291K Deep Learning for Machine Translation Pre-training Language Model for MT Lei Li UCSB 10/25/2021

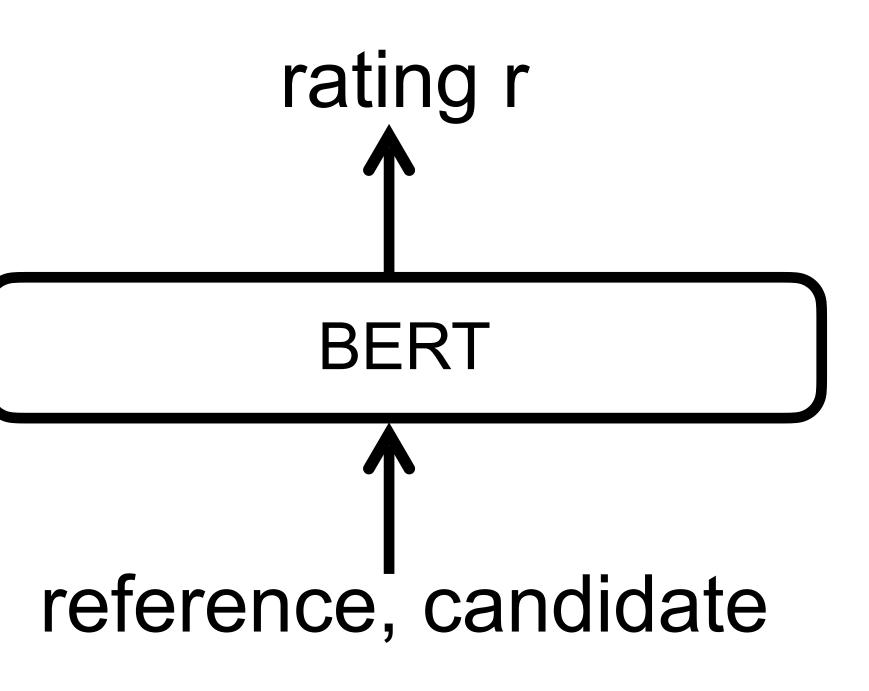
Does BERT matter in NMT?

Learned Metrics for MT using BERT BERT NMT Distillation BERT NMT Fusion

Outline

Learned Metric for MT using BERT

- Input reference y* and candidate y into BERT, and directly predict rating r
- With model pre-training



Sellam et al. BLEURT: Learning Robust Metrics for Text Generation, 2020

- Idea:
 - candidate sentence.

• Recall:
$$R(y^*, y) = \frac{\sum_{i=1}^{|y^*|} \max_{j=1}^{|y|} f(y^*)_i^T \cdot |y^*|}{|y^*|}$$

• Precision: $P(y^*, y) = \frac{\sum_{j=1}^{|y|} \max_{i=1}^{|y^*|} f(y^*)}{|y|}$
• $F(y^*, y) = \frac{P \cdot R}{P + R}$

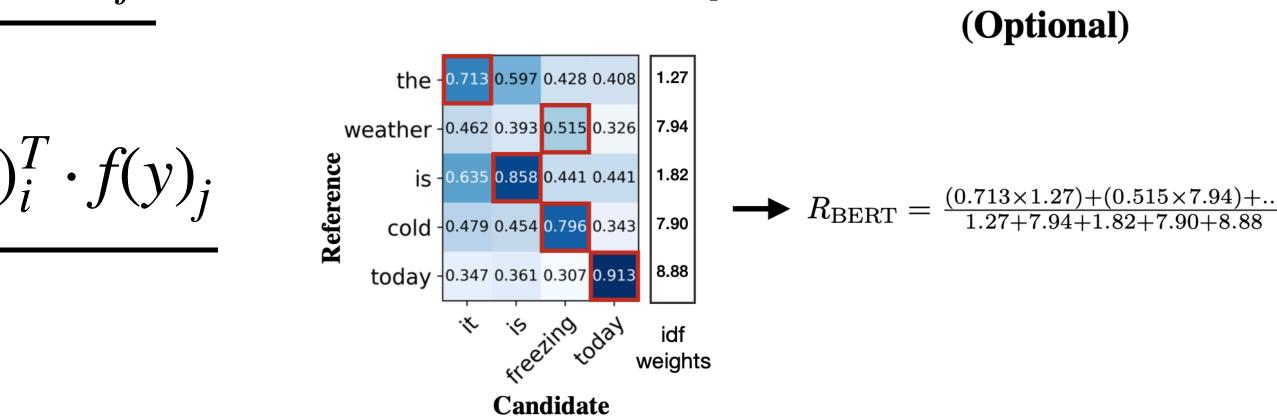
• can be weighted by IDF (inverse document frequency), if a word appears in many sentences, it is less important. $idf(w) = \log w$

Zhang et al. BERTScore: Evaluating Text Generation with BERT. 2020

BERTScore

– Use a pre-trained BERT to compute contextual embeddings for each token in reference sentence and

- Compute precision, recall for every token based on embedding (instead of matching on the surface level). $f(y)_i^I$ **Maximum Similarity Importance Weighting**



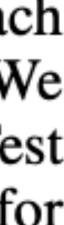
#sentences

#sentences contain w

Correlation of BERTScore and Human evaluation for WMT18

Metric	$en\leftrightarrow cs$ (5/5)	en↔de (16/16)	en↔et (14/14)	en↔fi (9/12)	en↔ru (8/9)	en↔tr (5/8)	en↔zh (14/14)
BLEU	.970/ .995	.971/ .981	.986/.975	.973/ .962	.979/ .983	.657 /.826	.978/.947
ITER	.975/.915	.990/ .984	.975/ .981	.996/.973	.937/.975	.861 /.865	.980/ –
RUSE	.981/ –	.997/ –	.990/ –	.991/ –	.988/ –	.853/ –	.981/ –
YiSi-1	.950/ .987	.992/ .985	.979/ .979	.973/.940	.991/.992	.958/.976	.951/ .963
P_{BERT}	.980/ .994	.998/.988	.990/.981	.995/.957	.982/ .990	.791/.935	.981/.954
$R_{ m BERT}$.998/.997	.997/ .990	.986/ .980	.997/.980	.995/.989	.054/.879	.990/.976
$F_{ m BERT}$.990/.997	.999/.989	.990/ .982	.998/.972	.990 /.990	.499 /.908	.988 /.967
F_{BERT} (idf)	.985/ .995	.999/.990	.992/.981	.992/ .972	.991/.991	.826/.941	.989/.973

Table 1: Absolute Pearson correlations with system-level human judgments on WMT18. For each language pair, the left number is the to-English correlation, and the right is the from-English. We bold correlations of metrics not significantly outperformed by any other metric under Williams Test for that language pair and direction. The numbers in parenthesis are the number of systems used for each language pair and direction.

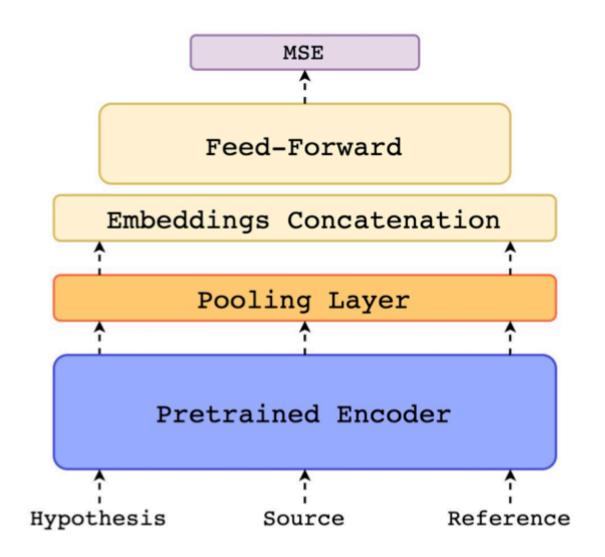


- learn a rating function
- COMET-rank: instead of rating, learn a ranking for candiate y+ and y- given source sentence x and reference y*

Rei et al. COMET: A Neural Framework for MT Evaluation. 2020

• Use source sentence x, reference y^{*}, candidate y, to

$-x = [h; r; h \odot s; h \odot r; |h - s|; |h - r|]$, where h is embedding for y



Correlation between COMET and Human Evaluation

Table 1: Kendall's Tau (τ) correlations on language pairs with English as source for the WMT19 Metrics DARR corpus. For BERTSCORE we report results with the default encoder model for a complete comparison, but also with XLM-RoBERTa (base) for fairness with our models. The values reported for YiSi-1 are taken directly from the shared task paper (Ma et al., 2019).

