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Does BERT matter in NMT? 

 What happens?



• Learned Metrics for MT using BERT

• BERT NMT Distillation

• BERT NMT Fusion

Outline
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Learned Metric for MT 

using BERT



• Input reference y* and candidate y into BERT, and 
directly predict rating r


• With model pre-training

BLEURT

5Sellam et al. BLEURT: Learning Robust Metrics for Text Generation, 2020

BERT

reference, candidate

rating r



• Idea: 

– Use a pre-trained BERT to compute contextual embeddings for each token in reference sentence and 

candidate sentence. 

– Compute precision, recall for every token based on embedding (instead of matching on the surface level).


• Recall: 


• Precision: 


• 


• can be weighted by IDF (inverse document frequency),  if a word appears in many 

sentences, it is less important.  

R(y*, y) =
∑|y*|

i=1 max|y|
j=1 f(y*)T

i ⋅ f(y)T
j

|y* |

P(y*, y) =
∑|y|

j=1 max|y*|
i=1 f(y*)T

i ⋅ f(y)j

|y |

F(y*, y) =
P ⋅ R
P + R

idf(w) = log
#sentences

#sentences contain w

BERTScore

6Zhang et al. BERTScore: Evaluating Text Generation with BERT. 2020



Correlation of BERTScore and Human evaluation for WMT18
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• Use source sentence x, reference y*, candidate y, to 
learn a rating function


– x = [h; r; h ⊙ s;h ⊙ r;|h − s|;|h − r|], where h is embedding for y

• COMET-rank: instead of rating, learn a ranking for 

candiate y+ and y- given source sentence x and 
reference y*

COMET

8Rei et al. COMET: A Neural Framework for MT Evaluation. 2020



Correlation between COMET and Human Evaluation

9Rei et al. COMET: A Neural Framework for MT Evaluation. 2020



Correlation between COMET and Human Evaluation

10Rei et al. COMET: A Neural Framework for MT Evaluation. 2020



BERT NMT Distillation



• Fine-tuning leads to  performance degradation  on the original task 

• The situation is more severe on NMT fine-tuning


• High capacity of baseline needs much updating

• Updating to much makes the model forgets its universal knowledge from 

pre-training

BERT Initialization and Fine-tuning
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Performance on fine-tuning NMT Performance on other BERT tasks 

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]

Why simply incorporating BERT does not work as expectation
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Figure 1: The overall CTNMT with asymptotic distillation and dynamic switch.

representations. GPT-2 can be viewed as a causal
language modeling (CLM) task consisting of a
Transformer LM trained to fit the probability of
a word given previous words in a sentence, while
BERT is designed to pre-train deep bidirectional
representations by jointly conditioning on both left
and right context in all layers. Specifically, from
an input sentence X = {x1 · · · , xm}, BERT or
GPT-2 computes a set of feature vectors H

lm =
{hlm1 · · · , hlmm } upon which we build our NMT
model. In general, there are two ways of using
BERT features, namely fine-tuning approach, and
feature approach. For fine-tuning approach, a sim-
ple classification layer is added to the pre-trained
model and all parameters are jointly fine-tuned
on a downstream task, while the feature approach
keeps the pre-trained parameters unchanged. For
most cases, the performance of the fine-tuning ap-
proach is better than that of the feature approach.

In NMT scenario, the basic procedure is to
pre-train both the NMT encoder and decoder net-
works with language models, which can be trained
on large amounts of unlabeled text data. Then
following a straightforward way to initialize the
NMT encoder with the pre-trained LM and fine-
tune with a labeled dataset. However, this pro-
cedure may lead to catastrophic forgetting, where
the model performance on the language modeling
tasks falls dramatically after fine-tuning (Good-
fellow et al., 2013). With the increasing train-
ing corpus, the benefits of the pre-training will be
gradually diminished after several iterations of the
fine-tuning procedure. This may hamper the mod-
els ability to utilize the pre-trained knowledge. To
tackle this issue, we propose three complementary
strategies for fine-tuning the model.

2.2 Asymptotic Distillation

Addressing the catastrophic forgetting problem,
we propose asymptotic distillation as the minic
regularization to retain the pre-trained informa-
tion. Additionally, due to the large number of pa-
rameters, BERT and GPT-2, for example, cannot
be deployed in resource-restricted systems such
as mobile devices. Fine-tuning with the large
pre-trained model slows NMT throughput during
training by about 9.2x, as showed by (Edunov
et al., 2019). With asymptotic distillation, we can
train the NMT model without additional parame-
ters.

Specifically, the distillation objective is to pe-
nalize the mean-squared-error (MSE) loss be-
tween the hidden states of the NMT model and the
pre-trained LM:

Lkd = �||ĥlm � hl||22 (4)

where the hidden state of the pre-trained language
model ĥlm is fixed and treated as the teacher; hl
is the l

th layer of the hidden states of the NMT
model. For the encoder part, we use the last layer
and find it is better to add the supervision signal to
the top encoder layers.

At training time for NMT, the distilling objec-
tive can be used in conjunction with a traditional
cross-entropy loss:

L = ↵ · Lnmt + (1� ↵) · Lkd (5)

where ↵ is a hyper-parameter that balances the
preference between pre-training distillation and
NMT objective.

2.3 Dynamic Switch

Asymptotic distillation provides an effective way
to integrate the pre-trained information to NMT

Not tuning too much
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• Concerted training framework

• Rate-scheduled Learning

• Dynamic Switch 

• Asymptotic Distillation

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



Not tuning too much
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• Rate-scheduled Learning rate

• Gradually increase the learning 

rate of BERT parameters from 0 
to 1


• Then,   decrease the learning rate 
of BERT parameters from 1 to 0


• Keep the BERT parameters 
frozen 

Learning rate scalar for BERT parameter

Rate-scheduled learning rate is actually a trade off between fine-
tuning and BERT frozen

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]
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• Dynamic Switch 

• Use a gate to dynamically  

decide which part is more 
important


• If  is learned to 0, it degrade 
to the NMT model


• If  is learned to 1, it simply 
act as Bert fine-tune 
approach 

σ

σ

Self Attention

FFN

Self Attention

FFN

Combined
Feature

�σ 1-σ

BERT Encoder

Figure 2: The dynamic switch fashion

tasks. Features extracted from a extremely large
pre-trained LM such as BERT, however, are not
easy for the student Transformer network to fit
since these features can be high-ordered. Mean-
while, directly feeding the features to the NMT
model ignores the information from the original
text, which harms the performance. We thus in-
troduce a dynamic switch strategy to incorporate
the pre-trained model to the original Transformer
NMT model as showed in 2.

