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• Monolingual Sequence-to-sequence pre-training

– MASS: Masked seq-to-seq pretraining

– BART


• Multilingual fused pre-training

– Cross-lingual Language Model Pre-training [NeurIPS, 2019] 

– Alternating Language Modeling Pre-training [AAAI, 2020]

– XLM-T: Cross-lingual Transformer Encoders 


• Multilingual sequence to sequence pre-training

– mBART [TACL, 2020]

– mRASP & mRASP2 [EMNLP, 2020] [ACL, 2021]


– LaSS: Learning language-specific sub-network via pre-training & fine-tuning 
[ACL, 2021]

Outline
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Sequence-to-sequence Pre-training



Sequence-to-sequence learning for MT
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Encoder Decoder
I like singing and dancing J’adore chanter et danser

chanter et danserJ’adore

BOS



• MASS is carefully designed to jointly pre-train the 
encoder and decoder



• Mask k consecutive tokens (segment)


– Force the decoder to attend on the source representations, i.e., 
encoder-decoder attention


– Develop the decoder with the ability of language modeling

 MASS: Pre-train for Sequence to Sequence Generation

5 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



MASS vs. BERT/GPT
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MASS vs. BERT/GPT

K=1 K=mK=mK=m

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



Unsupervised NMT
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Unsupervised NMT 

XLM: Cross-lingual language model pretraining, CoRR 2019

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



Low-resource NMT

8 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



• Advantages

– Unified sequence-to-sequence pretraining which jointly pretrains encoder, 

decoder and cross attention

– Achieves improvements on zero-shot / unsupervised NMT


• Limitions

– No evidence on rich resource NMT

– Pre-training objective inconsistent with NMT, e.g. monolingual v.s. multilingual  

Summary
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Summary

� MASS jointly pre-trains the encoder-attention-decoder framework for 
sequence to sequence based language generation tasks

� MASS achieves significant improvements over the baselines without pre-
training or with other pre-training methods on zero/low-resource NMT, 
text summarization and conversational response generation.

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



• Standard sequence-to-sequence Transformer architecture

• Trained by corrupting documents and then optimizing a reconstruction 

loss

• Allows to apply any type of document corruption. 

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, 
Translation, and Comprehension 
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(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
are predicted independently, so BERT cannot easily be
used for generation.

Autoregressive 
Decoder
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<s> A  B  C  D  
(b) GPT: Tokens are predicted auto-regressively, meaning
GPT can be used for generation. However words can only
condition on leftward context, so it cannot learn bidirec-
tional interactions.
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(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

English, by propagation through BART, thereby us-
ing BART as a pre-trained target-side language model.
This approach improves performance over a strong
back-translation MT baseline by 1.1 BLEU on the
WMT Romanian-English benchmark.

To better understand these effects, we also report
an ablation analysis that replicates other recently pro-
posed training objectives. This study allows us to care-
fully control for a number of factors, including data
and optimization parameters, which have been shown
to be as important for overall performance as the se-
lection of training objectives (Liu et al., 2019). We find
that BART exhibits the most consistently strong perfor-
mance across the full range of tasks we consider.

2 Model

BART is a denoising autoencoder that maps a corrupted
document to the original document it was derived from.
It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
left-to-right autoregressive decoder. For pre-training,
we optimize the negative log likelihood of the original
document.

2.1 Architecture

BART uses the standard sequence-to-sequence Trans-
former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART

BART is trained by corrupting documents and then op-
timizing a reconstruction loss—the cross-entropy be-
tween the decoder’s output and the original document.
Unlike existing denoising autoencoders, which are tai-
lored to specific noising schemes, BART allows us to
apply any type of document corruption. In the extreme
case, where all information about the source is lost,
BART is equivalent to a language model.

We experiment with several previously proposed and
novel transformations, but we believe there is a sig-
nificant potential for development of other new alter-
natives. The transformations we used are summarized
below, and examples are shown in Figure 2.

Token Masking Following BERT (Devlin et al.,
2019), random tokens are sampled and replaced with
[MASK] elements.

Token Deletion Random tokens are deleted from the
input. In contrast to token masking, the model must
decide which positions are missing inputs.

Bidirectional 
Encoder

A  _  C  _  E 

B       D    

(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
are predicted independently, so BERT cannot easily be
used for generation.

Autoregressive 
Decoder
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<s> A  B  C  D  
(b) GPT: Tokens are predicted auto-regressively, meaning
GPT can be used for generation. However words can only
condition on leftward context, so it cannot learn bidirec-
tional interactions.
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(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).
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English, by propagation through BART, thereby us-
ing BART as a pre-trained target-side language model.
This approach improves performance over a strong
back-translation MT baseline by 1.1 BLEU on the
WMT Romanian-English benchmark.

To better understand these effects, we also report
an ablation analysis that replicates other recently pro-
posed training objectives. This study allows us to care-
fully control for a number of factors, including data
and optimization parameters, which have been shown
to be as important for overall performance as the se-
lection of training objectives (Liu et al., 2019). We find
that BART exhibits the most consistently strong perfor-
mance across the full range of tasks we consider.

2 Model

BART is a denoising autoencoder that maps a corrupted
document to the original document it was derived from.
It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
left-to-right autoregressive decoder. For pre-training,
we optimize the negative log likelihood of the original
document.

2.1 Architecture

BART uses the standard sequence-to-sequence Trans-
former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART

BART is trained by corrupting documents and then op-
timizing a reconstruction loss—the cross-entropy be-
tween the decoder’s output and the original document.
Unlike existing denoising autoencoders, which are tai-
lored to specific noising schemes, BART allows us to
apply any type of document corruption. In the extreme
case, where all information about the source is lost,
BART is equivalent to a language model.

We experiment with several previously proposed and
novel transformations, but we believe there is a sig-
nificant potential for development of other new alter-
natives. The transformations we used are summarized
below, and examples are shown in Figure 2.

Token Masking Following BERT (Devlin et al.,
2019), random tokens are sampled and replaced with
[MASK] elements.

Token Deletion Random tokens are deleted from the
input. In contrast to token masking, the model must
decide which positions are missing inputs.

A schema comparison with BERT, GPT and BART. 

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,  [Lewis et al ACL 2020]



• Token masking: Random tokens are sampled and replaced with [MASK] 

• Token deletion: Random tokens are deleted from the input.

