier generalize?
 - How to know it if it does not?

This lecture

- Supervised learning:
 - formal notations and problem setup
 - Loss function, Risk, Empirical Risk
 - Examples
- Theory of supervised learning
 - Risk bounds for 'fixed design' linear regression model
 - Risk bounds for a general supervised learning problem
- Model selection

Mathematically defining the supervised learning problem

- Feature space: $\mathcal X$
- Label space: \mathcal{Y}
- A classifier (hypothesis): $h:\mathcal{X} o \mathcal{Y}$
- A hypothesis class: ${\cal H}$
- Data: $(x_1,y_1),...,(x_n,y_n)\in\mathcal{X} imes\mathcal{Y}$
- Learning task: Find $h \in \mathcal{H}$ that "works well".

Notations from probability

$$\mathbb{E}_{\mathcal{D}} [\text{Function of an r.v. } X]$$

$$\mathbb{P}_{\mathcal{D}} [\text{Event}] \qquad \mathbb{P}_{\mathcal{D}} [\text{Event}] \qquad \mathbb{P}_{\mathcal{D}} [\text{Event}] \qquad \mathbb{P}_{\mathcal{D}} [\text{Event}] \qquad \mathbb{P}_{\mathcal{A}} [\text{Event}] \qquad \mathbb{$$

Conditional expectation / conditional probability / density

$$\mathbb{E}\left[\underline{\operatorname{Func}(X,Y)|Y}\right]$$

$$\mathbb{P}\left[\underline{\operatorname{Event_of}(X,Y)|Y}\right]$$

$$f\left(x|y\right)$$

Notations from linear algebra

Matrices and vectors

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \mathcal{C} \begin{bmatrix} 2 \\ \\ \\ \\ \\ \end{bmatrix}, \quad a_{ij} \in \mathbb{R}. \qquad m{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3$$

Transpose and inverse

$$A^T \in \mathbb{R}^{n \times m}$$
 $A^{[i,j]} = A^{[i,j]}$

$$A^{T} \in \mathbb{R}^{n \times m} \quad \triangle_{[i,j]} = \triangle_{[i,j]} \quad A^{-1}A = I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
or product / dot product

Inner product / dot product

$$\langle \chi y \rangle = \chi y = \mathbf{x}^{\mathsf{T}} \mathbf{y} = \sum_{i=1}^{n} x_{i} y_{i}.$$

$$||\chi||_{2} = \int_{\frac{\Sigma}{2}}^{\frac{N}{2}} \chi_{i}^{\mathsf{T}} ||\chi||_{p} = \left(\sum_{i=1}^{N} (\chi_{i})^{p}\right)^{\frac{N}{p}}$$

Other useful notations

```
B = (\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) (Ordered) tuple B = [\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3] Matrix of column vectors stacked horizontally B = \{\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3\} Set of vectors (unordered) Integers and natural numbers, respectively Real and complex numbers, respectively R n-dimensional vector space of real numbers R Universal quantifier: for all R Existential quantifier: there exists R
```

$$[n] := \{1, 2, 3, ..., n\} - \text{range}(n) + 1$$

|S| cardinality of S

Indicator (one-zero) function:

$$\mathbb{I}[\text{condition}] \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{otherwise.} \end{cases}$$

1(x25) 76) de [E[I(X>5)] = [P(X>5)]

Conventions and typical meaning of specific variables in machine learning

- -x: input
- y: output
- $(\chi, q)^{-2}z$: input-output pair
 - d: dimensionality
 - -n: number of examples

The "hat" notation, e.g.: $\hat{h},\hat{f},\hat{\theta},\hat{\mathbb{E}}$ associated with being an estimate, computed as a function of the data

The "star" notation, e.g.,: $h^*, f^*, \theta^*, p^*, R^*$ associated with being "optimal"

Loss, Risk, Empirical Risk: What do we mean by working well?