Inspired by the success of gated recurrent units
in RNN(Chung et al., 2014), we propose to use
the similar idea of gates to dynamically control
the amount of information flowing from the pre-
trained model as well as the NMT model and
thus balance the knowledge transfer for our NMT
model.

Intuitively, the context gate looks at the input
signals from both the pre-trained model and the
NMT model and outputs a number between 0 and
1 for each element in the input vectors, where
1 denotes “completely transferring this” while 0
denotes “completely ignoring this”. The corre-
sponding input signals are then processed with an
element-wise multiplication before being fed to
the next layer. Formally, a context gate consists
of a sigmoid neural network layer and an element-
wise multiplication operation which is computed
as:

g = �(Wh
lm + Uh

nmt + b) (6)

where �(·) is the logistic sigmoid function, hlm is
the hidden state of the pre-trained language model,
and h

nmt is the hidden state of the original NMT.
Then, we consider integrating the NMT model and
pre-trained language model as:

h = g � h
lm + (1� g)� h

nmt (7)

where � is an element-wise multiplication. If g is
set to 0, the network will degrade to the traditional

T	" T

0.25

0. 50

0.00

0.75

1.00

Figure 3: The slanted triangular learning rate schedule
used for ⌘lm.

NMT model; if g is set to 1, the network will sim-
ply act as the fine-tuning approach.

2.4 Rate-scheduled learning

We also propose a rate-scheduled learning strat-
egy, as an important complement, to alleviate the
catastrophic forgetting problem. Instead of us-
ing the same learning rate for all components of
the model, rate-scheduled learning strategy allows
us to tune each component with different learning
rates. Formally, the regular stochastic gradient de-
scent (SGD) update of a models parameters ✓ at
time step t can be summarized as the following
formula:

✓t = ✓t�1 � ⌘r✓L(✓),
where ⌘ is the learning rate. For discrimina-
tive fine-tuning, we group the parameters into
{✓lm, ✓

nmt}, where ✓
lm and ✓

nmt contain the pa-
rameters of the pre-trained language model and the
NMT model respectively. Similarly, we obtain the
corresponding learning rate {⌘lm, ⌘

nmt}.
The SGD update with drate-scheduled learning

strategy is then the following:

✓
lm
t = ✓

lm
t�1 � ⌘

lmr✓lmL(✓lm) (8)
✓
nmt
t = ✓

nmt
t�1 � ⌘

nmtr✓nmtL(✓nmt) (9)

We would like the model first to quickly con-
verge the NMT parameters. Then we jointly train
both the NMT and LM parameters with modest
steps. Finally, we only refine the NMT parame-
ters to avoid forgetting the pre-trained knowledge.
Using the same learning rate or an annealed learn-
ing rate throughout training is not the best way to
achieve this behavior. Inspired by (Howard and
Ruder, 2018; Smith, 2017), we employ slanted tri-

angular learning rates policy which first increases
linearly and then decreases gradually after a spec-
ified epoch, i.e., there is a “short increase” and a
“long decay”. More specifically, the learning rate
of pre-trained parameters ⌘

lm is then defined as

Not tuning too much

Dynamic Switch  is more flexible than rate-scheduled learning rate

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]
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Not tuning too much

• Asymptotic Distillation 

• The pre-trained BERT serves as a 

teacher network while the encoder of 
the NMT model serves as a student


• Minimize MSE loss of hidden states 
between NMT encoder and BERT to 
retain the pre-trained information


• Use a hyper-parameter to balances the 
preference between pre-training 
distillation and NMT objective

BERT 
Encoder

NMT 
Encoder

Distillation 

Teacher Student

ℒKD = hbert − hnmt
2

Distillation Without introducing of additional parameters!

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



Not tuning too much
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• Three strategies can independently  work well on WMT14 En-De, En-Fr and 
WMT18 En-Zh


• CTNMT base model achieves even better results than Transformer big model

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



• CTNMT  outperforms fine-tuning on all training steps 

• The performance gaps is enlarged  as the fine-tuning steps increasing 

Not tuning too much
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Transformer Fine-tuning CTNMT

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



• Advantage

– Simple and effective, obtains +3 BLEU on WMT14 en-de benchmark

– Three methods can be used separately or jointly 


• Limitation

– Introducing pre-training method for decoder is  promising but still difficult

– Cross attention is import but not pre-trained

Summary

19

System Architecture En-De En-Fr En-Zh
Existing systems

Vaswani et al. (2017) Transformer base 27.3 38.1 -
Vaswani et al. (2017) Transformer big 28.4 41.0 -
Lample and Conneau (2019) Transformer big + Fine-tuning 27.7 - -
Lample and Conneau (2019) Transformer big + Frozen Feature 28.7 - -
Chen et al. (2018) RNMT+ + MultiCol 28.7 41.7 -

Our NMT systems
CTNMT Transformer (base) 27.2 41.0 37.3
CTNMT Rate-scheduling 29.7 41.6 38.4
CTNMT Dynamic Switch 29.4 41.4 38.6
CTNMT Asymptotic Distillation 29.2 41.6 38.3
CTNMT + ALL 30.1 42.3 38.9

Table 1: Case-sensitive BLEU scores on English-German, English-French and English-Chinese translation. The
best performance comes from the fusion of rate-scheduling, dynamic switch and asymptotic distillation.

performance. And with only Asymptotic Distil-
lation we still outperform MultiCol without addi-
tional parameters.

4 Results and Analysis

The results on English-German and English-
French translation are presented in Table 1. We
compare CTNMT with various other systems in-
cluding Transformer and previous state-of-the-art
pre-trained LM enhanced model. As observed by
Edunov et al. (2019), Transformer big model with
fine-tuning approach even falls behind the base-
line. They then freeze the LM parameters during
fine-tuning and achieve a few gains over the strong
transformer big model. This is consistent with
our intuition that fine-tuning on the large dataset
may lead to degradation of the performance. In
CTNMT, we first evaluate the effectiveness of the
proposed three strategies respectively. Clearly,
these method achieves almost 2 BLEU score im-
provement over the state-of-the-art on the English-
German task for the base network. In the case
of the larger English-French task, we obtain 1.2
BLEU improvement for the base model. In the
case of the English-Chinese task, we obtain 1.6
BLEU improvement for the baseline model. More
importantly, the combination of these strategies
finally gets an improvement over the best single
strategy with roughly 0.5 BLEU score. We will
then give a detailed analysis as followings.