• Text infilling: A number of span are sampled. Each span is replaced with 

[MASK].  0-length span corresponding the insertion of [MASK]. 

• Sentence permutation:  Sentences are shuffled with random order. 

• Document Rotation: A token is chosen uniformly at random, and the document 

is rotated so that it begins with that token. 


•

Noising the input
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,  [Lewis et al ACL 2020]
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3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We
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• Token masking: Random tokens are sampled and replaced with [MASK] 

• Token deletion: Random tokens are deleted from the input.

• Text infilling: A number of span are sampled. Each span is replaced with 

[MASK].  0-length span corresponding the insertion of [MASK]. 

• Sentence permutation:  Sentences are shuffled with random order. 

• Document Rotation: A token is chosen uniformly at random, and the document 

is rotated so that it begins with that token. 


•

Noising the input
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We
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• Replace BART’s encoder embedding layer with a new randomly initialized encoder

• The new encoder uses a separate vocabulary from the original BART mode

• First, freeze BART parameters and only update the randomly initialized source 

encoder. Then, jointly tuning with a few steps.

Fine-Tune on Neural Machine Translation
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Pre-trained 
Decoder

Pre-trained 
Encoder

label

A  B  C  D  E <s> A  B  C  D  E
(a) To use BART for classification problems, the same
input is fed into the encoder and decoder, and the repre-
sentation from the final output is used.

Randomly 
Initialized Encoder

    α   β   γ   δ   ε

Pre-trained  
Decoder

Pre-trained 
Encoder

A  B  C  D  E

<s> A  B  C  D  

(b) For machine translation, we learn a small additional
encoder that replaces the word embeddings in BART. The
new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

re-implement strong pre-training approaches recently
proposed for discriminative and generation tasks. We
aim, as much as possible, to control for differences un-
related to the pre-training objective. However, we do
make minor changes to the learning rate and usage of
layer normalisation in order to improve performance
(tuning these separately for each objective). For refer-
ence, we compare our implementations with published
numbers from BERT, which was also trained for 1M
steps on a combination of books and Wikipedia data.
We compare the following approaches:

Language Model Similarly to GPT (Radford et al.,
2018), we train a left-to-right Transformer language
model. This model is equivalent to the BART decoder,
without cross-attention.

Permuted Language Model Based on XLNet (Yang
et al., 2019), we sample 1/6 of the tokens, and gener-
ate them in a random order autoregressively. For con-
sistency with other models, we do not implement the
relative positional embeddings or attention across seg-
ments from XLNet.

Masked Language Model Following BERT (Devlin
et al., 2019), we replace 15% of tokens with [MASK]
symbols, and train the model to independently predict
the original tokens.

Multitask Masked Language Model As in UniLM
(Dong et al., 2019), we train a Masked Language
Model with additional self-attention masks. Self at-
tention masks are chosen randomly in with the follow
proportions: 1/6 left-to-right, 1/6 right-to-left, 1/3 un-
masked, and 1/3 with the first 50% of tokens unmasked
and a left-to-right mask for the remainder.

Masked Seq-to-Seq Inspired by MASS (Song et al.,
2019), we mask a span containing 50% of tokens,
and train a sequence to sequence model to predict the
masked tokens.

For the Permuted LM, Masked LM and Multitask
Masked LM, we use two-stream attention (Yang et al.,
2019) to efficiently compute likelihoods of the output
part of the sequence (using a diagonal self-attention
mask on the output to predict words left-to-right).

We experiment with (1) treating the task as a stan-
dard sequence-to-sequence problem, where the source
input to the encoder and the target is the decoder out-
put, or (2) adding the source as prefix to the target in
the decoder, with a loss only on the target part of the
sequence. We find the former works better for BART
models, and the latter for other models.

To most directly compare our models on their ability
to model their fine-tuning objective (the log likelihood
of the human text), we report perplexity in Table 1.

4.2 Tasks

SQuAD (Rajpurkar et al., 2016)a an extractive ques-
tion answering task on Wikipedia paragraphs. Answers
are text spans extracted from a given document context.
Similar to BERT (Devlin et al., 2019), we use concate-
nated question and context as input to the encoder of
BART, and additionally pass them to the decoder. The
model includes classifiers to predict the start and end
indices of each token.

MNLI (Williams et al., 2017), a bitext classification
task to predict whether one sentence entails another.
The fine-tuned model concatenates the two sentences
with appended an EOS token, and passes them to both
the BART encoder and decoder. In contrast to BERT,
the representation of the EOS token is used to classify
the sentences relations.

ELI5 (Fan et al., 2019), a long-form abstractive ques-
tion answering dataset. Models generate answers con-
ditioned on the concatenation of a question and sup-
porting documents.

XSum (Narayan et al., 2018), a news summarization
dataset with highly abstractive summaries.

ConvAI2 (Dinan et al., 2019), a dialogue response
generation task, conditioned on context and a persona.

CNN/DM (Hermann et al., 2015), a news summa-
rization dataset. Summaries here are typically closely
related to source sentences.

4.3 Results

Results are shown in Table 1. Several trends are clear:

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,  [Lewis et al ACL 2020]



• Results on IWSLT 2016 En-
>Ro augmented with back-
translation data


• 6 layer of additional  
transformer encoder to 
encoding Romania 
representation. 


• *MASS reports unsupervised  
results

Results on NMT
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*MASS Baseline BART BERT-fused
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Multi-lingual Pre-training for NMT
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• Data scarcity for low/zero resource languages.

• Transfer knowledge between languages. 



Cross-lingual Language Model Pretraining
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Why learning cross-lingual representations? 

2

1 2

43

This is great.
C’est super.
Das ist toll.

Learning cross-lingual representation 

Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



Similar to BERT, but in many languages…

Multilingual representations emerge from a single model trained 
on many languages 

Multiple masked language model (MLM)
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Mult. Masked Language Modeling (MLM)

.. multilingual representations emerge from a single MLM trained on many languages.

