291K Deep Learning for Machine Translation Advanced Vocabulary Learning

Lei Li UCSB 11/24/2021

Vocabulary is Fundamental and Important

How to construct the optimal vocabulary?

How to find the optimal vocabulary? Q1: How to efficiently evaluate vocabularies? Q2: How to efficiently find the optimal one?

Vocabulary

Q1: How to evaluate vocabulary?

Sub-word vocabulary is the dominant choice

* With normal-size data

Word level

is enlisting 5,000	drivers	in	the	country
--------------------	---------	----	-----	---------

Char level

g	e	r	i	S	Ο	r	e	g	•••
---	---	---	---	---	---	---	---	---	-----

-WC	ord	leve	21					
hich	is	en	listing	5,000	drivers	in	the	country

6

Why is Sub-word (BPE) superior? Theoretically

- Information theory:

 - Compress the message into compact representation fewest bits to represent both sentence and vocabulary – Char-level vocab ==> text sequence will be long

 - Word-level vocab ==> vocab will be large and still OOV
- Entropy:
 - how much information in each token
- Intuition:
 - Reduced entropy (bits-per-char) ==> Better Vocab
 - Even better vocab?

Information-theoretic Vocabulary Evaluation

- Normalized Entropy – Information-per-char (IPC)

 - It represents Semantic-information-per-char

Token	count
a	200
e	90
C	30
t	30
S	90
$\mathscr{H}(v)$	= 1.37

$\mathscr{H}(v) = -\frac{1}{l_v} \sum_{i \in v} P(i) \log P(i)$

VS

Smaller IPC is better. Easy to differentiate (therefore easy to generate)

Token	count
a	100
aes	90
cat	30

Which vocabulary is better? From Size

Sub-word level vocabulary with 10K tokens (BPE-10K)

The	most	e	ager	is	Ο	reg	on	which	is	en	listin g	5,000	dr i	vers	in	the	country	
-----	------	---	------	----	---	-----	----	-------	----	----	-------------	-------	---------	------	----	-----	---------	--

Sub-word level vocabulary with 30K tokens (BPE-30K)

The	most	e	ager	is	0	reg	on	which	is	en	listing	5,000	drivers	in	the	country	
-----	------	---	------	----	---	-----	----	-------	----	----	---------	-------	---------	----	-----	---------	--

From the perspective of size, BPE-1K seems to be better **but longer sequence**

* With normal-size data

Which Vocabulary is Better? From information?

Sub-word level vocabulary with 1K tokens (BPE-1K)

The	most	e	ag	er	is	Ο	reg	on	which	is	en	li	st	ing	5	0	00	d	ri	ver	S	in	the	coun	Tr	у	
-----	------	---	----	----	----	---	-----	----	-------	----	----	----	----	-----	---	---	----	---	----	-----	---	----	-----	------	----	---	--

Sub-word level vocabulary with 10K tokens (BPE-10K)

The	most	e	ager	is	Ο	reg	on	which	is	en	listin g	5,000	dr i	vers	in	the	country
												_					
	Sı	ıb-	word	d le	ve]	VO	cabi	lary	wit	h 3(OK to	okens	(B	PE-	30k	X)	
The	most	e	ager	is	0	reg	on	which	is	en	listing	5,000	dr	ivers	in	the	country

The	most	e	ager	is	0	reg	on	which	is	en	listin g	5,000	dr i	vers	in	the	country
	Sı	ıb-y	wore	d le	vel	VO	cabi	ulary	wit	h 3(OK to	okens	(B	PE-	30k	X)	
The	most	e	ager	is	0	reg	on	which	is	en	listing	5,000	dri	vers	in	the	country

From the perspective of entropy, BPE-30K seems to be better

* With normal-size data

10

Evaluating Vocabulary Quality is Expensive

Which one is better?

Full training and testing are required to find the optimal vocabulary!

IPC

Size

11

An analogy: Buying Good with Money

- Value:
- Cost:

Utility of Information for Adding Tokens

- Value: IPC
- Cost: size

- Marginal utility of information for Vocabulary (MUV)
 - How many value does each unit-of-cost bring?

$$M_{v_k \to v_{k+m}} = -\frac{H(v_k) - H(v_{k+m})}{m}$$

- Negative gradients of IPC to size

- ==> best BLEU

MUV Indicates MT Performance

• MUV and BLEU are correlated on two-thirds of tasks • A good coarse-grained evaluation metric!