4.1 Encoder v.s. Decoder

As shown in Table 2, pre-trained language model
representations are most effective when super-

Models En!De BLEU

BERT Enc 29.2
BERT Dec 26.1
GPT-2 Enc 27.7
GPT-2 Dec 27.4

Table 2: Ablation of asymptotic distillation on the en-
coder and the decoder of NMT.

vised on the encoder part but less effective on
the decoder part. As BERT contains bidirectional
information, pre-training decoder may lead in-
consistencies between the training and the infer-
ence. The GPT-2 Transformer uses constrained
self-attention where every token can only attend
to context to its left, thus it is natural to introduce
GPT-2 to the NMT decoder. While there are still
no more significant gains obtained in our experi-
ments. One possible reason is that the decoder is
not a typical language model, which contains the
information from source attention. We will leave
this issue in the future study.

4.2 BERT v.s. GPT-2

We compare BERT with GPT-2(Radford et al.,
2019, 2018) on WMT 2014 English-German cor-
pus. As shown in Table 2, BERT added encoder
works better than GPT-2. The experiments sug-
gest that bidirectional information plays an impor-
tant role in the encoder of NMT models. While for
the decoder part, GPT-2 is a more priority choice.
In the following part, we choose BERT as the pre-
trained LM and apply only for the encoder part.

❌ ❌

✔ ❌

Encoder Decoder

GPT

BERT

Towards Making Most of BERT for NMT,  [Yang et al AAAI 2020]



BERT Fusion



• Fine-tuning BERT does NOT work ! 

– BERT and XLM pre-training for the encoder  decreased the performance 

– XLM pre-training for the decoder enlarged the performance gap


• BERT-Frozen achieved  improvements

Incorporate BERT into Neural Machine Translation

21

Published as a conference paper at ICLR 2020

and achieved great improvements when the data scale becomes large and deep neural networks
are employed. ELMo was proposed in Peters et al. (2018) based on bidirectional LSTMs and its
pre-trained models are fed into downstream tasks as context-aware inputs. In GPT (Radford et al.,
2018), a Transformer based language model is pre-trained on unlabeled dataset and then finetuned
on downstream tasks. BERT (Devlin et al., 2019) is one of the widely adopted pre-training approach
for model initialization. The architecture of BERT is the encoder of Transformer (Vaswani et al.,
2017). Two kinds of objective functions are used in BERT training: (1) Masked language modeling
(MLM), where 15% words in a sentence are masked and BERT is trained to predict them with their
surrounding words. (2) Next sentence prediction (NSP): Another task of pre-training BERT is to
predict whether two input sequences are adjacent. For this purpose, the training corpus consists
of tuples ([cls], input 1, [sep], input 2, [sep]), with learnable special tokens [cls]
to classify whether input 1 and input 2 are adjacent and [sep] to segment two sentences, and
with probability 50%, the second input is replaced with a random input. Variants of BERT have been
proposed: In XLM (Lample & Conneau, 2019), the model is pre-trained based on multiple languages
and NSP task is removed; in RoBERTa (Liu et al., 2019), more unlabeled data is leveraged without
NSP task neither; in XLNet (Yang et al., 2019b), a permutation based modeling is introduced.

3 A PRELIMINARY EXPLORATION

While a few pieces of work (Lample & Conneau, 2019; Song et al., 2019) design specific pre-
training methods for NMT, they are time and resource consuming given that they need to pre-train
large models from scratch using large-scale data, and even one model for each language pair. In this
work, we focus on the setting of using a pre-trained BERT model. Detailed model download links
can be found in Appendix D.

Considering that pre-trained models have been utilized in two different ways for other natural lan-
guage tasks, it is straightforward to try them for NMT. Following previous practice, we make the
following attempts.

(I) Use pre-trained models to initialize the NMT model. There are different implementations for this
approach. (1) Following (Devlin et al., 2019), we initialize the encoder of an NMT model with a pre-
trained BERT. (2) Following (Lample & Conneau, 2019), we initialize the encoder and/or decoder
of an NMT model with XLM.

(II) Use pre-trained models as inputs to the NMT model. Inspired from (Peters et al., 2018), we feed
the outputs of the last layer of BERT to an NMT model as its inputs.

We conduct experiments on the IWSLT’14 English!German translation, a widely adopted dataset
for machine translation consisting of 160k labeled sentence pairs. We choose Transformer (Vaswani
et al., 2017) as the basic model architecture with transformer iwslt de en configuration (a
six-layer model with 36.7M parameters). The translation quality is evaluated by BLEU (Papineni
et al., 2002) score; the larger, the better. Both BERTbase and XLM models are pre-trained and we
get them from the Web. More details about the experimental settings are included in Appendix A.2.

Table 1: Preliminary explorations on IWSLT’14 English!German translation.
Algorithm BLEU score

Standard Transformer 28.57

Use BERT to initialize the encoder of NMT 27.14
Use XLM to initialize the encoder of NMT 28.22
Use XLM to initialize the decoder of NMT 26.13
Use XLM to initialize both the encoder and decoder of NMT 28.99

Leveraging the output of BERT as embeddings 29.67

The results are shown in Table 1. We have several observations: (1) Using BERT to initialize the en-
coder of NMT can only achieve 27.14 BLEU score, which is even worse than standard Transformer
without using BERT. That is, simply using BERT to warm up an NMT model is not a good choice.
(2) Using XLM to initialize the encoder or decoder respectively, we get 28.22 or 26.13 BLEU score,
which does not outperform the baseline. If both modules are initialized with XLM, the BLEU score

3Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]



• BERT features are directly fed to both encoder and decoder layers 

• Additional attention model to incorporate BERT features

Incorporate BERT into Neural Machine Translation

22

Published as a conference paper at ICLR 2020

is boosted to 28.99, slightly outperforming the baseline. Although XLM achieved great success
on WMT’16 Romanian-to-English, we get limited improvement here. Our conjecture is that the
XLM model is pre-trained on news data, which is out-of-domain for IWSLT dataset mainly about
spoken languages and thus, leading to limited improvement. (3) When using the output of BERT
as context-aware embeddings of the encoder, we achieve 29.67 BLEU, much better than using pre-
trained models for initialization. This shows that leveraging BERT as a feature provider is more
effective in NMT. This motivates us to take one step further and study how to fully exploit such
features provided by pre-trained BERT models.

4 ALGORITHM

In this section, we first define the necessary notations, then introduce our proposed BERT-fused
model and finally provide discussions with existing works.

Notations Let X and Y denote the source language domain and target language domain respectively,
which are the collections of sentences with the corresponding languages. For any sentence x 2 X
and y 2 Y , let lx and ly denote the number of units (e.g., words or sub-words) in x and y. The
i-th unit in x/y is denoted as xi/yi. Denote the encoder, decoder and BERT as Enc, Dec and BERT
respectively. For ease of reference, we call the encoder and decoder in our work as the NMT module.
W.l.o.g., we assume both the encoder and decoder consists of L layers. Let attn(q,K, V ) denote
the attention layer, where q, K and V indicate query, key and value respectively (Vaswani et al.,
2017). We use the same feed-forward layer as that used in (Vaswani et al., 2017) and denote it as
FFN. Mathematical formulations of the above layers are left at Appendix E.