4

Multilingual Masked language modeling pretraining

Similar to BERT, we pretrain a Transformer model with MLM but in many languages:

Devlin et al. – BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding (+ mBERT)
Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



MLM is unsupervised,  but TLM leverages parallel data…

Encourage the model to learn cross-lingual context when predicting 

Translation language model (TLM)
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Translation Language Modeling (TLM)

Multilingual MLM is unsupervised, but we leverage parallel data with TLM:

5

Translation language modeling (TLM) pretraining

.. to encourage the model to leverage cross-lingual context when making predictions.
Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



Results on Unsupervised Machine Translation

23

Results on Unsupervised Machine Translation

8

Initialization is key in unsupervised MT to bootstrap the iterative BT process

Embedding layer initialization
is essential for neural unsupervised MT (*)

Full Transformer model initialization
significantly improves performance (+7 BLEU)

(*) Lample et al. – Phrase-based and neural unsupervised machine translation (EMNLP 2018)
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34.3

30.5

27.3

20 24 28 32 36 40

Supervised 2016 SOTA (Edinburgh)

Full model pretrained (MLM)

Full model pretrained (CLM)

Embeddings pretrained

BLEU

Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



• Pre-training is 
important for translation 


– Pre-training both encoder 
and decoder improves 


– MLM is better than CLM

– Back translation + Pre-

training achieve the best 

Results on supervised machine translation
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Results on Supervised Machine Translation

9

We also show the importance of pretraining for generation

• Pretraining both the encoder and 
decoder improves BLEU score

• MLM better than LM pretraining

• Back-translation + pretraining 
leads to the best BLEU score

• Pretraining is more important 
when supervised data is small

20 24 28 32 36 40

Full model pretrained (MLM)

Full model pretrained (CLM)

No pretraining

without back-translation with back-translation

Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



• Adding more languages improves performance on low-
resource languages due to positive knowledge transfer


• Sampling batches more often in some languages improves 
performance in these languages but decrease performance in 
other languages (capacity allocation problem)

Ablation study

25Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



• Cross-lingual language model pre-training is very 
effective for NMT


• Pre-training reduces the gap between unsupervised 
and supervised MT


• Encourage knowledge transfer across languages is 
promising 

Summary

26Cross-lingual Language Model Pre-training,  [Conneau et al NeurIPS 2019]



• ALM extend TLM in a sentence, which alternately predicts words of 
different languages


• ALM can capture the rich cross-lingual context of words and phrases

Alternating Language Modeling for Cross-Lingual Pre-Training 
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Abstract

Language model pre-training has achieved success in many
natural language processing tasks. Existing methods for
cross-lingual pre-training adopt Translation Language Model
to predict masked words with the concatenation of the source
sentence and its target equivalent. In this work, we intro-
duce a novel cross-lingual pre-training method, called Al-
ternating Language Modeling (ALM). It code-switches sen-
tences of different languages rather than simple concatena-
tion, hoping to capture the rich cross-lingual context of words
and phrases. More specifically, we randomly substitute source
phrases with target translations to create code-switched sen-
tences. Then, we use these code-switched data to train ALM
model to learn to predict words of different languages. We
evaluate our pre-training ALM on the downstream tasks of
machine translation and cross-lingual classification. Exper-
iments show that ALM can outperform the previous pre-
training methods on three benchmarks.1

Introduction
Recently language model pre-training methods, including
ELMo (Peters et al. 2018), GPT (Radford et al. 2018),
GPT2 (Radford et al. 2019), BERT (Devlin et al. 2019),
and UniLM (Dong et al. 2019), have achieved impres-
sive results on various natural language processing tasks
such as question-answering (Min, Seo, and Hajishirzi 2017;
Yang et al. 2019a), machine reading comprehension (Salant
and Berant 2018; Yu et al. 2018) and natural language infer-
ence (Tay, Luu, and Hui 2018). More recently, XLM (Lam-
ple and Conneau 2019) has extended this approach to cross-
lingual pre-training, and proven successful in applying lan-
guage model pre-training in the cross-lingual setting.

Existing methods for supervised cross-lingual pre-
training adopt a cross-lingual language model objective,
called Translation Language Model (TLM). It makes use of
parallel data by predicting the masked words with concate-
nation of the sentence and its translation. In this way, the

∗Contribution during internship at Microsoft Research Asia.
†Corresponding author.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Code can be found at https://github.com/zddfunseeker/ALM.
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Figure 1: Example of Translation Language Model and Al-
ternating Language Model.

cross-lingual pre-training model can learn the relationship
between languages.

In this work, we propose a novel cross-lingual language
model, which alternately predicts words of different lan-
guages. Figure 1 shows an example of the proposed Alter-
nating Language Model (ALM). Different from XLM, the
input sequence of ALM is mixed with different languages,
so it can capture the rich cross-lingual context of words and
phrases. Moreover, it forces the language model to predict
one language conditioned on the context of the other lan-
guage. Therefore, it can minor the gap between the embed-
dings of the source language and the target languages, which
is beneficial for the cross-lingual setting.

Based on Alternating Language Model, we introduce a
new cross-lingual pre-training method. More specifically,
we take the Transformer model (Vaswani et al. 2017) as
the backbone model. Then, we construct the training ex-
amples for pre-training by replacing the phrases with their
translation of the other language. Finally, we pre-train the
Transformer model with the constructed examples using the
masked language model objective. The pre-trained model
can be used to further fine-tune the downstream cross-
lingual tasks.

To verify the effectiveness of the proposed method, we
evaluate our pre-training method on machine translation and
cross-lingual classification. Experiments show that ALM
can outperform the previous pre-training methods on three
benchmark datasets.

The contributions of this work are as follows:
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Translation Language Modeling (TLM)

Multilingual MLM is unsupervised, but we leverage parallel data with TLM:

5

Translation language modeling (TLM) pretraining

.. to encourage the model to leverage cross-lingual context when making predictions.
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Figure 2: Overview of our ALM cross-lingual pre-training method. Given a pair of bilingual sentences, we yield a set of cross-
lingual sentences. These sentences are used to pre-train the Transformer encoder which predicts an English masked word or a
Chinese one.

• We propose a novel cross-lingual language model, which
alternately predicts words of different languages.

• We introduce a new cross-lingual pre-training method
based on the proposed cross-lingual language model,
which can be further fine-tuned on downstream tasks.

• Experiments show that ALM outperforms the previous
pre-training methods on the benchmark datasets for ma-
chine translation and cross-lingual text classification.