Loss function

$$\ell(h,(x,y))$$

e.g.
$$\frac{I(h(x) \neq y)}{(h(x) - y)^2}$$

(x,y)

Risk function

$$R(h,\mathcal{D}) = \mathbb{E}_{\mathcal{D}}[\ell(h,(x_{\bullet},y_{\bullet}))]$$

h: X -> Y

Empirical risk

$$\hat{R}(h, \text{Data}) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, (\underline{x_i}, \underline{y_i}))$$

Example 1: Regression

Figure 1.2 Plot of a training data set of N =10 points, shown as blue circles, each comprising an observation of the input variable x along with the corresponding target variable t The green curve shows the function $\sin(2\pi x)$ used to generate the data. Our goal is to predict the value of t for some new value of x, without knowledge of the green curve.

What are the feature space, label space?

free-parameter?

Examples of hypothesis classes for this problem

Polynomials

nomials
$$\int \frac{1}{1-z} = \frac{1}{z} h(x, \omega) \left(\frac{\omega}{\omega} \right) \left(\frac$$

Sine function

$$h(x,t) = \sin(2\pi t)$$

1-1= 3h(21/4)) +C= R+

Anything else?

What are some reasonable loss functions for regression problems?

Square error loss function

$$(h(x,y)) = (h(x)-y)^2$$

Absolute deviation loss function

Huber loss function
 hxi-y h l(a) = (a) =

- - aka support vector regression

Learning is often achieved by solving the Empirical Risk Minimization

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \hat{R}(h, \{(x_i, y_i) | i \in [n]\})$$

 Sometimes with an additional regularization functional (also known as a penalty term)

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \hat{R}(h, \text{Data}) + g(h)$$

Polynomial regression under square loss

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in Figure 1.2.

Appropriately regularized fit of a 9th order polynomial.

Figure 1.17 The predictive distribution resulting from a Bayesian treatment of polynomial curve fitting using an M=9 polynomial, with the fixed parameters $\alpha=5\times 10^{-3}$ and $\beta=11.1$ (corresponding to the known noise variance), in which the red curve denotes the mean of the predictive distribution and the red region corresponds to ± 1 standard deviation around the mean.

+XIMI2

Regularization prevents overfitting!

Example 2: Linear regression

Label space

$$Y = [R \ er [-B,B] \ or [0,1]$$

Loss function

Quiz 1: Can we reformulate Example 1 as a linear regression task?

• Q1: When hypothesis class is polynomial? $\frac{-u_0 + u_1 \times u_2}{+u_2 \times u_3}$

• Q2: When the hypothesis class is sine function with parameter t?

$$h(\xi x) = Sin(\xi xi)$$

$$= \int_{\mathcal{U}(\xi)} Sin(\xi xi)$$

$$= \int_{\mathcal{U}} Sih(\xi xi)$$

Empirical risk minimization for linear regression under square loss

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i \in [n]} (x_i^T \theta - y_i)^2$$

- aka: Ordinary Least square (OLS), MLE under Gaussian noise
- A convenient form using linear algebra

Regularization helps to **reduce overfitting** and induce **structures** in the solution.

• Example: p-norm regularized least square

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} ||X\theta - y||_2^2 + \lambda ||\theta||_p^p$$

- when p=2, this is called "Ridge Regression"
- when p=1, this is called "Lasso"
- when p=0, this is called "Best subset selection"

Regularization helps to **reduce overfitting** and induce **structures** in the solution.

- Ridge regression induces solutions that are small but dense.
- Lasso induces solutions that are "sparse".

Example 3: Multi-class classification

Figure 1.1 Examples of hand-written digits taken from US zip codes.

What are the feature space, label space?