4.1 BERT-FUSED MODEL

An illustration of our algorithm is shown in Figure 1. Any input x 2 X is progressively processed
by the BERT, encoder and decoder.

BERT-Enc
Attention

Add & Norm

Feed
Forward

Add & Norm

Self
Attention

BERT-Dec
Attention

Add & Norm

Feed
Forward

Add & Norm

Enc-Dec
Attention

Add & Norm

Self
Attention

𝐻𝐸𝑙

𝐻𝐸𝐿 𝐻𝐸𝐿
𝐻𝐵

𝐻𝐸𝑙−1 𝑆𝑙−1

𝑆𝑙

encoder
layer

decoder
layer

……

BERT

𝐿 ×

𝐿 ×

Figure 1: The architecture of BERT-fused model. The left and right figures represent the BERT,
encoder and decoder respectively. Dash lines denote residual connections. HB (red part) and H

L
E

(green part) denote the output of the last layer from BERT and encoder.

Step-1: Given any input x 2 X , BERT first encodes it into representation HB = BERT(x). HB is
the output of the last layer in BERT. The hB,i 2 HB is the representation of the i-th wordpiece in x.

Step-2: Let H l
E denote the hidden representation of l-th layer in the encoder, and let H0

E denote
word embedding of sequence x. Denote the i-th element in H

l
E as h

l
i for any i 2 [lx]. In the l-th

4

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]



• Fine-tuning dataset

– Low resource: IWSLT En-De, En-FR, En-Zh, En-Es (less than 

250 k sentence pairs)

– Rich resource: WMT14 En-De and En-Fr (4 M and 36 M 

sentence pairs)

• Settings


– BERT base for IWSLT

– BERT large for WMT 

– Both the BERT-encoder and BERTdecoder attention are 

randomly initialized

Datasets and settings

23Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]



• Experiments on a strong baseline

• BERT-fused model outperforms transformer baseline in all settings

Main results on supervised MT

24Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]
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• Pre-training plays an crucial role in unsupervised NMT (Lample v.s. xml, mass and 
BERT-fused)


• BERT-fused outperforms XLM and MASS

• The comparison is slightly unfair, since BERT-fused introduced additional parameters

Main results on unsupervised MT

25Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

Unsupervised MT results on IWSLT
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Jointly train BERT model with the NMT can also boost the baseline 
from 28.57 to 28.87. 

But it is not as good as fixing the BERT part, whose BLEU is 30.45 


•

NOT Tune BERT

26
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5.4 APPLICATION TO SEMI-SUPERVISED NMT

We work on WMT’16 Romanian!English (Ro!En) translation to verify whether our approach can
still make improvement over back translation (Sennrich et al., 2016b), the standard and powerful
semi-supervised way to leverage monolingual data in NMT.

The number of bilingual sentence pairs for Ro!En is 0.6M . Sennrich et al. (2016a) provided
2M back translated data2. We use newsdev2016 as validation set and newstest2016 as test set.
Sentences were encoded using BPE with a shared source-target vocabulary of about 32k tokens. We
use transformer big configuration. Considering there is no Romanian BERT, we use the cased
multilingual BERT (please refer to Appendix D) to encode inputs. The drop-net rate pnet is set as
1.0. The translation quality is evaluated by multi-bleu.perl.

Table 5: BLEU scores of WMT’16 Ro!En.
Methods BLEU

Sennrich et al. (2016a) 33.9
XLM (Lample & Conneau, 2019) 38.5

Standard Transformer 33.12
+ back translation 37.73
+ BERT-fused model 39.10

The results are shown in Table 5. The
Transformer baseline achieves 33.12 BLEU
score. With back-translation, the performance
is boosted to 37.73. We use the model obtained
with back-translation to initialize BERT-fused
model, and eventually reach 39.10 BLEU. Such
a score surpasses the previous best result 38.5
achieved by XLM (Lample & Conneau, 2019)
and sets a new record. This demonstrates that
our proposed approach is effective and can still achieve improvement over strong baselines.

6 ABLATION STUDY

We conduct two groups of ablation studies on IWSLT’14 En!De translation to better understand
our model.

Table 6: Ablation study on IWSLT’14 En!De.
Standard Transformer 28.57
BERT-fused model 30.45

Randomly initialize encoder/decoder of BERT-fused model 27.03
Jointly tune BERT and encoder/decoder of BERT-fused model 28.87

Feed BERT feature into all layers without attention 29.61
Replace BERT output with random vectors 28.91
Replace BERT with the encoder of another Transformer model 28.99

Remove BERT-encoder attention 29.87
Remove BERT-decoder attention 29.90

Study for training strategy and network architecture

We conduct ablation study to investigate the performance of each component of our model and
training strategy. Results are reported in Table 6:

(1) We randomly initialize the NMT module (i.e., encoder and decoder) of BERT-fused model in-
stead of using a warm-start one as introduced in the training strategy of Section 5.1. In this way, we
can only achieve 27.03 BLEU score, which cannot catch up with the baseline. We also jointly train
BERT model with the NMT module. Although it can also boost the baseline from 28.57 to 28.87, it
is not as good as fixing the BERT part, whose BLEU is 30.45.

(2) We feed the output of BERT into all layers of the encoder without attention models. That is,
the Eqn.(1) is revised to h̃

l
i =

1
2

�
attnS(h
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In this case, the encoder and BERT have to share the same vocabulary. The BLEU score is 29.61,
which is better than the standard Transformer but slightly worse than leveraging the output of BERT
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NMT Pre-training is also important to the success of BERT-fused model

Without NMT pre-training, the performance lags behind the baseline model

NMT pre-training matters 
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5.4 APPLICATION TO SEMI-SUPERVISED NMT

We work on WMT’16 Romanian!English (Ro!En) translation to verify whether our approach can
still make improvement over back translation (Sennrich et al., 2016b), the standard and powerful
semi-supervised way to leverage monolingual data in NMT.

The number of bilingual sentence pairs for Ro!En is 0.6M . Sennrich et al. (2016a) provided
2M back translated data2. We use newsdev2016 as validation set and newstest2016 as test set.
Sentences were encoded using BPE with a shared source-target vocabulary of about 32k tokens. We
use transformer big configuration. Considering there is no Romanian BERT, we use the cased
multilingual BERT (please refer to Appendix D) to encode inputs. The drop-net rate pnet is set as
1.0. The translation quality is evaluated by multi-bleu.perl.