Cross-Lingual Pre-Training
Cross-lingual pre-training trains a model that can be fur-
ther fine-tuned to improve downstream tasks by making use
of monolingual data and bilingual data. XLM is a recently
proposed model that achieves success in cross-lingual pre-
training. It consists of two unsupervised models that relies
on monolingual data, and a supervised model that relies on
bilingual data. These three models of XLM are Causal Lan-
guage Model (CLM), Masked Language Model (MLM), and
Translation Language Model (TLM), respectively.

Unsupervised Language Modeling
CLM recurrently predicts the next word given the previous
context, which is the typical objective of language modeling.
GPT (Radford et al. 2018) is the first pre-training model to
adopt CLM, and GPT-2 (Radford et al. 2019) further proves
the success of CLM for pre-training.

CLM only makes use of the uni-directional context. Dif-
ferent from CLM, MLM uses bidirectional contextual infor-
mation. It randomly masks some tokens during training and
predicts the identity of the masked word. BERT (Devlin et
al. 2019) is the first to propose this model and use it for pre-
training. Different from the BERT, XLM (Lample and Con-
neau 2019) uses an arbitrary number of sentences (truncated
at 256 tokens) instead of pairs of sentences, and it samples
the masked tokens according to a multinomial distribution,
whose weights are proportional to the square root of their
invert frequencies.

Supervised Language Modeling
XLM also proposes an additional objective that can make
use of bilingual data called TLM. TLM concatenates paral-
lel sentences as training samples. Similar to MLM, it ran-
domly masks words of concatenated sentences, so that it can
leverage both words in source language and target language
translation by predicting the masked words. Moreover, TLM
leverages target sentences to predict source words when the
source context is insufficient to predict these words.

TLM makes use of bilingual data by concatenating sen-
tences of two languages, so it can learn the relationship be-
tween languages. In this work, we mainly focus on improv-
ing the supervised pre-training model. We also show that the
proposed model can be applied to unsupervised settings in
the following section.

Alternating Language Model
We propose Alternating Language Model (ALM) to alter-
nately predict words of different languages. In this section,
we present the details of ALM.

Code-Switched Sequence
Given a bilingual sentence pair (X,Y ) with the source
sentence X = {x1, x2, ..., xN} and the target translation
Y = {y1, y2, ..., yM}, where N and M are the lengths of
the source and target sentences, we create the code-switched
sequence U by composing the phrases of X and Y , where
U={u1, u2, .., uL} with the length L.

In details, for each phrase U[i,j], it comes from either
source phrase X[a,b] or target phrase Y[c,d] where the con-
straint is that these two phrases are the linguistic translation
counterpart in the parallel sentence (X , Y ), 1 ≤ a ≤ b ≤ N
and 1 ≤ c ≤ d ≤ M . We denote the proportion of the source
words in the alternating language sequence U as α.

Specifically, the constituent of U can be illustrated into
four categories:
• Monolingual source language: that is α = 0.
• Monolingual target language: that is α = 1.

9387

Alternating Language Modeling for Cross-Lingual Pre-Training  [Yang et al AAAI 2020]



• Dataset

– Original parallel data to generate 20 times code-switched sentences

– Separately obtain the alternating language sentences of source 

language and target language,  which are 40 times than original 
data


– Totally, 1.5 billion code-switched sentences are used for pre-training

• Model


– Transformer big

– Reload the parameters of ALT for both encoder and decoder. The 

cross-lingual attention parameters are randomly initialized.

Training details
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• mBERT:   extends the BERT model to different languages 

• XLM:  the most related work. The results are implemented with released code.

• Mass:  set the fragment length k as 50% of the total number of masked tokens in 

the sentence. 

Results
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En → De BLEU(%)

Transformer (Vaswani et al. 2017) 28.40
ConvS2S (Gehring et al. 2017) 25.16
Weighted Transformer (Ahmed, Keskar, and Socher 2017) 28.90
Layer-wise Transformer (He et al. 2018) 29.01
RNMT+ (Chen et al. 2018) 28.50

mBERT (Devlin et al. 2019) 28.64
MASS (Song et al. 2019) 28.92
XLM (Lample and Conneau 2019) 28.88

ALM (this work) 29.22

Table 1: Results on WMT14 English-German machine
translation task.

De → En BLEU(%)

Transformer (Vaswani et al. 2017) 34.49
LightConv (Wu et al. 2019) 34.80
DynamicConv (Wu et al. 2019) 35.20
Advsoft (Wang, Gong, and Liu 2019) 35.18
Layer-wise Transformer (He et al. 2018) 35.07

mBERT (Devlin et al. 2019) 34.82
MASS (Song et al. 2019) 35.14
XLM (Lample and Conneau 2019) 35.22

ALM (this work) 35.53

Table 2: Results on IWSLT14 German-English machine
translation task.

translation tasks. Table 1 and Table 2 show that our ALM
has significant improvements over baselines without pre-
training or with pre-training methods.

In Table 1, we report the performance of ALM and the
baseline models in the WMT14 English-German machine
translation dataset. Transformer is an important baseline,
and it obtains 28.40 in BLEU score. We also compare ALM
with the convolutional baseline ConvS2S, which achieves
25.16. Weighted Transformer and Layer-wise Transformer
are two methods to improve the Transformer model, and
they get 28.90 and 29.01 in terms of BLEU score. RNMT+
combines the recurrent structure and the multi-head atten-
tion components, which yields an improvement to 28.50
BLEU score. Our ALM significantly outperforms these
baseline models. We also compare our model with three
state-of-the-art pre-training models. mBERT and MASS
are unsupervised pre-training models. They achieve 28.64
BLEU score and 28.92 BLEU score, respectively. XLM is
a mixture of unsupervised and supervised pre-training mod-
els, achieving 28.88 BLEU score. Our ALM reaches 29.22
BLEU score, yielding an improvement of +0.58, +0.30, and
+0.34 BLEU scores.

In Table 2, we report the performance of ALM and
the baseline models in IWSLT14 German-English machine
translation dataset. We first compare our ALM with the su-
pervised models without pre-training. Transformer and its
variant Layer-wise Transformer achieves 34.49 and 35.07
in terms of BLEU score. The convolution-based models,
LightConv and DynamicConv, achieve 34.80 and 35.20, re-
spectively. Advsoft gets a BLEU score of 35.18. ALM out-
performs these baselines, achieving 35.53 in BLEU score.