Metric	en-cs	en-de	en-fi	en-gu	en-kk	en-lt	en-ru	en-zh
BLEU	0.364	0.248	0.395	0.463	0.363	0.333	0.469	0.235
CHRF	0.444	0.321	0.518	0.548	0.510	0.438	0.548	0.241
YISI-1	0.475	0.351	0.537	0.551	0.546	0.470	0.585	0.355
BERTSCORE (default)	0.500	0.363	0.527	0.568	0.540	0.464	0.585	0.356
BERTSCORE (xlmr-base)	0.503	0.369	0.553	0.584	0.536	0.514	0.599	0.317
COMET-HTER	0.524	0.383	0.560	0.552	0.508	0.577	0.539	0.380
Comet-mqm	0.537	0.398	0.567	0.564	0.534	0.574	0.615	0.378
Comet-rank	0.603	0.427	0.664	0.611	0.693	0.665	0.580	0.449

Rei et al. COMET: A Neural Framework for MT Evaluation. 2020

Correlation between COMET and Human Evaluation

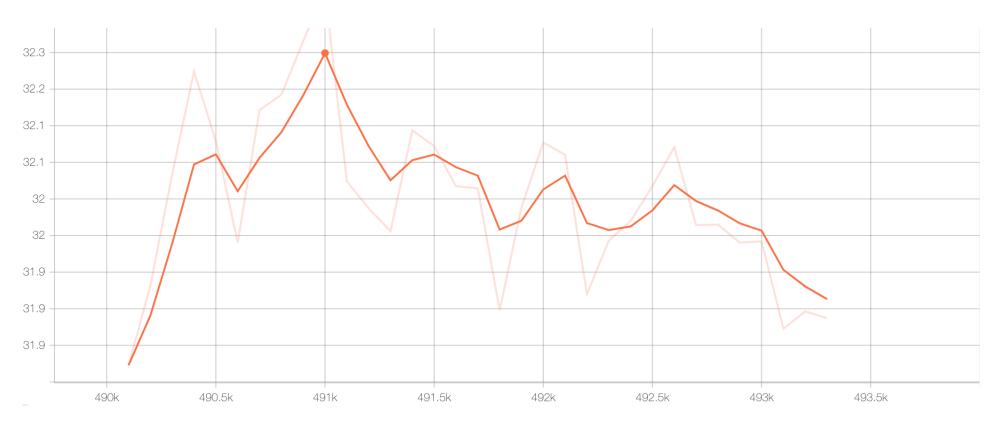
Table 2: Kendall's Tau (τ) correlations on language pairs with English as a target for the WMT19 Metrics DARR corpus. As for BERTSCORE, for BLEURT we report results for two models: the base model, which is comparable in size with the encoder we used and the large model that is twice the size.

Metric	de-en	fi-en	gu-en	kk-en	lt-en	ru-en	zh-en
Bleu	0.053	0.236	0.194	0.276	0.249	0.177	0.321
CHRF	0.123	0.292	0.240	0.323	0.304	0.115	0.371
YISI-1	0.164	0.347	0.312	0.440	0.376	0.217	0.426
BERTSCORE (default)	0.190	0.354	0.292	0.351	0.381	0.221	0.432
BERTSCORE (xlmr-base)	0.171	0.335	0.295	0.354	0.356	0.202	0.412
BLEURT (base-128)	0.171	0.372	0.302	0.383	0.387	0.218	0.417
BLEURT (large-512)	0.174	0.374	0.313	0.372	0.388	0.220	0.436
COMET-HTER	0.185	0.333	0.274	0.297	0.364	0.163	0.391
Comet-mqm	0.207	0.343	0.282	0.339	0.368	0.187	0.422
Comet-rank	0.202	0.399	0.341	0.358	0.407	0.180	0.445

Rei et al. COMET: A Neural Framework for MT Evaluation. 2020

BERT NMT Distillation

BERT Initialization and Fine-tuning

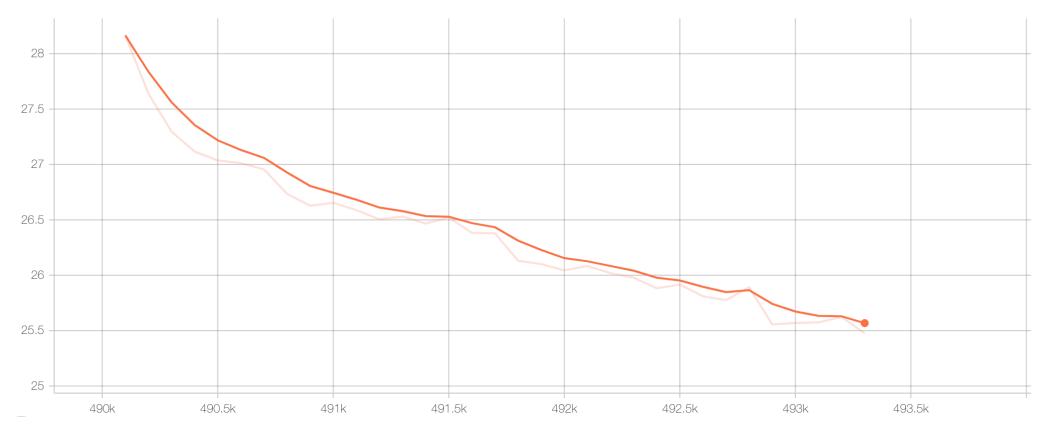


Performance on fine-tuning NMT

Why simply incorporating BERT does not work as expectation

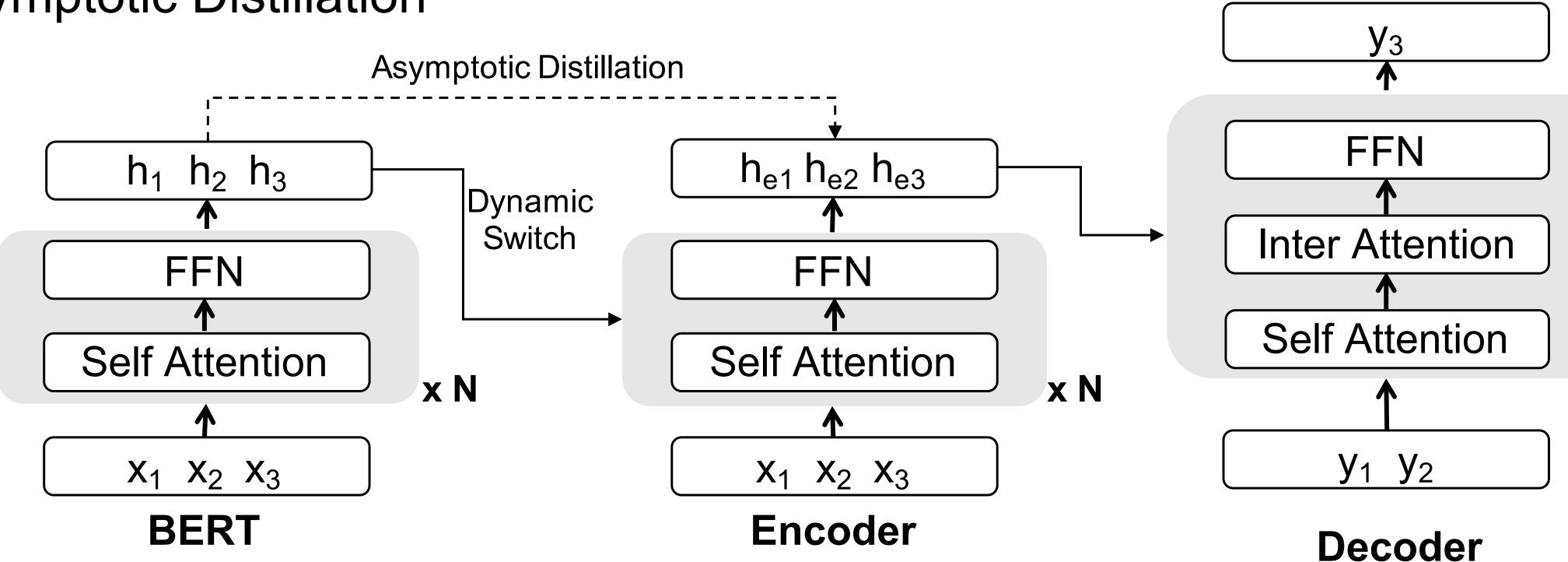
- Fine-tuning leads to performance degradation on the original task
- The situation is more severe on NMT fine-tuning
 - High capacity of baseline needs much updating
 - Updating to much makes the model forgets its universal knowledge from pre-training