Table 5: BLEU scores of WMT’16 Ro!En.
Methods BLEU

Sennrich et al. (2016a) 33.9
XLM (Lample & Conneau, 2019) 38.5

Standard Transformer 33.12
+ back translation 37.73
+ BERT-fused model 39.10

The results are shown in Table 5. The
Transformer baseline achieves 33.12 BLEU
score. With back-translation, the performance
is boosted to 37.73. We use the model obtained
with back-translation to initialize BERT-fused
model, and eventually reach 39.10 BLEU. Such
a score surpasses the previous best result 38.5
achieved by XLM (Lample & Conneau, 2019)
and sets a new record. This demonstrates that
our proposed approach is effective and can still achieve improvement over strong baselines.

6 ABLATION STUDY

We conduct two groups of ablation studies on IWSLT’14 En!De translation to better understand
our model.

Table 6: Ablation study on IWSLT’14 En!De.
Standard Transformer 28.57
BERT-fused model 30.45

Randomly initialize encoder/decoder of BERT-fused model 27.03
Jointly tune BERT and encoder/decoder of BERT-fused model 28.87

Feed BERT feature into all layers without attention 29.61
Replace BERT output with random vectors 28.91
Replace BERT with the encoder of another Transformer model 28.99

Remove BERT-encoder attention 29.87
Remove BERT-decoder attention 29.90

Study for training strategy and network architecture

We conduct ablation study to investigate the performance of each component of our model and
training strategy. Results are reported in Table 6:

(1) We randomly initialize the NMT module (i.e., encoder and decoder) of BERT-fused model in-
stead of using a warm-start one as introduced in the training strategy of Section 5.1. In this way, we
can only achieve 27.03 BLEU score, which cannot catch up with the baseline. We also jointly train
BERT model with the NMT module. Although it can also boost the baseline from 28.57 to 28.87, it
is not as good as fixing the BERT part, whose BLEU is 30.45.

(2) We feed the output of BERT into all layers of the encoder without attention models. That is,
the Eqn.(1) is revised to h̃
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In this case, the encoder and BERT have to share the same vocabulary. The BLEU score is 29.61,
which is better than the standard Transformer but slightly worse than leveraging the output of BERT

2Data at http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/.
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Remove attention module, the performance still outperforms baseline, but 
falls behind BERT-fused model

It suggest that separate BERT model provides additional gains

BERT attention module matters 
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5.4 APPLICATION TO SEMI-SUPERVISED NMT

We work on WMT’16 Romanian!English (Ro!En) translation to verify whether our approach can
still make improvement over back translation (Sennrich et al., 2016b), the standard and powerful
semi-supervised way to leverage monolingual data in NMT.

The number of bilingual sentence pairs for Ro!En is 0.6M . Sennrich et al. (2016a) provided
2M back translated data2. We use newsdev2016 as validation set and newstest2016 as test set.
Sentences were encoded using BPE with a shared source-target vocabulary of about 32k tokens. We
use transformer big configuration. Considering there is no Romanian BERT, we use the cased
multilingual BERT (please refer to Appendix D) to encode inputs. The drop-net rate pnet is set as
1.0. The translation quality is evaluated by multi-bleu.perl.

Table 5: BLEU scores of WMT’16 Ro!En.
Methods BLEU

Sennrich et al. (2016a) 33.9
XLM (Lample & Conneau, 2019) 38.5

Standard Transformer 33.12
+ back translation 37.73
+ BERT-fused model 39.10

The results are shown in Table 5. The
Transformer baseline achieves 33.12 BLEU
score. With back-translation, the performance
is boosted to 37.73. We use the model obtained
with back-translation to initialize BERT-fused
model, and eventually reach 39.10 BLEU. Such
a score surpasses the previous best result 38.5
achieved by XLM (Lample & Conneau, 2019)
and sets a new record. This demonstrates that
our proposed approach is effective and can still achieve improvement over strong baselines.

6 ABLATION STUDY

We conduct two groups of ablation studies on IWSLT’14 En!De translation to better understand
our model.

Table 6: Ablation study on IWSLT’14 En!De.
Standard Transformer 28.57
BERT-fused model 30.45

Randomly initialize encoder/decoder of BERT-fused model 27.03
Jointly tune BERT and encoder/decoder of BERT-fused model 28.87

Feed BERT feature into all layers without attention 29.61
Replace BERT output with random vectors 28.91
Replace BERT with the encoder of another Transformer model 28.99

Remove BERT-encoder attention 29.87
Remove BERT-decoder attention 29.90

Study for training strategy and network architecture

We conduct ablation study to investigate the performance of each component of our model and
training strategy. Results are reported in Table 6:

(1) We randomly initialize the NMT module (i.e., encoder and decoder) of BERT-fused model in-
stead of using a warm-start one as introduced in the training strategy of Section 5.1. In this way, we
can only achieve 27.03 BLEU score, which cannot catch up with the baseline. We also jointly train
BERT model with the NMT module. Although it can also boost the baseline from 28.57 to 28.87, it
is not as good as fixing the BERT part, whose BLEU is 30.45.

(2) We feed the output of BERT into all layers of the encoder without attention models. That is,
the Eqn.(1) is revised to h̃
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In this case, the encoder and BERT have to share the same vocabulary. The BLEU score is 29.61,
which is better than the standard Transformer but slightly worse than leveraging the output of BERT

2Data at http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/.

8

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

28

28.75

29.5

30.25

31

Baseline w/o BERT-at BERT-fused

En-De



Replace BERT representation with another transformer model,  the performance drops significantly

It indicates BERT provides meaningful information and the improvements is not from the additional 
parameters. 

Of course,  BERT matters 
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5.4 APPLICATION TO SEMI-SUPERVISED NMT

We work on WMT’16 Romanian!English (Ro!En) translation to verify whether our approach can
still make improvement over back translation (Sennrich et al., 2016b), the standard and powerful
semi-supervised way to leverage monolingual data in NMT.

The number of bilingual sentence pairs for Ro!En is 0.6M . Sennrich et al. (2016a) provided
2M back translated data2. We use newsdev2016 as validation set and newstest2016 as test set.
Sentences were encoded using BPE with a shared source-target vocabulary of about 32k tokens. We
use transformer big configuration. Considering there is no Romanian BERT, we use the cased
multilingual BERT (please refer to Appendix D) to encode inputs. The drop-net rate pnet is set as
1.0. The translation quality is evaluated by multi-bleu.perl.