Hypothesis class for multi-class classification problems

Decision trees

Linear classifier

Scover Livix
$$\bullet$$

$$h(x) = \underset{\text{g.e.}}{\operatorname{arg\,max}} \quad \text{Wy} x$$

WorWz, -, Wo ER

Illustration of the decision boundary in multi-class linear classification

map image x to digit y

Loss functions for classification tasks when the predictions are discrete

 0-1 loss $I(h(x) \neq y)$ • Cost-sensitive loss

Soft-(arg)max transform helps to convert real-valued predictions to a probability distribution

Softmax function

(You should've seen from HW0 for why this is soft-max)

$$f(x_1, \dots, x_n) = \log \sum_{i=1}^n \exp(x_i).$$

Soft-argmax transform

(Compare this to argmax in One-Hot representation)

$$F(x_1,\ldots,x_n) = \frac{[e^{x_1},\ldots,e^{x_n}]}{\sum_{i=1}^n e^{x_i}} - \int_{\mathbb{R}^n} \int_{\mathbb{$$

Loss functions for classification tasks for soft-predictions

Cross entropy loss

Hinge loss

Visualization of the loss functions for classification

** "Binomial deviance" is the "logistic loss" from the previous slide.

FIGURE 10.4. Loss functions for two-class classification. The response is $y = \pm 1$; the prediction is f, with class prediction $\operatorname{sign}(f)$. The losses are misclassification: $I(\operatorname{sign}(f) \neq y)$; exponential: $\exp(-yf)$; binomial deviance: $\log(1 + \exp(-2yf))$; squared error: $(y - f)^2$; and support vector: $(1 - yf)_+$ (see Section 12.3). Each function has been scaled so that it passes through the point (0,1).

(Section 10.4 of "Elements of Statistical Learning")

Empirical risk minimization for multi-class classification

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \hat{R}(h, \{(x_i, y_i) | i \in [n]\})$$

Computation-approximation tradeoff in choosing loss functions

	0-1 loss / cost-sensitive loss	Log loss / cross-entropy loss
Computation	NP-hard in general	More efficient
Approximation	No approximation	Used as a surrogate

Also, depends on the choice of hypothesis class. We will see more of this tradeoff later.

Loss function is often domainspecific. It is often part of the design of an ML workflow

- Discussion: Loss function for stock price prediction
 - Square loss?

Checkpoint: Supervised learning

- Formal problem setup
 - Feature space, label space, hypothesis class, loss function, risk function
- Examples:
 - Regression, Linear regression, multi-class classification
 - Regularization

Choices of loss functions

Remainder of this lecture

- Supervised learning:
 - formal notations and problem setup
 - Loss function, Risk, Empirical Risk
 - Examples
- Theory of supervised learning
 - Risk bounds for 'fixed design' linear regression model
 - Risk bounds for a general supervised learning problem
- Model selection

Theory of linear regression

- What are the assumptions?
 - A1. Linear model + iid noise

$$y_i = x_i \cdot \theta^* + \epsilon_i, \quad \mathbb{E}[\epsilon_i] = 0 \quad \operatorname{Var}[\epsilon_i] = \sigma^2$$

• Risk function in this case

What are we hoping to achieve?

• Excess risk --- the difference between the the performance of the learner and that of the oracle.

$$R(0) - m^{h} | 200) = R(0) - R(0) = \frac{1}{12} \frac{2}{12} (x_{1}(0-0))^{2}$$

$$0 \leftarrow 0 = (x^T x)^T x^T y^T$$

Recall the empirical risk minimizer here for this problem.