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]



Performance on other BERT tasks

- Concerted training framework
 - Rate-scheduled Learning
 - Dynamic Switch
 - Asymptotic Distillation



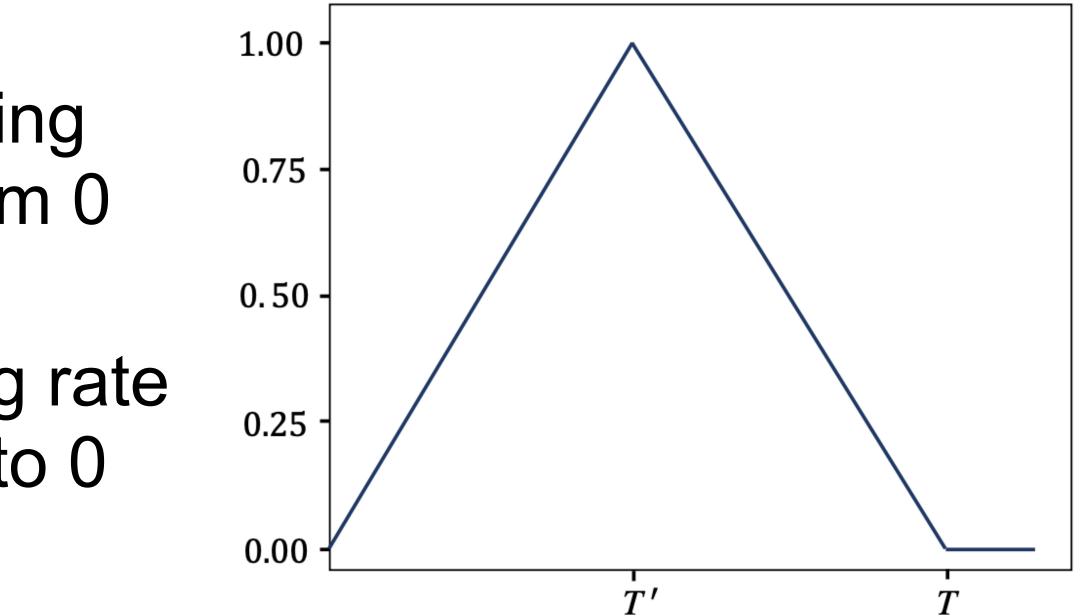
Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

Rate-scheduled Learning rate

- Gradually increase the learning rate of BERT parameters from 0 to 1
- Then, decrease the learning rate of BERT parameters from 1 to 0
- Keep the BERT parameters frozen

Rate-scheduled learning rate is actually a trade off between finetuning and BERT frozen

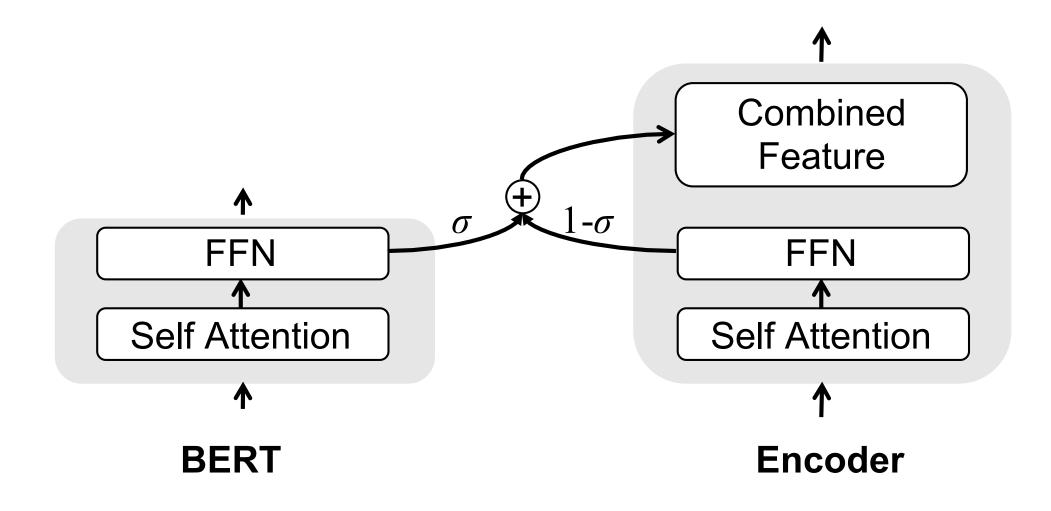
Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]



Learning rate scalar for BERT parameter

- Dynamic Switch
 - Use a gate to dynamically decide which part is more important
 - If σ is learned to 0, it degrade to the NMT model
 - If σ is learned to 1, it simply act as Bert fine-tune approach

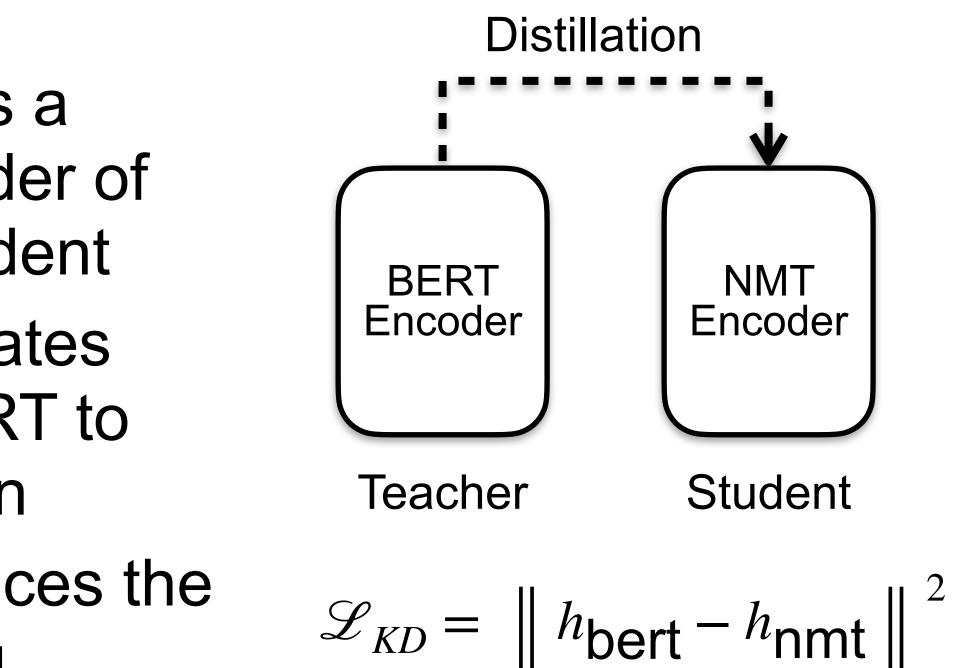
Dynamic Switch is more flexible than rate-scheduled learning rate



Asymptotic Distillation

- The pre-trained BERT serves as a teacher network while the encoder of the NMT model serves as a student
- Minimize MSE loss of hidden states between NMT encoder and BERT to retain the pre-trained information
- Use a hyper-parameter to balances the preference between pre-training distillation and NMT objective

Distillation Without introducing of additional parameters!