Table 5: BLEU scores of WMT’16 Ro!En.
Methods BLEU

Sennrich et al. (2016a) 33.9
XLM (Lample & Conneau, 2019) 38.5

Standard Transformer 33.12
+ back translation 37.73
+ BERT-fused model 39.10

The results are shown in Table 5. The
Transformer baseline achieves 33.12 BLEU
score. With back-translation, the performance
is boosted to 37.73. We use the model obtained
with back-translation to initialize BERT-fused
model, and eventually reach 39.10 BLEU. Such
a score surpasses the previous best result 38.5
achieved by XLM (Lample & Conneau, 2019)
and sets a new record. This demonstrates that
our proposed approach is effective and can still achieve improvement over strong baselines.

6 ABLATION STUDY

We conduct two groups of ablation studies on IWSLT’14 En!De translation to better understand
our model.

Table 6: Ablation study on IWSLT’14 En!De.
Standard Transformer 28.57
BERT-fused model 30.45

Randomly initialize encoder/decoder of BERT-fused model 27.03
Jointly tune BERT and encoder/decoder of BERT-fused model 28.87

Feed BERT feature into all layers without attention 29.61
Replace BERT output with random vectors 28.91
Replace BERT with the encoder of another Transformer model 28.99

Remove BERT-encoder attention 29.87
Remove BERT-decoder attention 29.90

Study for training strategy and network architecture

We conduct ablation study to investigate the performance of each component of our model and
training strategy. Results are reported in Table 6:

(1) We randomly initialize the NMT module (i.e., encoder and decoder) of BERT-fused model in-
stead of using a warm-start one as introduced in the training strategy of Section 5.1. In this way, we
can only achieve 27.03 BLEU score, which cannot catch up with the baseline. We also jointly train
BERT model with the NMT module. Although it can also boost the baseline from 28.57 to 28.87, it
is not as good as fixing the BERT part, whose BLEU is 30.45.

(2) We feed the output of BERT into all layers of the encoder without attention models. That is,
the Eqn.(1) is revised to h̃
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In this case, the encoder and BERT have to share the same vocabulary. The BLEU score is 29.61,
which is better than the standard Transformer but slightly worse than leveraging the output of BERT

2Data at http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/.
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• Key idea

– Dynamic fusion of different BERT layers, while BERT-fused model only uses the last layer of BERT 

– Incorporate BERT  into all encoder layers and decoder layers with adaptive weight

– Experiments including both BERT & GPT  

Acquiring Knowledge from Pre-trained Model to Neural Machine Translation
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There are two main objectives to train the pre-trained
model (Yang et al. 2019b). The first kind is using an auto-
regressive language model objective, which predicts the next
word P (zk|z<k; ✓P) by the kth representation r

p
L,k from

R
p
L. Another popular method is similar to the auto-encoder,

which needs to pre-process the sentence z to get a processed
one ẑ by masking several words z

m. Then, the pre-trained
model predicts the masked words to re-construct the z by
P (zm|ẑ; ✓P) in the training process.

3 Approach

Owing to the limited amount of parallel data, it is hard
for NMT to generate appropriate contextual representation.
The pre-trained models are an useful complement to pro-
vide NMT models with proper language knowledge. How-
ever, previous integration methods like fine-tuning: initial-
izing parameters from pre-trained models, may not suit for
machine translation which is a bilingual generation task. The
general contextual information from pre-trained models is
quite different from the task-specific representation of NMT
model.

Thus, we propose a novel APT framework including
a dynamic fusion mechanism and a knowledge distillation

paradigm, to fully utilize pre-trained contextual knowledge
in NMT models. We will introduce the two methods in de-
tails and discuss the different integration strategies in the
encoder and decoder of NMT models. For convenience, we
will present the dynamic fusion mechanism on the encoder
and the knowledge distillation paradigm on the decoder, re-
spectively.

3.1 Dynamic Fusion Mechanism

We propose a dynamic fusion mechanism to obtain the task-

specific representation by transforming general pre-trained
representations in pre-trained models. Specifically, we use
an adapter for transforming general knowledge to more ap-
propriate features of NMT during the training process. Fur-
thermore, previous work (Peters et al. 2018; Dou et al. 2018;
Wang et al. 2018) shows that representations from each layer
in a deep model have different aspect of meaning. Following
this intuition, we expand our idea by employing the adapter
on all layers’ representation from pre-trained models to get
different kinds of knowledge, from concrete to abstract.

Formally, the general representations from pre-trained
models are R

P = (RP
1 , · · · ,R

P
l , · · · ,R

P
L ). For the lth

layer’s representation R
P
l , the task-specific representation is

computed by:

R
T
l = Gl(R

P
l ), (7)

where the proposed adapter Gl(·) is a simple MLP. Mikolov,
Le, and Sutskever (2013) and Wu et al. (2019) pointed out
the representation space of similar languages can be trans-
ferred by a linear mapping. In our scenario, which is in same
language, the mapping function can transfer the general rep-
resentation to task-specific representation effectively.

Subsequently, we propose two methods based on different
granularity to control how much the task-specific represen-
tation should be fused into Transformer dynamically. First,
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Figure 2: Overview of the dynamic fusion mechanism em-
ployed on the encoder of Transformer.

the demand of external information from each layer is dif-
ferent. Thus, compared with using layer coordination (He et
al. 2018) directly, we further propose a layer-aware atten-

tion mechanism to capture compound contextual informa-
tion. Formally, given the nth layer’s vanilla representation
R

E
n computed by Equation 1-2, the corresponding external

representation is computed by:

C
T
n =

LX

l=1

↵lR
T
l ,↵l =

exp(el)PL
t=1 exp(et)

, (8)

el = FFN(
1

I

IX

i=1

r
T
l,i ·

1

I

IX

i=1

r
E
n,i). (9)

The layer-aware attention mechanism can determine which
representation from pre-trained model is more important for
current layer. The composite representation C

T
n can capture

more suitable information by considering a larger context.
Following above intuition, the demand of each hidden

state from same layer is also different. A fine-grained
method is necessary to control the fusion ratio of each
hidden state. We adopt a simple contextual gating mecha-

nism (Kuang et al. 2018) to implement it.
Formally, the representation c

T
n,i from C

T
n is fused into the

corresponding state r
E
n,i from R

E
n by:

r
E
n,i = r

E
n,i + �n,i ⇤ c

T
n,i, (10)

where the gate �n,i is computed by:

�n,i = sigmoid(FFN(rEn,i · c
T
n,i)) (11)