We also compare ALM with three pre-training baselines.
It shows that our ALM obtains the best performance and
reaches 35.53 BLEU score in this task, outperforming the
previous baseline mBERT, MASS, and XLM by +0.71 and
+0.39, and +0.31 in terms of BLEU score.

In general, our ALM could achieve significant improve-
ments over all baseline models on two translation tasks. As
our method pre-trains the encoder on a large scale cross-
lingual corpus, the word representations and encoder could
acquire sufficient cross-lingual information. For example,
the target phrase can see both its source and target context.
This cross-lingual context is helpful for target word genera-
tion and understanding the source sentence in a cross-lingual
way.

Fine-Tuning on Cross-Lingual Classification
We fine-tune the pre-trained ALM model on XNLI dataset
to evaluate the effectiveness of our model. We build a lin-
ear classifier on the top of the pre-trained ALM to project
the first hidden state of ALM output into the probabili-
ties of each class. We concatenate premise and hypothe-
sis, and feed them into ALM. We evaluate the performance
of the fine-tuned model in 15 XNLI languages. Follow-
ing previous work (Lample and Conneau 2019), we eval-
uate the model in three different settings: “TRANSLATE-
TRAIN”, “TRANSLATE-TEST”, and “CROSS-LINGUAL
TEST”. The evaluation metric is the accuracy of the pre-
dicted NLI class.

Baselines We compare our methods with three strong
baselines, including a supervised method without pre-
training, and two pre-training methods:
• Conneau: Conneau (Conneau et al. 2018) proposes a

BiLSTM model to set up a baseline for XNLI. We report
the scores directly from their paper.

• Multilingual BERT (Devlin et al. 2019): Multilingual
BERT (mBERT) extends the BERT model to different
languages, which is also a strong baseline.

• XLM (Lample and Conneau 2019): XLM is the state-of-
the-art model for cross-lingual pre-training. We report the
results of XLM directly from their paper.

Details We fine-tune our ALM with the Adam optimizer
(Kingma and Ba 2015) with β1 = 0.9 and β2 = 0.997.
We tune the learning rates based on the performance on the
validation set, and the learning rates are set to 5× 10−6. We
set the batch size to 24, and we limit the sentences up to
256 tokens. We set a rate of dropout 0.15 of last layer. We
evaluate our model for every 1000 sentences.

Results Table 3 shows the experimental results of our
proposed ALM and the baseline models. Following the
work of XNLI (Conneau et al. 2018), we evaluate these
models in three different settings: “TRANSLATE-TRAIN”,
“TRANSLATE-TEST”, and “CROSS-LINGUAL TEST”.
In the setting “TRANSLATE-TRAIN”, we translate the
training set of the English MultiNLI dataset into each XNLI
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En → De BLEU(%)

Transformer (Vaswani et al. 2017) 28.40
ConvS2S (Gehring et al. 2017) 25.16
Weighted Transformer (Ahmed, Keskar, and Socher 2017) 28.90
Layer-wise Transformer (He et al. 2018) 29.01
RNMT+ (Chen et al. 2018) 28.50

mBERT (Devlin et al. 2019) 28.64
MASS (Song et al. 2019) 28.92
XLM (Lample and Conneau 2019) 28.88

ALM (this work) 29.22

Table 1: Results on WMT14 English-German machine
translation task.

De → En BLEU(%)

Transformer (Vaswani et al. 2017) 34.49
LightConv (Wu et al. 2019) 34.80
DynamicConv (Wu et al. 2019) 35.20
Advsoft (Wang, Gong, and Liu 2019) 35.18
Layer-wise Transformer (He et al. 2018) 35.07

mBERT (Devlin et al. 2019) 34.82
MASS (Song et al. 2019) 35.14
XLM (Lample and Conneau 2019) 35.22

ALM (this work) 35.53

Table 2: Results on IWSLT14 German-English machine
translation task.
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In general, our ALM could achieve significant improve-
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our method pre-trains the encoder on a large scale cross-
lingual corpus, the word representations and encoder could
acquire sufficient cross-lingual information. For example,
the target phrase can see both its source and target context.
This cross-lingual context is helpful for target word genera-
tion and understanding the source sentence in a cross-lingual
way.

Fine-Tuning on Cross-Lingual Classification
We fine-tune the pre-trained ALM model on XNLI dataset
to evaluate the effectiveness of our model. We build a lin-
ear classifier on the top of the pre-trained ALM to project
the first hidden state of ALM output into the probabili-
ties of each class. We concatenate premise and hypothe-
sis, and feed them into ALM. We evaluate the performance
of the fine-tuned model in 15 XNLI languages. Follow-
ing previous work (Lample and Conneau 2019), we eval-
uate the model in three different settings: “TRANSLATE-
TRAIN”, “TRANSLATE-TEST”, and “CROSS-LINGUAL
TEST”. The evaluation metric is the accuracy of the pre-
dicted NLI class.

Baselines We compare our methods with three strong
baselines, including a supervised method without pre-
training, and two pre-training methods:
• Conneau: Conneau (Conneau et al. 2018) proposes a

BiLSTM model to set up a baseline for XNLI. We report
the scores directly from their paper.

• Multilingual BERT (Devlin et al. 2019): Multilingual
BERT (mBERT) extends the BERT model to different
languages, which is also a strong baseline.

• XLM (Lample and Conneau 2019): XLM is the state-of-
the-art model for cross-lingual pre-training. We report the
results of XLM directly from their paper.

Details We fine-tune our ALM with the Adam optimizer
(Kingma and Ba 2015) with β1 = 0.9 and β2 = 0.997.
We tune the learning rates based on the performance on the
validation set, and the learning rates are set to 5× 10−6. We
set the batch size to 24, and we limit the sentences up to
256 tokens. We set a rate of dropout 0.15 of last layer. We
evaluate our model for every 1000 sentences.

Results Table 3 shows the experimental results of our
proposed ALM and the baseline models. Following the
work of XNLI (Conneau et al. 2018), we evaluate these
models in three different settings: “TRANSLATE-TRAIN”,
“TRANSLATE-TEST”, and “CROSS-LINGUAL TEST”.
In the setting “TRANSLATE-TRAIN”, we translate the
training set of the English MultiNLI dataset into each XNLI
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• Not surprise, the improvements of ALM is larger for low resource 
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Figure 4: Visualization of word embedding in Transformer
and ALM.

