
291K
Deep Learning for Machine Translation

Convolutional Neural Networks
Lei Li
UCSB

10/6/2021

1

• Convolution Layer
• Stride and Padding
• Multiple Channel
• ResNet and Residual Connection

– gradient vanishing
• Diluted Convolution
• Temporal Convolution
• (Batch Normalization)

Outline

2

• Scale up neural networks to process very large images
/ video / audio sequences

– Sparse connections
– Parameter sharing

• Automatically generalize across spatial translations of
inputs

• Applicable to any input that is laid out on a grid (1-D, 2-
D, 3-D, …)

Convolutional Networks

3

• Replace matrix multiplication in neural nets with
convolution

• Everything else stays the same
– Maximum likelihood
– Back-propagation
– etc.

Key Idea

4

• Consider an image of size m*n, ==> a vector of 1* mn
• In feedforward, linear layer will need a weight matrix

mn * p

Full Matrix Multiplication

5

Sparse Connectivity

6

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse
connections
due to small
convolution

kernel

Dense
connections

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Sparse Connectivity

7

Sparse
connections
due to small
convolution

kernel

Dense
connections

Growing Receptive Fields

8

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Parameter Sharing

9

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function

338

Convolution
shares the same

parameters
across all spatial

locations

Traditional matrix
multiplication

does not share
any parameters

• h(t) = ∫ f(x) ⋅ g(t − x)dx

Convolution

10

2D Convolution

11

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +

ey + fz
aw + bx +

ey + fz
bw + cx +

fy + gz
bw + cx +

fy + gz
cw + dx +

gy + hz
cw + dx +

gy + hz

ew + fx +

iy + jz
ew + fx +

iy + jz
fw + gx +

jy + kz
fw + gx +

jy + kz
gw + hx +

ky + lz
gw + hx +

ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

Edge Detection by Convolution

12

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

-1 -1

Input

Kernel
Output

Figure 9.6

Efficiency of Convolution

13

Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Convolution Dense matrix Sparse matrix

Stored floats 2 319*280*320*280
> 8e9

2*319*280 =
178,640

Float muls or
adds

319*280*3 =
267,960 > 16e9

Same as
convolution
(267,960)

Padding

14

CHAPTER 9. CONVOLUTIONAL NETWORKS

... ...

...

... ...

... ...

... ...

Figure 9.13: The effect of zero padding on network size: Consider a convolutional network
with a kernel of width six at every layer. In this example, we do not use any pooling, so
only the convolution operation itself shrinks the network size. (Top)In this convolutional
network, we do not use any implicit zero padding. This causes the representation to
shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only
able to have three convolutional layers, and the last layer does not ever move the kernel,
so arguably only two of the layers are truly convolutional. The rate of shrinking can
be mitigated by using smaller kernels, but smaller kernels are less expressive and some
shrinking is inevitable in this kind of architecture. (Bottom)By adding five implicit zeroes
to each layer, we prevent the representation from shrinking with depth. This allows us to
make an arbitrarily deep convolutional network.

351

With zero
padding

Without zero
padding

Convolution with Stride

15

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s1s1 s2s2

x4x4 x5x5

s3s3

x1x1 x2x2 x3x3

z2z2z1z1 z3z3

x4x4

z4z4

x5x5

z5z5

s1s1 s2s2 s3s3

Strided
convolution

Downsampling

Convolution

Figure 9.12: Convolution with a stride. In this example, we use a stride of two.
(Top)Convolution with a stride length of two implemented in a single operation. (Bot-
tom)Convolution with a stride greater than one pixel is mathematically equivalent to
convolution with unit stride followed by downsampling. Obviously, the two-step approach
involving downsampling is computationally wasteful, because it computes many values
that are then discarded.

350

Multi-channel Convolution

16

Max Pooling

17

CHAPTER 9. CONVOLUTIONAL NETWORKS

0.1 1. 0.2

1.1. 1.

0.1

0.2

... ...

... ...

0.3 0.1 1.

1.0.3 1.

0.2

1.

... ...

... ...

DETECTOR STAGE

POOLING STAGE

POOLING STAGE

DETECTOR STAGE

Figure 9.8: Max pooling introduces invariance. (Top)A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinearity. The top
row shows the outputs of max pooling, with a stride of one pixel between pooling regions
and a pooling region width of three pixels. (Bottom)A view of the same network, after
the input has been shifted to the right by one pixel. Every value in the bottom row has
changed, but only half of the values in the top row have changed, because the max pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location.

343

Kinds of Connectivity

18

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2

s1s1 s3s3

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

a b a b a b a b a

a b c d e f g h i

x4x4x3x3

s4s4s2s2

Figure 9.14: Comparison of local connections, convolution, and full connections.
(Top)A locally connected layer with a patch size of two pixels. Each edge is labeled with
a unique letter to show that each edge is associated with its own weight parameter.
(Center)A convolutional layer with a kernel width of two pixels. This model has exactly
the same connectivity as the locally connected layer. The difference lies not in which units
interact with each other, but in how the parameters are shared. The locally connected layer
has no parameter sharing. The convolutional layer uses the same two weights repeatedly
across the entire input, as indicated by the repetition of the letters labeling each edge.
(Bottom)A fully connected layer resembles a locally connected layer in the sense that each
edge has its own parameter (there are too many to label explicitly with letters in this
diagram). However, it does not have the restricted connectivity of the locally connected
layer.