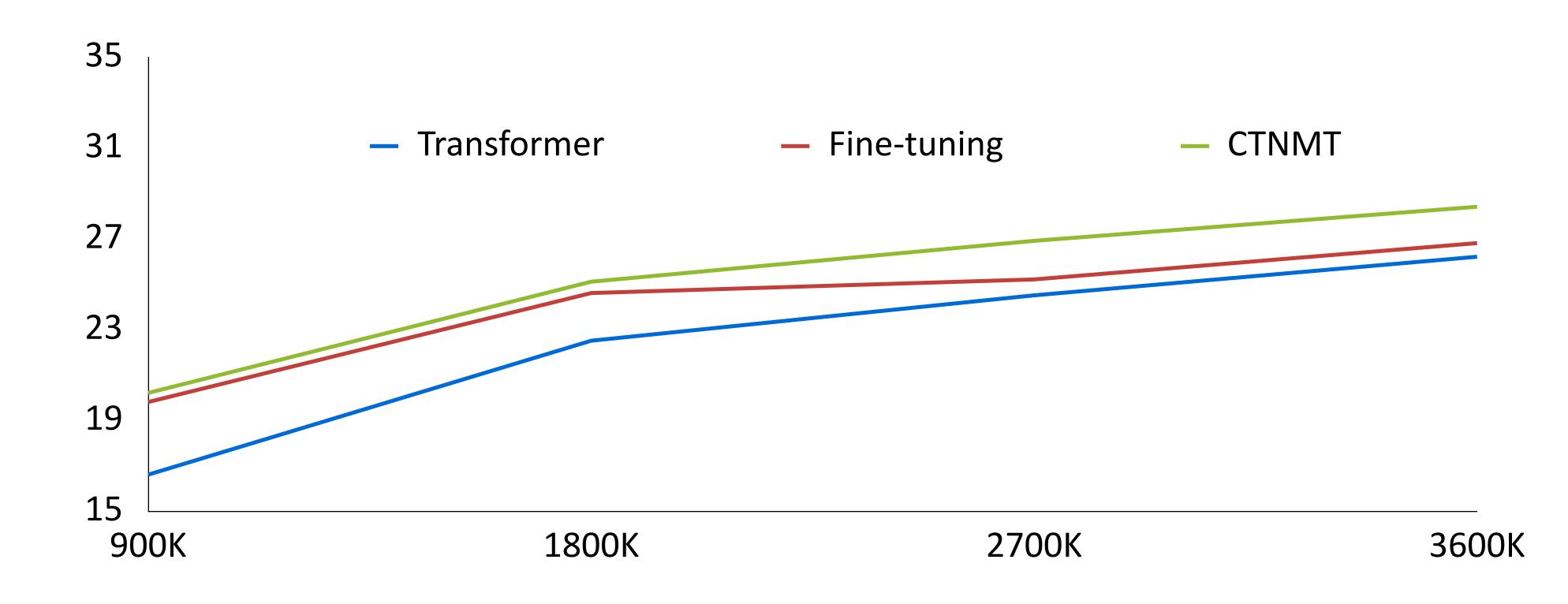
System	Architecture	En-De	En-Fr	En-Zh
	Existing systems			
Vaswani et al. (2017)	Transformer base	27.3	38.1	-
Vaswani et al. (2017)	Transformer big	28.4	41.0	-
Lample and Conneau (2019)	Transformer big + Fine-tuning	27.7	-	-
Lample and Conneau (2019)	Transformer big + Frozen Feature	28.7	-	-
Chen et al. (2018)	RNMT+ + MultiCol	28.7	41.7 -	
	Our NMT systems	1		
CTNMT	Transformer (base)	27.2	41.0	37.3
CTNMT	Rate-scheduling	29.7	41.6	38.4
CTNMT	Dynamic Switch	29.4	41.4	38.6
CTNMT	Asymptotic Distillation	29.2	41.6	38.3
СТимт	+ ALL	30.1	42.3	38.9

- WMT18 En-Zh

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

• Three strategies can independently work well on WMT14 En-De, En-Fr and

• CTNMT base model achieves even better results than Transformer big model



CTNMT outperforms fine-tuning on all training steps The performance gaps is enlarged as the fine-tuning steps increasing

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

- Advantage
 - Simple and effective, obtains +3 BLEU on WMT14 en-de benchmark
 - Three methods can be used separately or jointly
- Limitation
 - Introducing pre-training method for decoder is promising but still difficult Cross attention is import but not pre-trained

Models	$En \rightarrow De BLEU$
BERT Enc	29.2
BERT Dec	26.1
GPT-2 Enc	27.7
GPT-2 Dec	27.4

Towards Making Most of BERT for NMT, [Yang et al AAAI 2020]

Encoder Decoder X GPT Х BERT

BERT Fusion

Incorporate BERT into Neural Machine Translation

Table 1: Preliminary explorations on IW

Algorithm

Standard Transformer

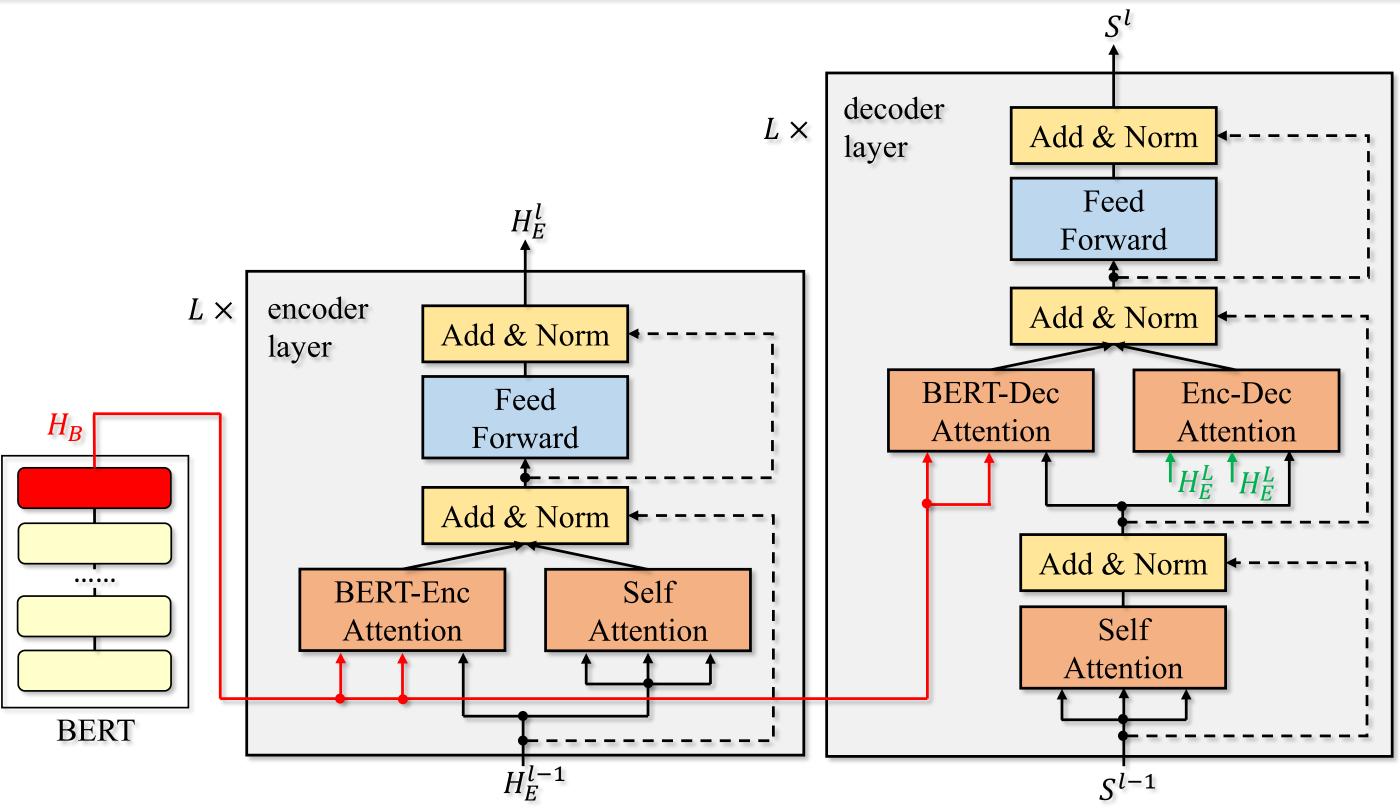
Use BERT to initialize the encoder of I Use XLM to initialize the encoder of N Use XLM to initialize the decoder of N Use XLM to initialize both the encoder