ALM can outperform Transformer model by a large margin.
With the increase of parallel data, the margin gets narrow
because of the upper bound of the model capacity. It con-
cludes that ALM pre-training can benefit the performance
of Transformer model especially when the training samples
are not sufficient.

Related Work
Pre-training and transfer learning are widely used in many
tasks of natural language processing. ELMo (Peters et al.
2018) is proposed as a kind of deep contextualized word
representation that is pre-trained in the large scale corpus
and can be transferred to other tasks. Universal Language
Model Fine-tuning (ULMFiT) (Howard and Ruder 2018)
is an effective transfer learning method that can be ap-
plied to any task in NLP, and includes techniques that are
key for fine-tuning a language model. BERT (Devlin et al.
2019) achieves state-of-the-art performance among various
pre-training approaches to monolingual NLP tasks. Further-
more, XLM and MASS (Song et al. 2019) obtain more
great success in language understanding by pre-training. Un-
like BERT that pre-trains only the encoder or the decoder,
MASS is carefully designed to pre-train the encoder and de-
coder jointly by predicting the fragment of the sentence that
is masked on the encoder side and predict the masked to-
kens in the decoder side. By masking the input tokens of
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Figure 5: Results of ALM vs Transformer fine-tuning on
low-resource data.

the decoder that are unmasked in the source side, MASS
can force the decoder to rely more on the source repre-
sentation other than the previous tokens in the target side
for the next token prediction by pre-training with monolin-
gual data. More recently, XLNet (Yang et al. 2019b) pro-
poses a generalized auto-aggressive pre-training method that
enables learning bidirectional contexts by maximizing the
expected likelihood over all permutations of the factoriza-
tion order. RoBERTa (Liu et al. 2019) presents a replication
study of BERT pre-training that carefully measures the im-
pact of many key hyperparameters and training data size.

Conclusions
In this work, we propose a novel cross-lingual pre-training
method, called Alternating Language Modeling (ALM).
First, we randomly substitute the source phrases with the tar-
get equivalents to create code-switched sentences. Then, we
use these code-switched data to train ALM model to learn to
predict words of different languages. We evaluate our pre-
training ALM on the downstreams tasks of machine transla-
tion and cross-lingual classification. Experiments show that
ALM can outperform the previous pre-training methods on
three benchmark datasets. In the future work, we will ex-
plore the effect of code-switched sentences being used for
MASS-like pre-training method.
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because of the upper bound of the model capacity. It con-
cludes that ALM pre-training can benefit the performance
of Transformer model especially when the training samples
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and can be transferred to other tasks. Universal Language
Model Fine-tuning (ULMFiT) (Howard and Ruder 2018)
is an effective transfer learning method that can be ap-
plied to any task in NLP, and includes techniques that are
key for fine-tuning a language model. BERT (Devlin et al.
2019) achieves state-of-the-art performance among various
pre-training approaches to monolingual NLP tasks. Further-
more, XLM and MASS (Song et al. 2019) obtain more
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Abstract

Multilingual machine translation enables a sin-
gle model to translate between different lan-
guages. Most existing multilingual machine
translation systems adopt a randomly initial-
ized Transformer backbone. In this work, in-
spired by the recent success of language model
pre-training, we present XLM-T, which initial-
izes the model with an off-the-shelf pretrained
cross-lingual Transformer encoder and fine-
tunes it with multilingual parallel data. This
simple method achieves significant improve-
ments on a WMT dataset with 10 language
pairs and the OPUS-100 corpus with 94 pairs.
Surprisingly, the method is also effective even
upon the strong baseline with back-translation.
Moreover, extensive analysis of XLM-T on un-
supervised syntactic parsing, word alignment,
and multilingual classification explains its ef-
fectiveness for machine translation.1

1 Introduction

Multilingual neural machine translation (NMT) en-
ables a single model to translate between multiple
language pairs, which has drawn increasing atten-
tion in the community (Firat et al., 2016a; Ha et al.,
2016; Johnson et al., 2017; Aharoni et al., 2019;
Fan et al., 2020). Recent work shows that multilin-
gual machine translation achieves promising results
especially for low-resource and zero-resource ma-
chine translation (Firat et al., 2016b; Zoph et al.,
2016; Sen et al., 2019; Zhang et al., 2020).

Pre-training-then-fine-tuning framework (Devlin
et al., 2019; Liu et al., 2019; Dong et al., 2019;
Song et al., 2019; Raffel et al., 2020) has shown
substantial improvements on many natural lan-
guage processing (NLP) tasks by pre-training a
model on a large corpus and fine-tuning it on the
downstream tasks. Pre-training multilingual lan-
guage models (Conneau and Lample, 2019; Con-

1The code will be at https://aka.ms/xlm-t.

Encoder

Decoder 

Off-the-shelf
Pretrained

Cross-lingual
Encoder

Multilingual NMT

Initialize
Fine-tune Multilingual 

Parallel Data

Figure 1: Framework of XLM-T. We use off-the-shelf
pretrained cross-lingual encoders (such as XLM-R) to
initialize both the encoder and decoder of the multilin-
gual NMT model. Then we fine-tune the model on mul-
tilingual parallel data.

neau et al., 2020; Chi et al., 2020a,b; Xue et al.,
2020) obtains significant performance gains on a
wide range of cross-lingual tasks, which is natu-
rally applicable to multilingual machine transla-
tion where the representations are shared among
different languages. Moreover, pre-training has
great potential in efficiently scaling up multilin-
gual NMT, while existing methods, such as back-
translation (Sennrich et al., 2016), are expensive in
the multilingual setting.

Most existing work (Conneau and Lample, 2019;
Song et al., 2019; Lewis et al., 2020) on leveraging
pretrained models for machine translation mainly
lies in the bilingual setting. How to effectively
and efficiently use these existing pretrained mod-
els for multilingual machine translation is not fully
explored. Liu et al. (2020) introduce a sequence-
to-sequence denoising auto-encoder (mBART) pre-
trained on large-scale monolingual corpora in many
languages. Lin et al. (2020) propose to pretrain
the multilingual machine translation models with
a code-switching objective function. However,
this model requires a large-scale parallel data for
pre-training, which hinders its application to low-
resource and zero-resource languages.