353

Local connection:
like convolution,
but no sharing

Convolution

Fully connected

Tiled convolution

19

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

a b a b a b a b a

a b c d e f g h i

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

a b c d a b c d a

Figure 9.16: A comparison of locally connected layers, tiled convolution, and standard
convolution. All three have the same sets of connections between units, when the same
size of kernel is used. This diagram illustrates the use of a kernel that is two pixels wide.
The differences between the methods lies in how they share parameters. (Top)A locally
connected layer has no sharing at all. We indicate that each connection has its own weight
by labeling each connection with a unique letter. (Center)Tiled convolution has a set of
t different kernels. Here we illustrate the case of t = 2. One of these kernels has edges
labeled “a” and “b,” while the other has edges labeled “c” and “d.” Each time we move one
pixel to the right in the output, we move on to using a different kernel. This means that,
like the locally connected layer, neighboring units in the output have different parameters.
Unlike the locally connected layer, after we have gone through all t available kernels,
we cycle back to the first kernel. If two output units are separated by a multiple of t
steps, then they share parameters. (Bottom)Traditional convolution is equivalent to tiled
convolution with t = 1. There is only one kernel and it is applied everywhere, as indicated
in the diagram by using the kernel with weights labeled “a” and “b” everywhere.

355

Figure 9.16

Local connection
(no sharing)

Convolution
(one group shared

everywhere)

Tiled convolution
(cycle between

groups of shared
parameters)

• Conv Layer = Conv -> Relu -> Pooling
Convolutional Network Components

20

Gradient Vanishing

21

• f represents one layer, f(x) + x
•

Residual Connection

22

Example Classification Architectures

23

CHAPTER 9. CONVOLUTIONAL NETWORKS

Input image:
256x256x3

Output of
convolution +

ReLU: 256x256x64

Output of pooling
with stride 4:

64x64x64

Output of
convolution +

ReLU: 64x64x64

Output of pooling
with stride 4:

16x16x64

Output of reshape to
vector:

16,384 units

Output of matrix
multiply: 1,000 units

Output of softmax:
1,000 class

probabilities

Input image:
256x256x3

Output of
convolution +

ReLU: 256x256x64

Output of pooling
with stride 4:

64x64x64

Output of
convolution +

ReLU: 64x64x64

Output of pooling to
3x3 grid: 3x3x64

Output of reshape to
vector:

576 units

Output of matrix
multiply: 1,000 units

Output of softmax:
1,000 class

probabilities

Input image:
256x256x3

Output of
convolution +

ReLU: 256x256x64

Output of pooling
with stride 4:

64x64x64

Output of
convolution +

ReLU: 64x64x64

Output of
convolution:
16x16x1,000

Output of average
pooling: 1x1x1,000

Output of softmax:
1,000 class

probabilities

Output of pooling
with stride 4:

16x16x64

Figure 9.11: Examples of architectures for classification with convolutional networks. The
specific strides and depths used in this figure are not advisable for real use; they are
designed to be very shallow in order to fit onto the page. Real convolutional networks
also often involve significant amounts of branching, unlike the chain structures used
here for simplicity. (Left)A convolutional network that processes a fixed image size.
After alternating between convolution and pooling for a few layers, the tensor for the
convolutional feature map is reshaped to flatten out the spatial dimensions. The rest
of the network is an ordinary feedforward network classifier, as described in chapter 6.
(Center)A convolutional network that processes a variable-sized image, but still maintains
a fully connected section. This network uses a pooling operation with variably-sized pools
but a fixed number of pools, in order to provide a fixed-size vector of 576 units to the
fully connected portion of the network. (Right)A convolutional network that does not
have any fully connected weight layer. Instead, the last convolutional layer outputs one
feature map per class. The model presumably learns a map of how likely each class is to
occur at each spatial location. Averaging a feature map down to a single value provides
the argument to the softmax classifier at the top.

346

• to enlarge reception field without introducing more
parameters

Dilated Convolution

24

• Convolution kernel only moves along one direction.
1D CNN for Sequential Data

25

Pooling

26

Text Classification using CNN

27https://lena-voita.github.io/nlp_course/models/convolutional.html

Softmax

Combining Convolutions w/ Different Kernel Sizes

28

CNN for Language Modelling

29https://lena-voita.github.io/nlp_course/models/convolutional.html

Example n-gram to activate CNN

30

• 1D convolution + dilated + residual connection
Temporal Convolutional Network (TCN)

31Bai et al, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. 2018

• All Convolutional Net: no pooling layers, just use
strided convolution to shrink representation size

• Inception: complicated architecture designed to
achieve high accuracy with low computational cost

• ResNet: blocks of layers with same spatial size, with
each layer’s output added to the same buffer that is
repeatedly updated. Very many updates = very deep
net, but without vanishing gradient.

Major Architectures

32

• Element-wise normalization for each minibatch
• => zero mean and unit variance

Batch Normalization

33

• With probability p to drop units, the remaining ones
scale to 1/(1-p)

Overfitting and Dropout

34

• Kalchbrenner et al. A Convolutional Neural Network for
Modelling Sentences, 2014

• He et al. Deep Residual Learning for Image
Recognition, 2016

• Pham et al. Convolutional Neural Network Language
Models, 2016

Reference

35