Leveraging the output of BERT as emb

- Fine-tuning BERT does NOT work !
 - BERT and XLM pre-training for the encoder decreased the performance
 - XLM pre-training for the decoder enlarged the performance gap
- BERT-Frozen achieved improvements

VSLT'14 English→Ge	erman translatio
	BLEU score
	28.57
NMT	27.14
NMT	28.22
NMT	26.13
r and decoder of NMT	28.99
beddings	29.67

Incorporate BERT into Neural Machine Translation



Additional attention model to incorporate BERT features

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

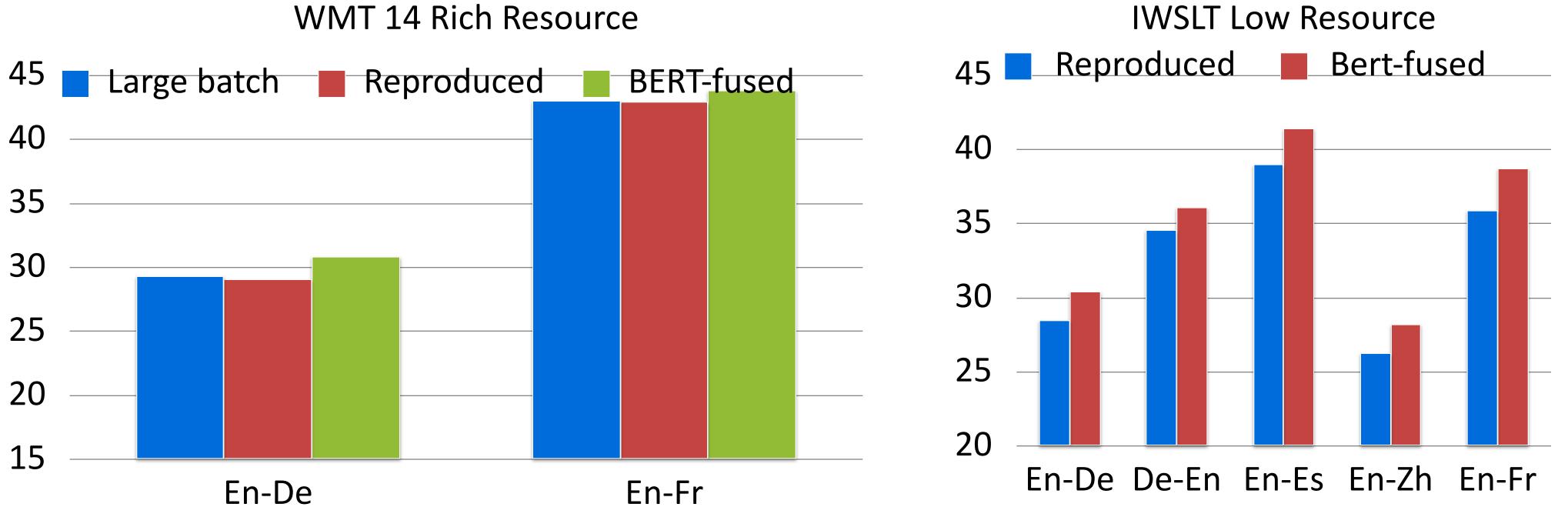
BERT features are directly fed to both encoder and decoder layers

Datasets and settings

- Fine-tuning dataset
 - 250 k sentence pairs)
 - Rich resource: WMT14 En-De and En-Fr (4 M and 36 M sentence pairs)
- Settings
 - BERT base for IWSLT
 - BERT large for WMT
 - Both the BERT-encoder and BERTdecoder attention are randomly initialized

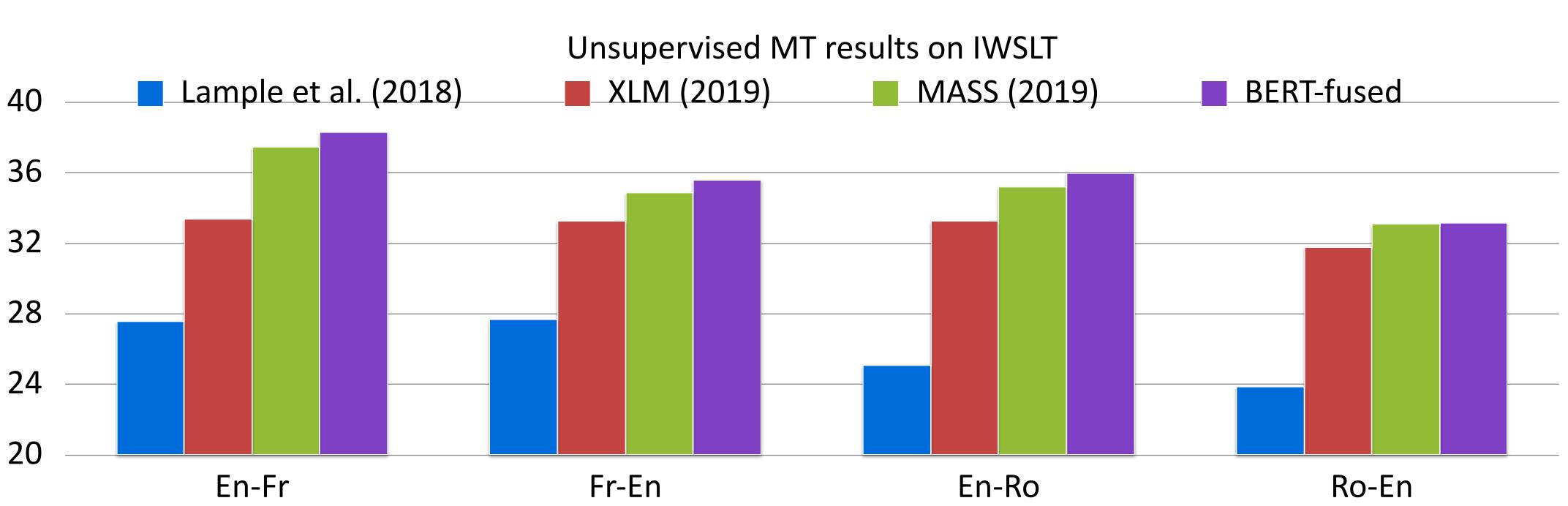
– Low resource: IWSLT En-De, En-FR, En-Zh, En-Es (less than

Main results on supervised MT



- Experiments on a strong baseline
- BERT-fused model outperforms transformer baseline in all settings

Main results on unsupervised MT



- **BERT-fused**)
- BERT-fused outperforms XLM and MASS

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

• Pre-training plays an crucial role in unsupervised NMT (Lample v.s. xml, mass and