In this work, we present a simple and effective
method XLM-T that initializes multilingual ma-

ar
X

iv
:2

01
2.

15
54

7v
1 

 [c
s.C

L]
  3

1 
D

ec
 2

02
0

XLM-T: Scaling up Multilingual Machine Translation with Pretrained Cross-lingual Transformer Encoders  [Ma et al, 2020]



XLM-T: Scaling up Multilingual Machine Translation with Pretrained Cross-lingual 
Transformer Encoders

34

X ! En Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Train on Original Parallel Data (Bitext)

Bilingual NMT 36.2 28.5 40.2 19.2 17.5 19.7 29.8 14.1 15.1 9.3 23.0

Many-to-One 34.8 29.0 40.1 21.2 20.4 26.2 34.8 22.8 23.8 19.2 27.2
XLM-T 35.9 30.5 41.6 22.5 21.4 28.4 36.6 24.6 25.6 20.4 28.8

Many-to-Many 35.9 29.2 40.0 21.1 20.4 26.3 35.5 23.6 24.3 20.6 27.7
XLM-T 35.5 30.0 40.8 22.1 21.5 27.8 36.5 25.3 25.0 20.6 28.5

Train on Original Parallel Data and Back-Translation Data (Bitext+BT)

(Wang et al., 2020) 35.3 31.9 45.4 23.8 22.4 30.5 39.1 28.7 27.6 23.5 30.8
Many-to-One 35.9 32.6 44.1 24.9 23.1 31.5 39.7 28.2 27.8 23.1 31.1
XLM-T 36.0 33.1 44.8 25.4 23.9 32.7 39.8 30.1 28.8 23.6 31.8

(Wang et al., 2020) 35.3 31.2 43.7 23.1 21.5 29.5 38.1 27.5 26.2 23.4 30.0
Many-to-Many 35.7 31.9 43.7 24.2 23.2 30.4 39.1 28.3 27.4 23.8 30.8
XLM-T 36.1 32.6 44.3 25.4 23.8 32.0 40.3 29.5 28.7 24.2 31.7

Table 1: X ! En test BLEU for bilingual, many-to-one, and many-to-many models on WMT-10. On the top are
the models trained with original parallel data, while the bottom are combined with back-translation. The languages
are ordered from high-resource (left) to low-resource (right).

Different from WMT-10, massively multilingual
NMT suffers from weak capacity (Zhang et al.,
2020). Therefore, for the baseline of the OPUS-
100 dataset, we adopt the same architecture and
vocabulary as XLM-T but randomly initializing the
parameters so that the numbers of parameters are
the same. We tie the weights of encoder embed-
dings, decoder embeddings, and output layers in
all experiments.

3.3 Training and Evaluation

We train all models with Adam Optimizer (Kingma
and Ba, 2015) with �1 = 0.9 and �2 = 0.98.
The learning rate is among {3e-4, 5e-4} with a
warming-up step of 4,000. The models are trained
with the label smoothing cross-entropy, and the
smoothing ratio is 0.1. We set the dropout of atten-
tion layers as 0.0, while the rest of the dropout rate
is 0.1. We limit the source length and the target
length to be 256. For the WMT-10 dataset, the
batch size is 4,096 and we accumulate the gradi-
ents by 16 batches. For the OPUS-100 dataset, we
set the batch size as 2,048 and the gradients are
updated every 32 batches. All experiments on the
WMT-10 dataset are conducted on 8 V100 GPUs,
while the experiments on OPUS-100 are on a DGX-
2 machine with 16 V100 GPUs.

During testing, we use the beam search algo-
rithm with a beam size of 5. We set the length

penalty as 1.0. The last 5 checkpoints are averaged
for evaluation. We report the case-sensitive detok-
enized BLEU using sacreBLEU6 (Post, 2018).

4 Results

4.1 WMT-10
We study the performance of XLM-T in three mul-
tilingual translation scenarios, including many-to-
English (X ! En), English-to-many (En ! X), and
many-to-many (X ! Y). For many-to-many, we
use a combination of English-to-many and many-to-
English as the training data. We compare XLM-T
with both the bilingual NMT and the multilingual
NMT models to verify the effectiveness.

Table 1 reports the results on the X ! En test
sets. Compared with the bilingual baseline, the mul-
tilingual models achieve much better performance
on the low-resource languages and are worse on
the high-resource languages. In general, the mul-
tilingual baseline outperforms the bilingual base-
lines by an average of +4.2 points. In the many-
to-English scenario, XLM-T achieves significant
improvements over the multilingual baseline across
all 10 languages. The average gain is +1.6 points.
In the many-to-many scenario, the gain becomes
narrow, but still reaches +0.8 points over the multi-
lingual baseline. We further combine the parallel

6BLEU+case.mixed+lang.{src}-
{tgt}+numrefs.1+smooth.exp+tok.13a+version.1.4.14

• The multilingual models achieve much better performance on the low-resource languages and 
are worse on the high-resource languages


• XLM-T achieves significant improvements over the multilingual baseline across all 10 languages

• In the back-translation setting, XLM-T can further improve this strong baseline
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X ! En Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Train on Original Parallel Data (Bitext)

Bilingual NMT 36.2 28.5 40.2 19.2 17.5 19.7 29.8 14.1 15.1 9.3 23.0

Many-to-One 34.8 29.0 40.1 21.2 20.4 26.2 34.8 22.8 23.8 19.2 27.2
XLM-T 35.9 30.5 41.6 22.5 21.4 28.4 36.6 24.6 25.6 20.4 28.8

Many-to-Many 35.9 29.2 40.0 21.1 20.4 26.3 35.5 23.6 24.3 20.6 27.7
XLM-T 35.5 30.0 40.8 22.1 21.5 27.8 36.5 25.3 25.0 20.6 28.5

Train on Original Parallel Data and Back-Translation Data (Bitext+BT)

(Wang et al., 2020) 35.3 31.9 45.4 23.8 22.4 30.5 39.1 28.7 27.6 23.5 30.8
Many-to-One 35.9 32.6 44.1 24.9 23.1 31.5 39.7 28.2 27.8 23.1 31.1
XLM-T 36.0 33.1 44.8 25.4 23.9 32.7 39.8 30.1 28.8 23.6 31.8

(Wang et al., 2020) 35.3 31.2 43.7 23.1 21.5 29.5 38.1 27.5 26.2 23.4 30.0
Many-to-Many 35.7 31.9 43.7 24.2 23.2 30.4 39.1 28.3 27.4 23.8 30.8
XLM-T 36.1 32.6 44.3 25.4 23.8 32.0 40.3 29.5 28.7 24.2 31.7

Table 1: X ! En test BLEU for bilingual, many-to-one, and many-to-many models on WMT-10. On the top are
the models trained with original parallel data, while the bottom are combined with back-translation. The languages
are ordered from high-resource (left) to low-resource (right).