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i \in [n]} (x_i^T \theta - y_i)^2$$

- aka: Ordinary Least square (OLS), MLE under Gaussian noise
- A convenient form using linear algebra

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} ||X\theta - y||_2^2$$

A closed-form solution

$$\hat{\theta} = (X^T X)^{-1} X^T y$$

Deriving an *expected* excess risk bound for the ERM estimator

def 11.12 = (• JA() 1. Working out the excess risk R(a)-Rx- (a-xy) xx (a-xy) = 1 (a-xy) xx (a-xy) xx (a-xy) = 1 (a-xy) xx (a $= \frac{1}{n} \left\| \left(\frac{1}{n} \right)^{T} \left(\frac{1}{n} \right)^{T} + \frac{1}{n} \left\| \left(\frac{1}{n} \right)^{T} \left(\frac{1}{n} \right)^{T} \right\|_{x,x}^{2}$ cossumption on the distribution of the dindividution of the distribution of the distribution of the distri TI: an orthogonal projection to the 2. Take expectation ETRIGIT-PX = 1 tyl TI. ETEST) Trace (ABC)= Trace (BCA) = h tr[[.6]

Theorem for (fixed design) linear regression

Theorem: Assume (A1) and (A2), the ordinary least square estimator for linear regression satisfies:

$$\mathbb{E}[R(\hat{\theta})] - R(\theta^*) \le \frac{d\sigma^2}{n} = O(\frac{1}{2})$$

The result relies on strong assumptions on how the data is generated

 e.g., it does NOT apply to the case for fitting a polynomial to a noisy sine function we gave earlier!

• The statistical learning problem:

• Assumption B1: iid samples

(xi, yi) iid) unknown distribution

Assumption B2: Bounded loss function

• Assumption B3: Finite hypothesis class

17-1/< +00

The goal again is to bound the excess risk. This time we want a high probability bound.

• With probability at least $1-\delta$

$$R(\hat{h}) - R(h^*) \le \epsilon$$

- ullet Parameterize \in as a function of
 - Number of data points
 - Size of the hypothesis class
 - Boundedness of the loss
 - Failure probability

Introducing two powerful "hammers": Hammer 1. Hoeffding's inequality

Theorem D.2 (Hoeffding's inequality) Let X_1, \ldots, X_m be independent random variables with X_i taking values in $[a_i, b_i]$ for all $i \in [m]$. Then, for any $\epsilon > 0$, the following inequalities hold for $S_m = \sum_{i=1}^m X_i$:

$$\mathbb{P}[S_m - \mathbb{E}[S_m] \ge \epsilon] \le e^{-2\epsilon^2 / \sum_{i=1}^m (b_i - a_i)^2}$$
(D.4)

$$\mathbb{P}[S_m - \mathbb{E}[S_m] \le -\epsilon] \le e^{-2\epsilon^2 / \sum_{i=1}^m (b_i - a_i)^2}. \tag{D.5}$$

(see Appendix D.1 of FML textbook for a proof)

Roughly saying that the **empirical averages** of independent random variable converges to the **mean** at a O(1/sqrt(n)) rate, with high probability.

Introducing two powerful "hammers": Hammer 2. Union bound

Lemma (Union bound): For any probability distribution and any event E1, E2:

$$\mathbb{P}[E_1 \cup E_2] \le \mathbb{P}[E_1] + \mathbb{P}[E_2]$$

Now let's apply these two hammers to solve statistical learning

1. For each hypothesis h, apply Hoeffding

2. Union bound over all hypothesis

Now let's apply these two hammers to solve statistical learning

Theorem: Assume (B1),(B2) and (B3), with probability at least $1-\delta$ (over the distribution of the data), ERM satisfies

$$R(\hat{h}) - R(h^*) = O\left(\sqrt{\frac{\log |\mathcal{H}| + \log(1/\delta)}{n}}\right)$$

Quiz 2: Application to decision tree classifier

- d-dimensional discrete feature (L-levels for each)
- H-layer decision tree, binary decision in one layer
- K Labels
- Upper bound of the size of hypothesis class?

Quiz 3: Application to generic classification (no restriction on the hypothesis class)

- d-dimensional discrete feature (L-levels for each)
- K labels
- Total number of unique classifiers?