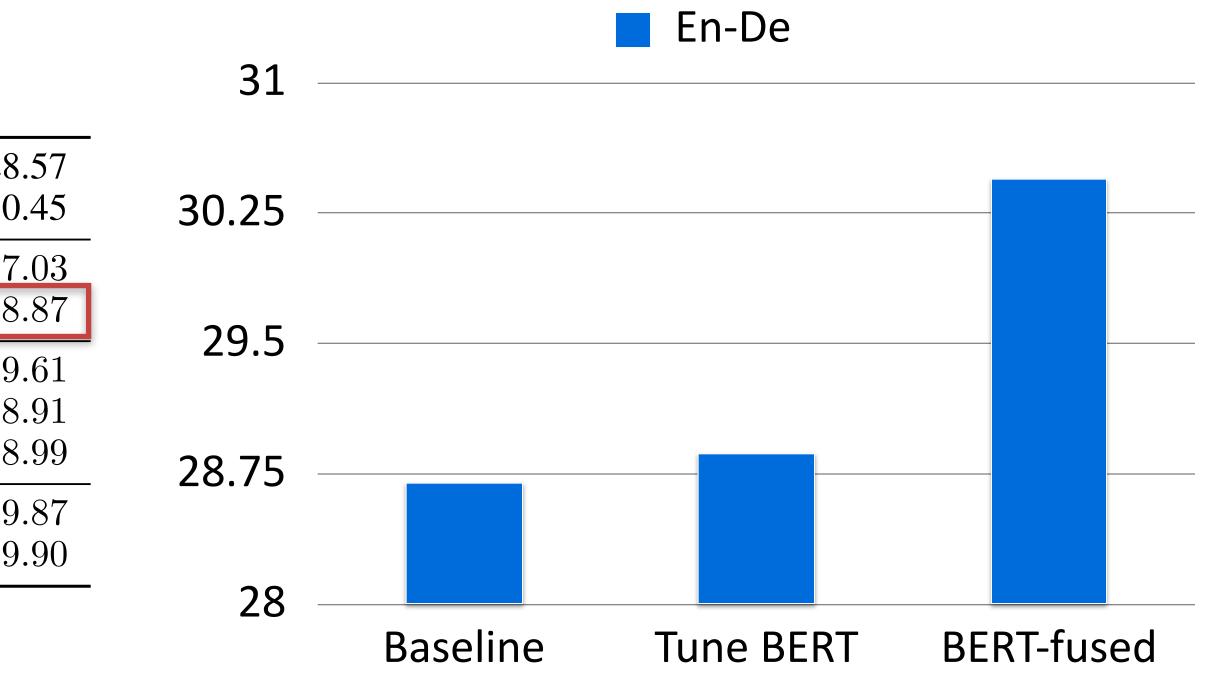
• The comparison is slightly unfair, since BERT-fused introduced additional parameters

Table 6: Ablation study on IWSLT'14 En \rightarrow De.

Standard Transformer	28
BERT-fused model	30
Randomly initialize encoder/decoder of BERT-fused model	27
Jointly tune BERT and encoder/decoder of BERT-fused model	28
Feed BERT feature into all layers without attention	29
Replace BERT output with random vectors	28
Replace BERT with the encoder of another Transformer model	28
Remove BERT-encoder attention Remove BERT-decoder attention	$\frac{29}{29}$

Jointly train BERT model with the NMT can also boost the baseline from 28.57 to 28.87. But it is not as good as fixing the BERT part, whose BLEU is 30.45

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]



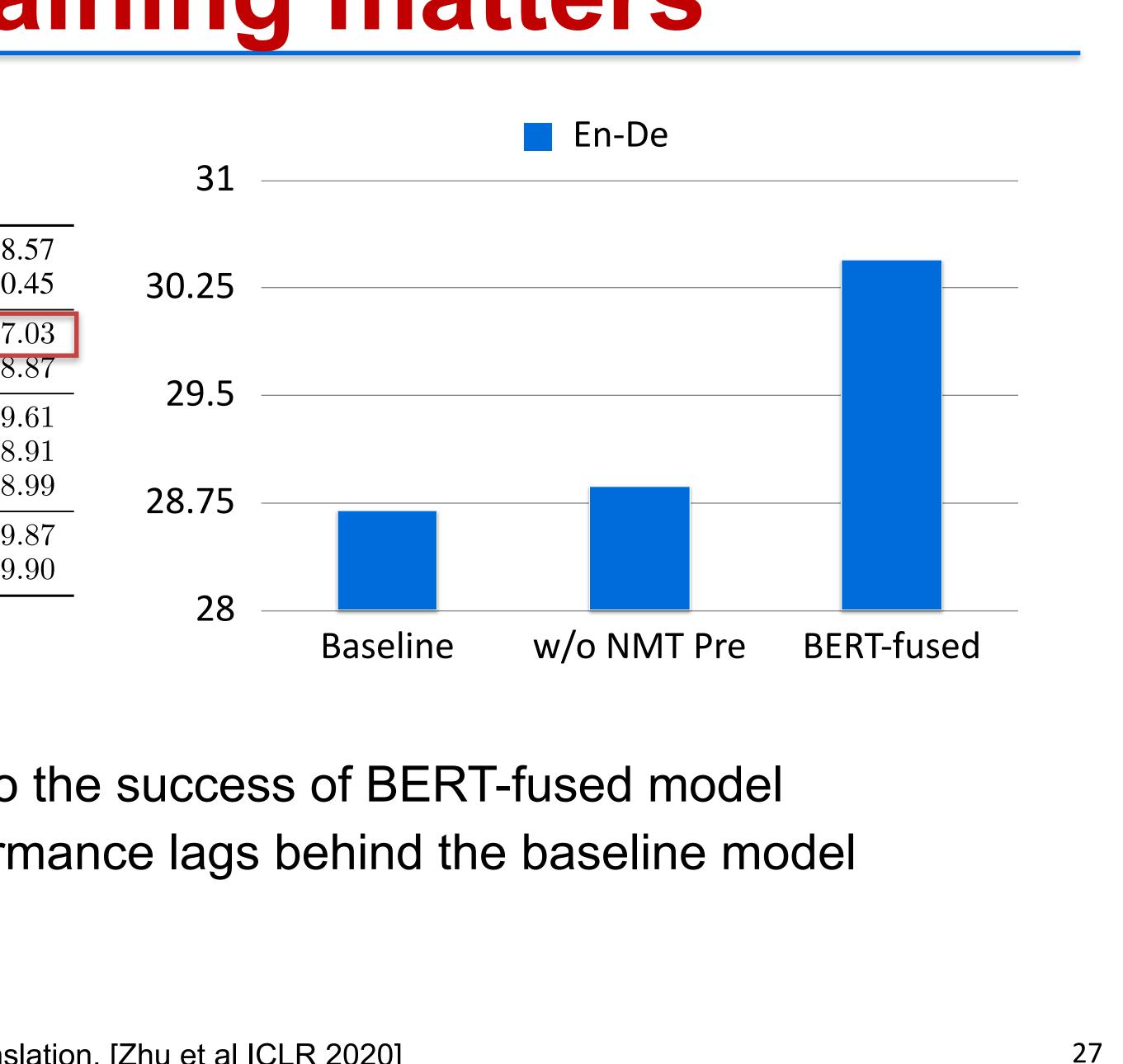
NMT pre-training matters

Table 6: Ablation study on IWSLT'14 En \rightarrow De.

Standard Transformer BERT-fused model	28 30
Randomly initialize encoder/decoder of BERT-fused model	27
Jointly tune BERT and encoder/decoder of BERT-fused model	28
Feed BERT feature into all layers without attention	29
Replace BERT output with random vectors	28
Replace BERT with the encoder of another Transformer model	28
Remove BERT-encoder attention	29
Remove BERT-decoder attention	29

NMT Pre-training is also important to the success of BERT-fused model Without NMT pre-training, the performance lags behind the baseline model

Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

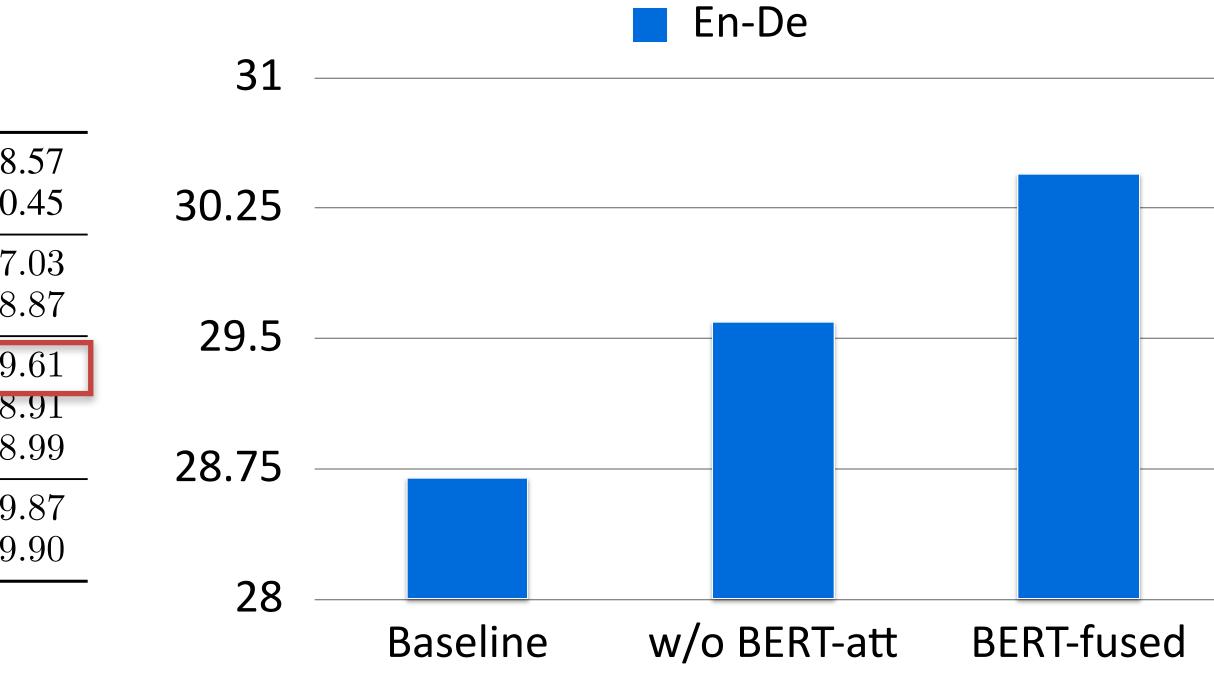


BERT attention module matters

Table 6: Ablation study on IWS	SLT'14 En \rightarrow De.
--------------------------------	-----------------------------

Standard Transformer BERT-fused model	28 30
Randomly initialize encoder/decoder of BERT-fused model Jointly tune BERT and encoder/decoder of BERT-fused model	27 28
Feed BERT feature into all layers without attention	29
Replace BERT output with random vectors	28
Replace BERT with the encoder of another Transformer model	28
Remove BERT-encoder attention	29

Remove attention module, the performance still outperforms baseline, but falls behind BERT-fused model It suggest that separate BERT model provides additional gains



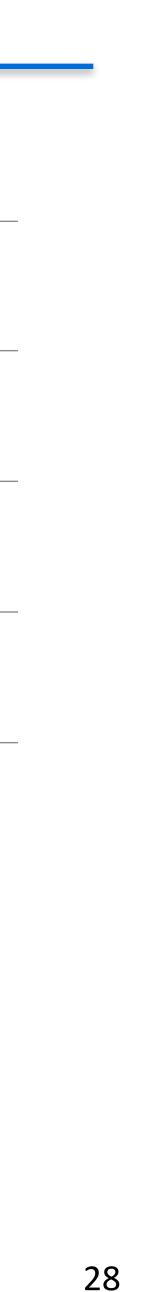


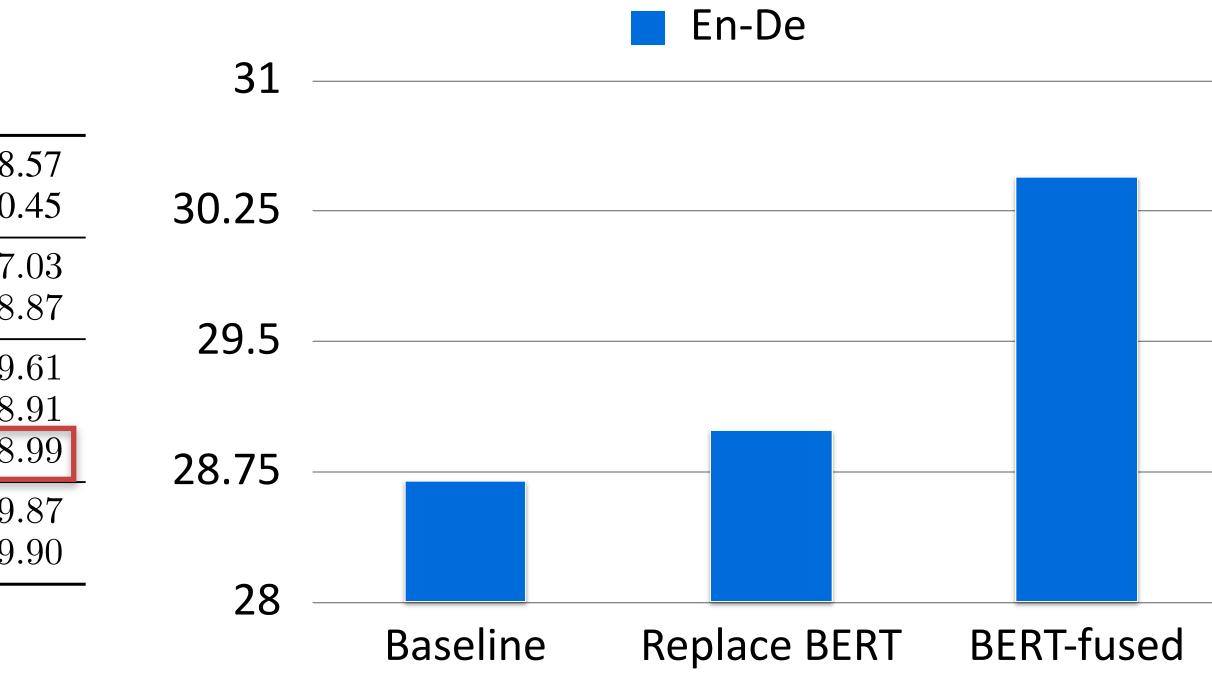
Table 6: Ablation study on IWSLT'14 En \rightarrow De.

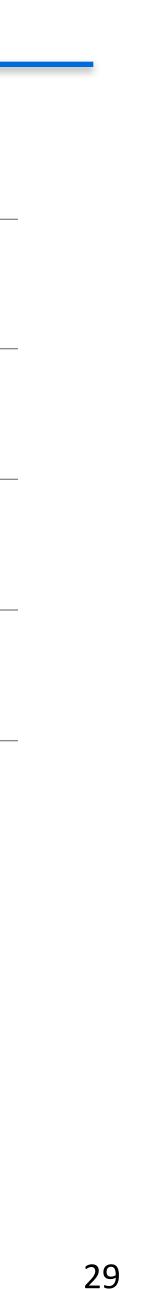
Standard Transformer BERT-fused model	28. 30.
Randomly initialize encoder/decoder of BERT-fused model Jointly tune BERT and encoder/decoder of BERT-fused model	$\frac{27}{28}$
Feed BERT feature into all layers without attention Replace BERT output with random vectors	$\frac{29}{28}$
Replace BERT with the encoder of another Transformer model	28.
Remove BERT-encoder attention Remove BERT-decoder attention	29. 29.

Replace BERT representation with another transformer model, the performance drops significantly It indicates BERT provides meaningful information and the improvements is not from the additional parameters.

