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Encoder-Decoder Paradigm
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Inference

» Now already trained a model &

* Decoding/Generation: Given an input sentence x, to generate
the target sentence y that maximize the probability P(y | x; )

., argmax P(y | x) = fy(x,y)
Y

* Two types of error

— the most probable translation is bad — fix the model
— search does not find the most probably translation — fix the search

* Most probable translation is not necessary the highest BLEU
one!




Decodinc

. argmax P(y|x) = fo(x,y)
y

e naive solution: exhaustive search
— too expensive

 Beam search
— (approximate) dynamic programming




Beam Search

start with empty S

at each step, keep k best partial sequences
expand them with one more forward generation
collect new partial results and keep top-k



Beam Search (pseudocode
best_scores = []

add {[0@], 0.0} to best_scores # @ 1s for beginning of sentence token
for 1 1n 1 to max_length:
new_seqgs = PriorityQueue()
for (candidate, s) 1n best_scores:
1f candidate[-1] 1s EOS:
prob = all -inf
prob[EOS] = 0
else:
prob = using model to take candidate and compute next token probabilities (logp)
pick top k scores from prob, and their index
for each score, index in the top-k of prob:
new_candidate = candidate.append(index)
new_score = S + score
1f not new_seqgs.full():
add (new_candidate, new_score) to new_segs
else:
1f new_seqgs.queue[@][1] < new_score:
new_seqgs.get() # pop the one with lowest score
add (new_candidate, new_score) to new_segs
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Pruning for Beam Search

* Relative threshold pruning

— prune candidates with too low score from the top one

— Given a pruning threshold rp and an active candidate list C, a
candidate cand € C is discarded if: score(cand) < rp =

max{score(c)}
* Absolute threshold pruning:
— score(cand) < max{score(c)} — ap
» Relative local threshold pruning

Freitag & Al-Onaizan. Beam Search Strategies for Neural Machine Translation. 2017.

11



What is Beam size?

e 3105
* Why not larger?

— larger does not necessarily produce higher BLEU
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Larger Beam -> Shorter Translation
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Normalization of Score

. . gen th_norm (X, =5 X,
» Length normalization; oo t¥)=Stey)/ly]

» Word-reward: promoting longer sentences

SWR(Xa Y) — S(X7Y) T ‘Y‘

* Bounded word reward with length prediction

Lprea(X) = gr*(x) - |x]

L*(x,y) = min{|y|, Lpred(x) }
SBWR* (X7 Y) — S(X7Y) T L*(X7 Y)

Yang et al. Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods and Stopping Criteria for Neural

Machine Translation. 2018 +



Diverse Beam Search

* Top k results from NMT decoding are very similar
» Same for other text generation tasks

* Need more diversity?
— e.g. In Image-captioning, diverse candidates are desired

bowls” | ~and_some bottles A table that has a bunch of bowls on it and some bottles

A table that has a bunch of bowls on it
A table that has a bunch of food on it
A table that has a bunch of bottles on it

t
t

on_it A table that has a bunch of plates on it
it

food on i

A table that has a bunch of flowers on it

A table with a vase of flowers on it
A table with a vase of flowers on itand a window

A table that has some food on it
A table that has some pots and pans on it

oy An empty kitchen table with a vase of flowers
an empty kitchen vase o owers
—— An empty kitchen table with a bowl of fruit on it

bowl of fruit on
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How

* [wo approaches

— MMI: maximizing mutual information of MI(X, Y) instead of P(Y]
X)

— Maximize the penalized score: log P(Y|[X) + distance(Y and
existing candidates)

16



Maximize mutual information (MMI

 Mutual Information
p(X,Y)

p(X)p(Y)
- arg max log p(Y|X) — Alog p(Y)

* need a separate Language model p(Y) for target language

MI(X,Y) =

Li et al. A Diversity-Promoting Objective Function for Neural Conversation Models. 2016
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Maximizing Mutual Information

- arg max(1l — Dlogp(Y|X) + Alogp(X|Y)
* penalized forward decoding
— p(Y]|X) - \gamma rank_y SOVE | ¥ |2) = SOV o 2) — vk
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Rerankinc

 Obtain N-best from beam search
 Rerank based on:
Score(y) = log p(y[x) + A log p(x]y) +ylogp(y)+nLT

* Alternative: learned reranking

* Lee et al. Discriminative Reranking for Neural Machine Translation. 2021
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Sampling

. Instead of argmax P(y [ x) = f,(x, y)
y

* Generate samples of translation Y from the distribution
P(Y]X)

* Q: how to generate samples from a discrete
distribution”?

20



Combine Sample and Beam Search

« Sample the first tokens
e continue beam search for the later

21



Lexical Constrained Decodinc

* The generated sentence must contain given keywords

* To generate from

— Vocabulary
— Keywords

Constraint 1

<S> [hre | Rechte Imﬁssen

Constraint 2

r Abreise ' geschiitzt | werden

'Y ® ®
Continue Genera te  Generate

Input: Rights protection should begin before their departure .

Hokamp et al. Lexically Constrained C

'ecoding for Sequence Generation Using Grid Beam Search. 2017
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Order-agnostic Constraints
* The generated sentence must contain given keywords

* Using finite state machine to represent constraint

state.

Beam 0: ~C/ & ~C2

Possible sequence extensions

* Expand with ;

— Vocabulary

— Constraint keywords :

Finite-state machine C1 ={chair, chairs}, C2 = {desk, table}

. AP
V-Cl-C2 Qa @ ) V-C2
C2 C2 Beam 3: C/ & C2

C1 A
V-C1 S, V

Andersen et al. Guided Open Vocabulary Image Captioning with Constrained Beam Search. 2017

V—CIl—-C2 Cl C2
[ bedroom [>withp | a > view || large |||| chair | |chairs|| | desk || table
room > |with>| a %] bed || view |||| chair | |chairs|| | desk | | table
Beam 1: C/ & ~C2 V() 2
bedroom p [withp | chairs > and desk | | table
[ chair pP| mn p| a [?|room||corner desk | | table
Beam 2: ~C/ & C2 V_C] Cl
desk pP[nextp| to [>| a the chair | | chairs
> |withp> | many > | small | |papers| | chair ||chairs
V
table p|and p|chairs|>| near || next
[ desk p|and p| chair [>| by [| with
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Post-training Processing: Model Average

* Pick the model when converges

* Model average:

— Instead, using the last 5-10 epoch’'s models, and average the
parameters to get one model

— This turns out to generalize better than the last one.
— Why? (over-fit)

24



Model Ensemble

* [rain several separate MT model
» decode with

argmax Y’ log P(y, |y, x; M)
yt k

25



Distillation with Ensemble

 In order to obtain a single model with good
performance.

» Use ensemble model to create pseudo-parallel data

* Train a single MT model using both original training
data and pseudo-parallel data.
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Minimum Baves Risk Decodinc

 Bias In decoding:
— length bias
— word frequency
— beam search curse
— COpY hoise
— low domain

* Decoding with Mode vs. with most “"common” one

27



Minimum Bayes Risk Decoding
* Minimize risk = maximize average utility
 Utility: similarity among samples.

‘Sl,Sz,...,SnNP(ylx,H) BLEU
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Muller and Sennrich. Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation. 20z



Lanquaage Presentation
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Readinc

* Freitag & Al-Onaizan. Beam Search Strategies for
Neural Machine Translation. 2017.

* Muller and Sennrich. Understanding the Properties of
Minimum Bayes Risk Decoding in Neural Machine

Translation. 2021.
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