The overview is illustrated in Figure 2. Different from pre-
vious works (Ramachandran, Liu, and Le 2017; Peters et
al. 2018; Radford et al. 2018), the proposed feature-based
method can make a deep fusion which could incorporate ap-
propriate information into each layer, that is, Transformer
can access specific surface information in lower layers and
the latent one in higher layers.
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GPT v.s. BERT
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Model Pre-trained Model EN!DE DE!EN ZH!EN
Encoder Decoder BLEU � BLEU � BLEU �

Transformer (Vaswani et al. 2017) N/A N/A 27.3 � N/A � N/A �
Transformer (Zheng et al. 2019) N/A N/A 27.14 � N/A � N/A �
Transformer (Dou et al. 2018) N/A N/A 27.31 � N/A � 24.13 �
Transformer N/A N/A 27.31 � 32.51 � 24.47 �

w/ Fine-tuning

GPT N/A 27.82 +0.51 33.17 +0.66 25.11 +0.64
N/A GPT 27.45 +0.14 32.87 +0.36 24.59 +0.12
GPT GPT 27.85 +0.54 32.79 +0.28 25.21 +0.74

BERT N/A 28.22 +0.91 33.64 +1.13 25.33 +0.86
N/A BERT 27.42 +0.11 33.13 +0.62 24.78 +0.31

BERT BERT 28.32 +1.01 33.57 +1.06 25.45 +0.98
GPT BERT 28.29 +0.98 33.33 +0.82 25.42 +0.95

BERT GPT 28.32 +1.01 33.57 +1.05 25.46 +0.99
MASS 28.07 +0.76 33.29 +0.78 25.11 +0.64
DAE 27.63 +0.33 33.03 +0.52 24.67 +0.20

w/ APT Framework

GPT BERT 28.89 +1.58 34.32 +1.81 25.98 +1.51
BERT GPT 29.23 +1.92 34.84 +2.33 26.21 +1.74
GPT GPT 28.97 +1.66 34.26 +1.75 26.01 +1.54

BERT BERT 29.02 +1.71 34.67 +2.16 26.46 +1.99

Table 1: Translation qualities on the EN!DE, DE!EN and ZH!EN experiments.

of layers for the encoder and decoder are 6. Sentence pairs
are batched together by approximate sentence length. Each
batch has 50 sentence and the maximum length of a sentence
is limited to 100. We use label smoothing with value 0.1
and dropout with a rate of 0.1. We use the Adam (Kingma
and Ba 2014) to update the parameters, and the learning rate
was varied under a warm-up strategy with 4000 steps. Other
settings of Transformer follow Vaswani et al. (2017) .

we also implement GPT (Radford et al. 2018), BERT (De-
vlin et al. 2018) and MASS (Song et al. 2019) in our Trans-
former system. The implementation details are as follows:
• GPT: Radford et al. (2018) proposed a pre-trained self-

attention language model. We implement it on both source
and target languages based on the aforementioned Trans-
former decoder.

• BERT: Devlin et al. (2018) proposed a pre-trained bi-
directional encoder optimized by the masked token and
next sentence objectives. Following Lample and Con-
neau (2019) , we implement it only using the masked to-
ken objective, which doesn’t require monolingual data has
document boundary.

• MASS: Song et al. (2019) proposed a masked sequence
to sequence pre-training model for text generation tasks.
It masks a continuous segment from a sentence as the la-
bel, and the rest of the sentence as the input of encoder.
We implement it in our Transformer system without any
modification.
After the training stage, we use beam search for heuris-

tic decoding, and the beam size is set to 4. We measure
the translation quality with the NIST-BLEU (Papineni et al.
2002). We implement our approach with the in-house imple-
mentation of Transformer derived from the tensor2tensor

2.
2https://github.com/tensorflow/tensor2tensor

4.2 Main Results

Translation Quality The results on the EN!DE,
DE!EN and ZH!EN are shown in Table 1. For a fair com-
parison, we also report several Transformer baseline from
previous work (Vaswani et al. 2017; Zheng et al. 2019;
Dou et al. 2018). Our Transformer baseline achieves simi-
lar or better results comparing with them. Compared with
our baseline, Transformer with the APT framework based
on different pre-trained models improves 1.92, 2.33 and 1.99
BLEU scores on the EN!DE, DE!EN and ZH!EN, re-
spectively (bold font). It’s worth to mention that the per-
centage improvement on the ZH!EN, whose difference of
syntax and morphology is bigger than German and English,
is more than other language pairs.

Compared with Fine-tuning We also implement the fine-
tuning method with different pre-trained models. When the
encoder is initialized by BERT and the decoder is initialized
by BERT or GPT, the BLEU score improves about 1 point
on three translation tasks. Our APT framework outperforms
the fine-tuning method on all tasks whenever using BERT or
GPT. This results demonstrate that the proposed approach is
more effective for obtaining the knowledge from pre-trained
model than fine-tuning in neural machine translation.

GPT Vs. BERT Although our work combining with GPT
or BERT achieves remarkable improvements, there are sev-
eral differences when employing them on encoder or de-
coder. First, BERT is better than GPT on the encoder when
using the proposed APT framework (+0.13 to +0.48). We
think the reason is that compared with the uni-directional
language model of GPT, the masked language model could
obtain more contextual information. While on the decoder
side, GPT gets better performance than BERT due to it can
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• Pre-training is much more promising 

– better generalization ability

– Back translation is limited with data scale

 Pre-training has better generalization ability  
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monolingual data from the same source of BERT
training by random selection from the Wikipedia13

14. Previous work shows that data capacity for back-
translation does not consistently improve perfor-
mance beyond a threshold (Poncelas et al., 2018),
therefore we choose a suitable amount and scale up
the data from 625k to 18M with the ratio between
authentic and synthetic data being 1:0.5, 1:1, 1:2
and 1:4, respectively (see Table 2). In total we have
18M monolingual sentences in German and 5M
monolingual sentences in English. All datasets are
preprocessed similarly to the training data.

4.4 Evaluation

We use the multi-bleu.perl from Moses on
tokenized sentences for BLEU evaluation of all
systems. The tasks of conjunction disambiguation
and idiom translation are evaluated on the presence
percentage of correct conjunction and pre-defined
blacklist words, respectively. The task of gender
bias is evaluated on morphological analysis from
3 aspects: overall accuracy calculated by the per-
centage of instances in which the translation pre-
served the gender of the entity from the original sen-
tence, �G denoting the difference in performance
between masculine and feminine scores, and �S

indicating the difference in performance between
pro-stereotypical and anti-stereotypical gender role
assignments (see examples in Appendix A.4).