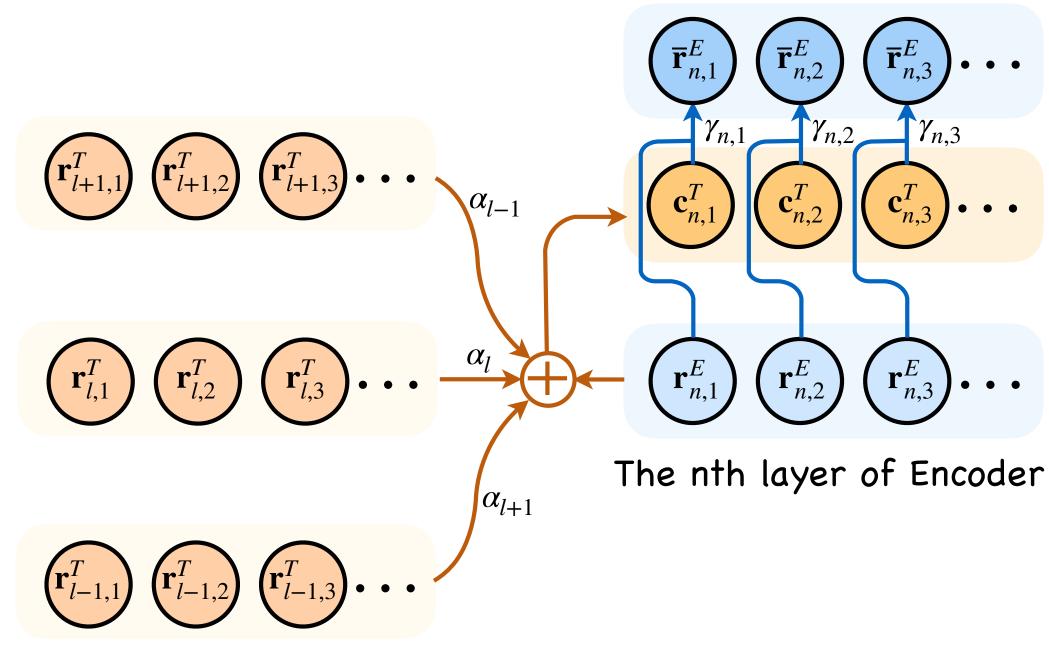
Incorporate BERT into Neural Machine Translation, [Zhu et al ICLR 2020]

Of course, BERT matters





Acquiring Knowledge from Pre-trained Model to Neural Machine Translation



Task-specific Representations

Key idea

- Incorporate BERT into all encoder layers and decoder layers with adaptive weight
- Experiments including both BERT & GPT

Acquiring Knowledge from Pre-trained Model to Neural Machine Translation, [Weng et al AAAI 2020]

Dynamic fusion of different BERT layers, while BERT-fused model only uses the last layer of BERT

Madal	Pre-train	ed Model	EN-	→DE	$DE \rightarrow EN$		ZH-	→EN
Model	Encoder	Decoder	BLEU	Δ	BLEU	Δ	BLEU	Δ
Transformer (Vaswani et al. 2017)	N/A	N/A	27.3	_	N/A		N/A	
Transformer (Zheng et al. 2019)	N/A	N/A	27.14	—	N/A	—	N/A	—
Transformer (Dou et al. 2018)	N/A	N/A	27.31	—	N/A	—	24.13	—
Transformer	N/A	N/A	27.31		32.51		24.47	
	GPT	N/A	27.82	+0.51	33.17	+0.66	25.11	+0.64
	N/A	GPT	27.45	+0.14	32.87	+0.36	24.59	+0.12
	GPT	GPT	27.85	+0.54	32.79	+0.28	25.21	+0.74
	BERT	N/A	28.22	+0.91	33.64	+1.13	25.33	+0.86
w/ Fine-tuning	N/A	BERT	27.42	+0.11	33.13	+0.62	24.78	+0.31
w/ muc-tuning	BERT	BERT	28.32	+1.01	33.57	+1.06	25.45	+0.98
	GPT	BERT	28.29	+0.98	33.33	+0.82	25.42	+0.95
	BERT	GPT	28.32	+1.01	33.57	+1.05	25.46	+0.99
	MA	ASS	28.07	+0.76	33.29	+0.78	25.11	+0.64
	DA	AE	27.63	+0.33	33.03	+0.52	24.67	+0.20
	GPT	BERT	28.89	+1.58	34.32	+1.81	25.98	+1.51
w/ APT Framework	BERT	GPT	29.23	+1.92	34.84	+2.33	26.21	+1.74
	GPT	GPT	28.97	+1.66	34.26	+1.75	26.01	+1.54
	BERT	BERT	29.02	+1.71	34.67	+2.16	26.46	+1.99

Acquiring Knowledge from Pre-trained Model to Neural Machine Translation, [Weng et al AAAI 2020]

GPT v.s. BERT

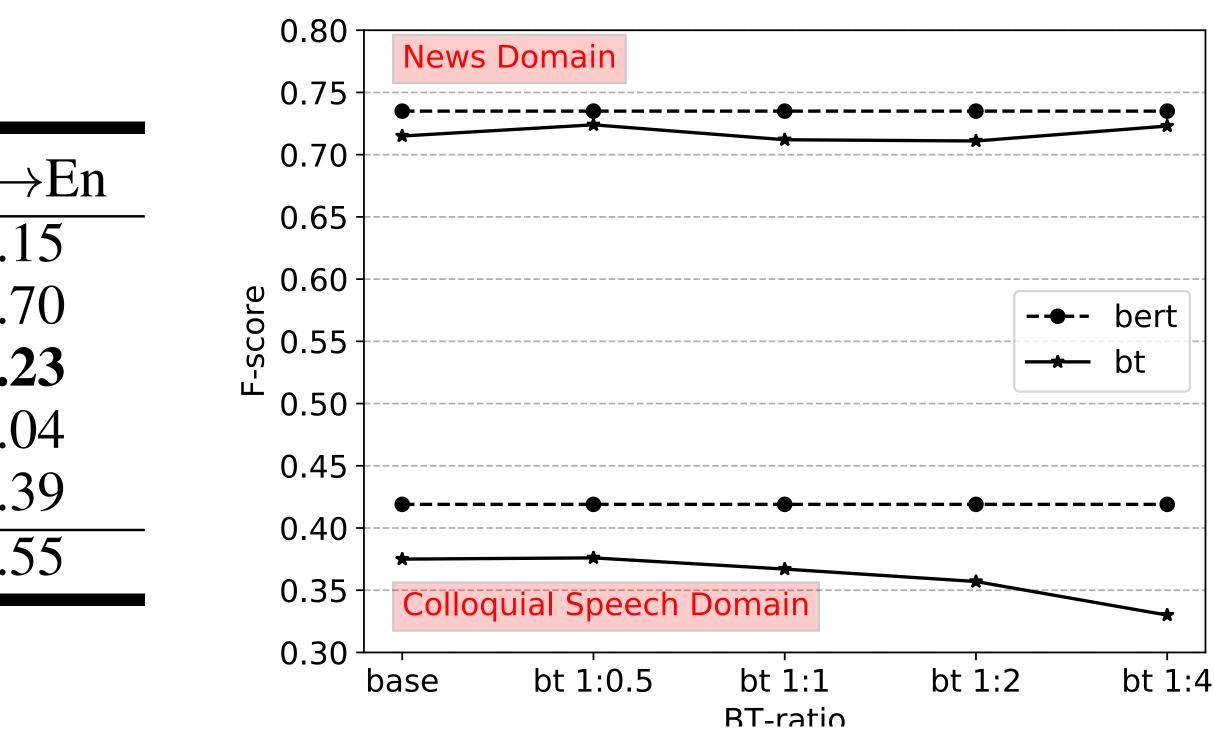


Pre-training has better generalization ability

System	$En \rightarrow De$	Zh-
Standard Transformer	29.20	45.2
+ back translation (1:0.5)	30.41	46.7
+ back translation (1:1)	30.25	47.2
+ back translation (1:2)	30.18	47.0
+ back translation (1:4)	30.25	46.3
BERT-fused model	30.03	46.5

- Pre-training is much more promising
 - better generalization ability
 - Back translation is limited with data scale

Comparison between Pre-training and Large-scale Back-translation, [Huang et al ACL 2021]



- Advantages
 - BERT features are fused in all layers
 - **BERT** feature
- Limitions

 - Why not tune BERT?

- Additional attention model adaptively determine how to leverage

Additional cost including training storage and inference time

Language Presentation

- Zhang et al. BERTScore: Evaluating Text Generation with BERT. 2020
- Rei et al. COMET: A Neural Framework for MT Evaluation. 2020
- Yang et al. Towards Making Most of BERT for NMT. 2020.