Computation-approximation tradeoff in the choice of hypothesis class

	model $p^*(y x)$	Linear learners	Neural networks
Computation	Depends on how complex p* is	Efficient	Not efficient in the worst case, but
Approximation	No approximation	Large approx. error	Small approx. error
Statistical efficiency	Depends on how complex p* is	Need less data	Need more data

"All models are wrong, but some are useful."

George Box (1919 - 2013)

Checkpoint: Theory of supervised learning

Risk bounds for linear regression model

$$\mathbb{E}[R(\hat{\theta})] - R(\theta^*) \le \frac{d\sigma^2}{n}$$

Risk bounds for a general supervised learning

$$R(\hat{h}) - R(h^*) = O\left(\sqrt{\frac{\log |\mathcal{H}| + \log(1/\delta)}{n}}\right)$$

- Observations:
 - Not directly comparable for several reasons
 - Strong assumption => Strong results
 - Weak assumption => Weak results

Remainder of this lecture

- Supervised learning:
 - formal notations and problem setup
 - Loss function, Risk, Empirical Risk
 - Examples
- Theory of supervised learning
 - Risk bounds for 'fixed design' linear regression model
 - Risk bounds for a general supervised learning problem
- Model selection

Typical problems in model selection

- Choosing hypothesis class
 - Decision tree? Linear classifier? Or neural networks?
- Choose hyperparameters
 - Depth of decision tree
 - Regularization weights for Ridge / Lasso
- Choose which set of features of include

Model selection is challenging because we do not observe the actual *risk*!

- Empirical risk is often a poor surrogate due to the optimization bias
 - Example: 1-Nearest Neighbor classifier

- Two ideas for estimating the risk
 - Calculate or bound the actual risk in theory
 - Simulate the actual risk on a dataset not used for training.

Empirically measuring the *Risk* by splitting the data into: Training, Test, and Validation Sets

Validation set is used for model-selection:

- choosing decision tree vs. linear classifier
- Select features, tune hyperparameters

Test set is used only once to report the final results.

Cross-validation

Figure 1.18 The technique of S-fold cross-validation, illustrated here for the case of S=4, involves taking the available data and partitioning it into S groups (in the simplest case these are of equal size). Then S-1 of the groups are used to train a set of models that are then evaluated on the remaining group. This procedure is then repeated for all S possible choices for the held-out group, indicated here by the red blocks, and the performance scores from the S runs are then averaged.

Pros:

- No assumption on the data generating distributions, except iid.
- Do not waste data, comparing to holdout.

Cons:

- It evaluates the model applying to (S-1)/S fraction of the data
- Computation cost = O(S * number of models to select from)

Other approaches for model selection

- AIC (Akaike Information Criteria) / BIC (Bayesian information criteria)
 - (see PRML Section 1.3 and 4.4.1)
- Effective degree of freedom
 - Measuring the effective number of parameters
 - For fixed-design regression with square loss + Gaussian noise, any estimator:

$$R(\hat{h}) - \mathbb{E}[\hat{R}(\hat{h})] = \frac{2\sigma^2}{n} df(\hat{h})$$

Effective degree of freedom for Regularized Linear Regression

Ridge regression

$$df(X\hat{\theta}) = \operatorname{tr}(X(X^TX + \lambda I)^{-1}X^T)$$

- Number of parameters, if no regularization
- Independent to data y, can be computed ahead of time

• Lasso
$$df(X\hat{\theta}) = \mathbb{E}\left[\sum_{j \in [d]} \mathbb{I}(\hat{\theta}_j \neq 0)\right]$$

- Expected number of non-zero weights -- Sparsity.
- This is truly remarkable that we get this via L1regularization

See e.g.: https://www.stat.cmu.edu/~ryantibs/papers/lassodf.pdf

Checkpoint: model selection

- Three approaches for model selection
 - Holdout
 - Cross validation
 - Penalize information criteria
- Cross validation is what is most commonly used in practice.

Next two lectures

- Unsupervised learning
 - Thursday

- Optimization methods for machine learning
 - Next Tuesday