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.

1e-5

Goal: finding the optimal vocabulary

Finding the optimal vocabulary

- Naive solution: MUI-Search
 - Exhaustive Search for vocabulary
 - Evaluate MUI for each and find max MUI
- How to search over a huge discrete space?

Q2: How to find the optimal vocabulary with the maximum MUI?

Problem Reduction • Best BLEU ==> Max MUV ==> Optimal Transport

Min cost to Transport soldiers from bases to frontlines

Optimal Transport

24 Easy solution: split the task with proportions

120:90:90 = 4:3:3

Optimal Transport

Vocabulary building as Transportation of Token Frequency

 Adding one new token means: Transport character frequency to token frequency

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.

#to									
a 16			abc	ac	bc	ab	С	b	а
b 10	Finding the optimal composition	0	0	<u>40</u>	0	0	0	0	<u>160</u>
C 60		0	0	0	0	0	0	<u>100</u>	0
ac 40		0	0	<u>40</u>	0	0	<u>60</u>	0	0

Transport Matrices

Token Vocab

VOLT Formulation

Transport chars to tokens

Not all tokens can get chars

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL $20\hat{2}^{3}$.

VOLT Formulation

Not all tokens can get chars

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL $20\hat{2}^{4}$.

VOLT Formulation

Not all tokens can get chars

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL $20\hat{2}^{\dagger}$.

VOLT Formulation

Each Transportation Defines a Vocabulary

Reducing MUV Optimization to OT

- The vocabulary with the maximum MUV
 - Maximum gap between IPC of a vocabulary (with size t) and that of a smaller vocabulary (with size <t)

$$- \max - (H(V_{t+1}) - H(V_t))$$

- Intractable, instead to maximize lower-bound • ==> max(max $H(V_t) - \max H(V_{t+1}))$
- Finding max H(v) ==> Optimal Transport \mathcal{V}

Finding the Transportation Matrix

• Find the transportation matrix (=vocab) with lowest cost (-MUV)

Transportation matrix P cat at tea

а	20	10	0
С	20	0	0
e	0	0	0
∟ -	20	10	0

Sinkhorn Algorithm [Gabriel Peyré et. al]

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2029.

Cost matrix D at tea cat

а	1	1	1
С	1	8	∞
е	∞	8	1
t	1	1	8

- VOLT uses a greedy strategy to encode text with a constructed sub-word level vocabulary similar to BPE.
- The vocabulary includes all basic characters.
 - To encode text, it first splits sentences into character-level tokens.
 - Then, we merge two consecutive tokens into one token if the merged one is in the vocabulary.
 - This process keeps running until no tokens can be merged.
 - Out-of-vocabulary tokens will be split into smaller tokens.

VOLT finds better vocabulary on Bilingual MT

VOLT finds better vocabulary on Bilingual MT

VOLT finds better vocabulary on Bilingual MT

Transformer architecture

VOLT Finds Better Vocabulary on Multilingual MT Transformer architecture 38 BLEU

VOLT Generalizes Well to Other Architectures

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. ³⁶

384 GPU hours

0.5 CPU hours

Still need to perform one full training

Carbon Emission

VOLT-search-eval

BPE-Search

BPE-Search

BLEU

VOLT

Conclusion

- How to evaluate vocabularies without trial training?
 - Better vocabulary should have less information-per-char (IPC)
 - Better vocabulary should have smaller size
 - MUV metric
- How to efficiently find the optimal vocabulary?
 - Reduce to OT
 - A green vocabulary learning solution

Code and Blog

- Codes and data are available at:
 https://github.com/Jingjing-NLP/VOLT
- If you have more questions on paper details, please see our latest paper blog at:
 - <u>https://jingjing-nlp.github.io/volt-blog/</u>

Language Presentation

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via **Optimal Transport for Neural Machine Translation. ACL** 2021. (ACL best paper)

Read List

41