291K Deep Learning for Machine Translation Convolutional Neural Networks

Lei Li UCSB 10/6/2021

- Convolution Layer
- Stride and Padding
- Multiple Channel
- ResNet and Residual Connection gradient vanishing
- Diluted Convolution
- Temporal Convolution
- (Batch Normalization)

Convolutional Networks

- Scale up neural networks to process very large images / video / audio sequences
 - Sparse connections
 - Parameter sharing
- Automatically generalize across spatial translations of inputs
- Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, ...)

- Replace matrix multiplication in neural nets with convolution
- Everything else stays the same
 - Maximum likelihood
 - Back-propagation
 - etc.

Full Matrix Multiplication

- mn * p

 Consider an image of size m*n, ==> a vector of 1* mn • In feedforward, linear layer will need a weight matrix

Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Sparse connections due to small convolution kernel

Dense connections

Sparse Connectivity

Parameter Sharing

Convolution shares the same parameters across all spatial locations

Traditional matrix multiplication does not share

 $h(t) = \int f(x) \cdot g(t - x) dx$

Convolution

2D Convolution

Edge Detection by Convolution

Input

Output

Figure 9.6

Efficiency of Convolution

	Convolution	Dense matrix	Sparse matrix
Stored floats	2	319*280*320*280 > 8e9	2*319*280 = 178,640
Float muls or adds	319*280*3 = 267,960	> 16e9	Same as convolution (267,960)

Input size: 320 by 280 Kernel size: 2 by 1 Output size: 319 by 280

Without zero padding

With zero padding

Convolution with Stride

Multi-channel Convolution

Max Pooling

Kinds of Connectivity

Local connection: like convolution, but no sharing

Convolution

Fully connected

Tiled convolution

Figure 9.16

Local connection (no sharing)

Tiled convolution (cycle between groups of shared parameters)

Convolution (one group shared everywhere)

Convolutional Network Components Conv Layer = Conv -> Relu -> Pooling

Gradient Vanishing

Residual Connection

f represents one layer, f(x) + x

Example Classification Architectures

Dilated Convolution

 to enlarge reception field without introducing more parameters

Result: vector of size **m**

Convolution with **m** filters

Embeddings: vectors of size d

> Kernel size k (k=3) (convolution window size)

1D CNN for Sequential Data

Max pooling: maximum for each dimension (feature)

0.1	1.2	0.4	0.9	0.3	0.2	max
0.3	0.2	0.4	1.4	1.3	0.1	max
0.2	0.4	1 2	0.4	0.1	0.5	max
0.2	0.4		0.4	:	0.5	
0.5	0.1	0.1	0.3	1.1	0.2	max

Text Classification using CNN

Typical usage CNNs for texts

https://lena-voita.github.io/nlp_course/models/convolutional.html

Combining Convolutions w/ Different Kernel Sizes

CNN for Language Modelling

No pooling between convolutions: do not want to lose positional information

Padding to shift tokens: we need to prevent information flow from future tokens

condition on the previous tokens

https://lena-voita.github.io/nlp_course/models/convolutional.html

Example n-gram to activate CNN

no matter how are afraid how question is how remaining are how to say how

as little as of more than as high as as much as as low as

a merc spokesman a company spokesman a boeing spokesman a fidelity spokesman a quotron spokeswoman

would allow the does allow the still expect ford warrant allows the funds allow investors

more evident among a dispute among bargain-hunting among growing fear among paintings listed among

amr chairman robert chief economist john chicago investor william exchange chairman john texas billionaire robert

facilities will substantially which would substantially dean witter actually we 'll probably you should really

have until nov. operation since aug. quarter ended sept. terrible tuesday oct. even before june

Temporal Convolutional Network (TCN)

1D convolution + dilated + residual connection

Bai et al, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. 2018

Major Architectures

- All Convolutional Net: no pooling layers, just use strided convolution to shrink representation size
- Inception: complicated architecture designed to achieve high accuracy with low computational cost
- ResNet: blocks of layers with same spatial size, with each layer's output added to the same buffer that is repeatedly updated. Very many updates = very deep net, but without vanishing gradient.

Batch Normalization

Element-wise normalization for each minibatch => zero mean and unit variance

 With probability p to drop units, the remaining ones scale to 1/(1-p)

Overfitting and Dropout

Reference

- Kalchbrenner et al. A Convolutional Neural Network for Modelling Sentences, 2014
- He et al. Deep Residual Learning for Image Recognition, 2016
- Pham et al. Convolutional Neural Network Language Models, 2016

