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• Beam Search

• Diverse Beam Search

• Reranking

• Sampling

• Constrained decoding

• Model Average

• Model Ensemble

• Minimum Bayes Risk Decoding

Outline
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Encoder-Decoder Paradigm 
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I like singing and dancing

我 喜欢 唱歌 和 跳舞

2. Decoding

1. Encoding

Decoder

Encoder



Transformer
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Autoregressive Generation
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But, this is not necessary the best



• Now already trained a model 

• Decoding/Generation: Given an input sentence x, to generate 

the target sentence y that maximize the probability 


• 


• Two types of error

– the most probable translation is bad → fix the model

– search does not find the most probably translation → fix the search


• Most probable translation is not necessary the highest BLEU 
one!

θ

P(y |x; θ)
argmax

y
P(y |x) = fθ(x, y)

Inference
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• 


• naive solution: exhaustive search

– too expensive


• Beam search

– (approximate) dynamic programming

argmax
y

P(y |x) = fθ(x, y)
Decoding
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• start with empty S 

• at each step, keep k best partial sequences

• expand them with one more forward generation

• collect new partial results and keep top-k

Beam Search
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best_scores = []

add {[0], 0.0} to best_scores # 0 is for beginning of sentence token

for i in 1 to max_length: 

  new_seqs = PriorityQueue()

  for (candidate, s) in best_scores:

    if candidate[-1] is EOS:

      prob = all -inf 

      prob[EOS] = 0

    else: 


      prob = using model to take candidate and compute next token probabilities (logp)

    pick top k scores from prob, and their index 

    for each score, index in the top-k of prob:

      new_candidate = candidate.append(index)

      new_score = s + score

      if not new_seqs.full():

        add (new_candidate, new_score) to new_seqs

      else:

        if new_seqs.queue[0][1] < new_score:

          new_seqs.get() # pop the one with lowest score

          add (new_candidate, new_score) to new_seqs


Beam Search (pseudocode)
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Beam Search

<BOS>

I 0.4
We 0.3
He 0.1
She 0.1
They 0.01

like 0.4
love 0.4
am 0.1
hate 0.01
want 0.01

I 0.4

We 0.3

like 0.4
do 0.3
are 0.2
can 0.01
say 0.01

I like 0.16

I love 0.16

We like 0.12

We do 0.09

I like 0.16

I love 0.16

singing 0.6
song 0.2

shouting 0.01
going 0.01
dancing 0.01

singing 0.5
dancing 0.3
you 0.11
going 0.01
it 0.01

I like singing 0.096

I like song 0.032

I love singing 0.08

I love dancing 0.048

forward by 
network top-k

forward by 
network

forward by 
network

top-k

forward by 
network

forward by 
network

top-k



• Relative threshold pruning

– prune candidates with too low score from the top one

– Given a pruning threshold rp and an active candidate list C, a 

candidate cand ∈ C is discarded if: score(cand) ≤ rp ∗ 
max{score(c)} 


• Absolute threshold pruning:

– score(cand) ≤ max{score(c)} − ap 


• Relative local threshold pruning

Pruning for Beam Search

11Freitag & Al-Onaizan. Beam Search Strategies for Neural Machine Translation. 2017.



• 3 to 5

• Why not larger?


– larger does not necessarily produce higher BLEU

•

What is Beam size?
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Larger Beam -> Shorter Translation
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• Length normalization: 

• Word-reward: promoting longer sentences


– 

• Bounded word reward with length prediction


– 


–

Normalization of Score

14Yang et al. Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods and Stopping Criteria for Neural 
Machine Translation. 2018



• Top k results from NMT decoding are very similar

• Same for other text generation tasks

• Need more diversity? 


– e.g. in image-captioning, diverse candidates are desired

Diverse Beam Search
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• Two approaches

– MMI: maximizing mutual information of MI(X, Y) instead of P(Y|

X)

– Maximize the penalized score: log P(Y|X) + distance(Y and 

existing candidates)

How
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• Mutual Information





• 

• need a separate Language model p(Y) for target language

MI(X, Y) =
p(X, Y)

p(X)p(Y)
arg max log p(Y |X) − λ log p(Y)

Maximize mutual information (MMI)

17
Li et al. A Diversity-Promoting Objective Function for Neural Conversation Models. 2016




• 

• penalized forward decoding


– p(Y|X) - \gamma rank_y

arg max(1 − λ)log p(Y |X) + λ log p(X |Y)
Maximizing Mutual Information
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• Obtain N-best from beam search

• Rerank based on: 

Score(y) = log p(y|x) + λ log p(x|y) +γlogp(y)+ηLT 


• Alternative: learned reranking

• Lee et al. Discriminative Reranking for Neural Machine Translation. 2021

Reranking
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• Instead of 


• Generate samples of translation Y from the distribution 
P(Y|X)


• Q: how to generate samples from a discrete 
distribution?

argmax
y

P(y |x) = fθ(x, y)
Sampling
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• Sample the first tokens

• continue beam search for the later

Combine Sample and Beam Search

21



• The generated sentence must contain given keywords

• To generate from


– Vocabulary

– Keywords

Lexical Constrained Decoding

22Hokamp et al. Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search. 2017



• The generated sentence must contain given keywords

• Using finite state machine to represent constraint 

state.

• Expand with


– Vocabulary

– Constraint keywords

Order-agnostic Constraints

23Andersen et al. Guided Open Vocabulary Image Captioning with Constrained Beam Search. 2017



• Pick the model when converges

• Model average:


– instead, using the last 5-10 epoch’s models, and average the 
parameters to get one model


– This turns out to generalize better than the last one.

– Why? (over-fit)

Post-training Processing: Model Average
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• Train several separate MT model

• decode with

arg max

yt
∑

k

log P(yt |y<t, x; Mk)

Model Ensemble
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• In order to obtain a single model with good 
performance. 


• Use ensemble model to create pseudo-parallel data

• Train a single MT model using both original training 

data and pseudo-parallel data. 

Distillation with Ensemble
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• Bias in decoding:

– length bias

– word frequency

– beam search curse

– copy noise

– low domain 


• Decoding with Mode vs. with most “common” one

Minimum Bayes Risk Decoding
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• Minimize risk = maximize average utility

• Utility: similarity among samples.  

• 


•

S1, S2, …, Sn ∼ P(y |x, θ)

̂y arg max
si

1
n ∑

j

u(si, sj)

Minimum Bayes Risk Decoding

28Muller and Sennrich. Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation. 2021




Language Presentation
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• Freitag & Al-Onaizan. Beam Search Strategies for 
Neural Machine Translation. 2017.


• Muller and Sennrich. Understanding the Properties of 
Minimum Bayes Risk Decoding in Neural Machine 
Translation. 2021.

Reading
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