Other tests use a contrastive pair paradigm,
which tests a model’s ability to discriminate be-
tween given good and bad translations by exploit-
ing the fact that NMT systems can be viewed as lan-
guage models of the target language, conditioned
on source texts. Similar to language models, NMT
models can score a negative log probability for sen-
tences. If the model score of the actual translation
is smaller than the contrastive translation, we treat
the decision as correct. We aggregate model deci-
sions on the whole test set and report the overall
percentage of correct decisions as results.

5 Results

The overall BLEU points are given in Table 315.
For both rich- and low-resource settings, the BERT-
fused model demonstrates stronger performances
than the baseline. However, systems augmented

13 dumps.wikimedia.org/dewiki/latest
14 dumps.wikimedia.org/enwiki/latest
15 We successfully reproduced the BLUE scores of the baseline

and BERT-fused model as reported in Zhu et al. (2020).

System En!De Zh!En
Standard Transformer 29.20 45.15
+ back translation (1:0.5) 30.41 46.70
+ back translation (1:1) 30.25 47.23

+ back translation (1:2) 30.18 47.04
+ back translation (1:4) 30.25 46.39
BERT-fused model 30.03 46.55

Table 3: Model performance in terms of BLUE scores
(case-insensitive). The best scores are marked in bold.

System Params Speed (tok/sec) Len% (tgt/src)
Back-translation 2.93B 1269.46 0.95
BERT-fused model 3.43B 355.24 0.95

Table 4: Model comparison in En!De. We list the
results of baseline model and Zh!En in Appendix B.

with back-translated data are better than the BERT-
fused model, with the best score achieved by model
trained with 2.25M synthetic data (1:0.5 setting)
for En!De, and 1.25M synthetic data (1:1 set-
ting) for Zh!En. This shows that in terms of
BLUE, the advantage of large-scale pre-training
is not obvious compared with large-scale back-
translation, even though the latter requires far less
training data and computational resources. Taking
En!De as an example (Table 4), back-translation
uses only 85% parameters compared to the BERT-
fused method, while achieves higher BLEU points,
3.6 times faster decoding speed, and the same tar-
get/source length ratio which indicates an equiva-
lent information richness in the target translation.

5.1 Morphology

Table 5 shows the results for morphology test in
En!De translation. Generally, for derivational (Ta-
ble 5a), agreement (Table 5b) and consistency (Ta-
ble 5c) content, pre-training does not show promi-
nent advantages over back-translation in helping
the standard Transformer model convey correct
morphology from source to target. Prior work on
monolingual tasks (Hofmann et al., 2020; Edmis-
ton, 2020; Haley, 2020) has shown that BERT is
capable of encoding morphological information
and many morphological features can be extracted
by training a simple classifier on a BERT layer. In
our bilingual task, however, BERT is trained in
the source context and evaluated in the target lan-
guage. The performance discrepancy shows that
BERT’s morphology prediction for novel words
in mono language results from high-frequent mor-
phological data during pre-training, which helps
BERT to memorize the statistical connection over

Figure 1: Results on homogragh translation test. We
list specific data of each model in Appendix C.

successful at differentiating source side ambiguous
words. However, when domain shifts, all models
decline in performance and the BERT-fused model
is no exception. Previous work has proven that
pre-training on large scale datasets can improve
out-of-domain model robustness (Hendrycks et al.,
2019; Mathis et al., 2021). It seems that this poten-
tial is not fully exploited in cross-lingual settings.
We plan to extend this point with the optimized
model RoBERTa (Liu et al., 2019b) in future work.

Figure 2 shows the results for conjunction disam-
biguation. The accuracy of the BERT-fused model
is 96.62, with which we identify a progress of the
BERT-fused model over other systems. This shows
that BERT’s contextualized word embedding is use-
ful to capture clues from sentence structures and
form a generic idea of conjunctions. Conjunction
can impact the structure of the surrounding sen-
tences and is related more to fluency than to ade-
quacy. Therefore it can be more difficult than con-
tent word ambiguity (Popović, 2019). We conclude
that BERT can actually absorb fine-grained relevant
sense information during pre-training, which helps
learn meaningful conjunction sense distinctions.

Table 7 shows the results for coreference trans-
lation. The second column refers to the total ac-
curacy of pronoun translation. The BERT-fused
model achieves the score of 52.46, outperforming
the others by 0.52-1.16 in accuracy. This corre-
sponds to prior studies which show that BERT’s
attention matrices are able to do coreference reso-
lution by effectively encoding coreference signal
in deeper layers and at specific heads (Clark et al.,
2019). The last two columns reflect the models’
performance when antecedent location is inside
or outside the current sentence. The accuracy of
the BERT-fused model ranks the highest in short

Figure 2: Results on conjunction disambiguation test.
We list specific data of each model in Appendix C.

System Total1 Intra2 External3

Standard Transformer 51.78 79.83 44.76

+ back translation (1:0.5) 51.30 82.33 43.54
+ back translation (1:1) 51.65 82.50 43.94
+ back translation (1:2) 51.64 82.08 44.03
+ back translation (1:4) 51.94 82.00 44.42
BERT-fused model 52.46 84.25 44.51
1 Translating English pronoun it to German es, sie, er
2 within segment 3 outside segment

Table 7: Accuracy values for reference pronoun trans-
lation(right part) and antecedent location (left part).

Zh!En En!De
System Triggered BLEU
Standard Transformer 377 29.54
+ back translation (1:0.5) 359 28.85
+ back translation (1:1) 306 27.53
+ back translation (1:2) 334 27.12
+ back translation (1:4) 344 26.76
BERT-fused model 249 30.76

Table 8: Results on idiom translation.

antecedent distance, outperforming others by 2-
5 points, but deteriorates the most sharply as the
distance between the pronoun and its antecedent
increases. Though all models are ineffective in
larger segments, the BERT-fused model even un-
derperforms the baseline by 0.25 points. On the
one hand, these observations prove the ability of
BERT’s deeply bidirectional representation con-
ditioned on both left and right context to capture
intra-sentence dependency which is important for
understanding coreferences. On the other hand, it
also shows BERT’s limitation on long-range fea-
tures in document-level contexts, which is also ob-
served by Joshi et al. (2019). As mentioned earlier
in Section 4.2, one training task of BERT is to pre-
dict the next sentence. We assume that BERT is
better than the standard Transformer to capture re-
lation between two sentences and thus can improve
performance on translation involving long-range
features. Based on our results, however, seemingly
BERT’s potential in capturing sentence relations is
not thoroughly exploited by NMT architectures.

Comparison between Pre-training and Large-scale Back-translation,  [Huang et al ACL 2021]



• Advantages 

– BERT features are fused in all layers

– Additional attention model adaptively determine how to leverage  

BERT feature 

• Limitions


– Additional cost including training storage and inference time

– Why not tune BERT?  

Summary
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