Different from WMT-10, massively multilingual
NMT suffers from weak capacity (Zhang et al.,
2020). Therefore, for the baseline of the OPUS-
100 dataset, we adopt the same architecture and
vocabulary as XLM-T but randomly initializing the
parameters so that the numbers of parameters are
the same. We tie the weights of encoder embed-
dings, decoder embeddings, and output layers in
all experiments.

3.3 Training and Evaluation

We train all models with Adam Optimizer (Kingma
and Ba, 2015) with �1 = 0.9 and �2 = 0.98.
The learning rate is among {3e-4, 5e-4} with a
warming-up step of 4,000. The models are trained
with the label smoothing cross-entropy, and the
smoothing ratio is 0.1. We set the dropout of atten-
tion layers as 0.0, while the rest of the dropout rate
is 0.1. We limit the source length and the target
length to be 256. For the WMT-10 dataset, the
batch size is 4,096 and we accumulate the gradi-
ents by 16 batches. For the OPUS-100 dataset, we
set the batch size as 2,048 and the gradients are
updated every 32 batches. All experiments on the
WMT-10 dataset are conducted on 8 V100 GPUs,
while the experiments on OPUS-100 are on a DGX-
2 machine with 16 V100 GPUs.

During testing, we use the beam search algo-
rithm with a beam size of 5. We set the length

penalty as 1.0. The last 5 checkpoints are averaged
for evaluation. We report the case-sensitive detok-
enized BLEU using sacreBLEU6 (Post, 2018).

4 Results

4.1 WMT-10
We study the performance of XLM-T in three mul-
tilingual translation scenarios, including many-to-
English (X ! En), English-to-many (En ! X), and
many-to-many (X ! Y). For many-to-many, we
use a combination of English-to-many and many-to-
English as the training data. We compare XLM-T
with both the bilingual NMT and the multilingual
NMT models to verify the effectiveness.

Table 1 reports the results on the X ! En test
sets. Compared with the bilingual baseline, the mul-
tilingual models achieve much better performance
on the low-resource languages and are worse on
the high-resource languages. In general, the mul-
tilingual baseline outperforms the bilingual base-
lines by an average of +4.2 points. In the many-
to-English scenario, XLM-T achieves significant
improvements over the multilingual baseline across
all 10 languages. The average gain is +1.6 points.
In the many-to-many scenario, the gain becomes
narrow, but still reaches +0.8 points over the multi-
lingual baseline. We further combine the parallel

6BLEU+case.mixed+lang.{src}-
{tgt}+numrefs.1+smooth.exp+tok.13a+version.1.4.14

• The multilingual models achieve much better performance on the low-resource languages and 
are worse on the high-resource languages


• XLM-T achieves significant improvements over the multilingual baseline across all 10 languages

• In the back-translation setting, XLM-T can further improve this strong baseline
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• Generally, the improvements are smaller than X → En

• The multilingual part of En → X is at the decoder side, which XLM-R is not 

an expert in. 


•

En ! X Fr Cs De Fi Lv Et Ro Hi Tr Gu Avg

Train on Original Parallel Data (Bitext)

Bilingual NMT 36.3 22.3 40.2 15.2 16.5 15.0 23.0 12.2 13.3 7.9 20.2

One-to-Many 34.2 20.9 40.0 15.0 18.1 20.9 26.0 14.5 17.3 13.2 22.0
XLM-T 34.8 21.4 39.9 15.4 18.7 20.9 26.6 15.8 17.4 15.0 22.6

Many-to-Many 34.2 21.0 39.4 15.2 18.6 20.4 26.1 15.1 17.2 13.1 22.0
XLM-T 34.2 21.4 39.7 15.3 18.9 20.6 26.5 15.6 17.5 14.5 22.4

Train on Original Parallel Data and Back-Translation Data (Bitext+BT)

(Wang et al., 2020) 36.1 23.6 42.0 17.7 22.4 24.0 29.8 19.8 19.4 17.8 25.3
One-to-Many 36.8 23.6 42.9 18.3 23.3 24.2 29.5 20.2 19.4 13.2 25.1
XLM-T 37.3 24.2 43.6 18.1 23.7 24.2 29.7 20.1 20.2 13.7 25.5

(Wang et al., 2020) 35.8 22.4 41.2 16.9 21.7 23.2 29.7 19.2 18.7 16.0 24.5
Many-to-Many 35.9 22.9 42.2 17.5 22.5 23.4 28.9 19.8 19.1 14.5 24.7
XLM-T 36.6 23.9 42.4 18.4 22.9 24.2 29.3 20.1 19.8 12.8 25.0

Table 2: En ! X test BLEU for bilingual, many-to-one, and many-to-many models on WMT-10. On the top are
the models trained with original parallel data, while the bottom are combined with back-translation. The languages
are ordered from high-resource (left) to low-resource (right).

Models X ! En En ! X

High Med Low Avg WR High Med Low Avg WR

Best System from (Zhang et al., 2020) 30.3 32.6 31.9 31.4 - 23.7 25.6 22.2 24.0 -

Many-to-Many 31.5 35.1 36.0 33.6 ref 25.6 30.5 30.5 28.2 ref
XLM-T 32.4 35.9 36.9 34.5 89.4 26.1 30.9 31.0 28.6 75.5

Table 3: X ! En and En ! X test BLEU for high/medium/low resource language pairs in many-to-many setting
on OPUS-100 test sets. The BLEU scores are average across all language pairs in the respective groups. “WR”:
win ratio (%) compared to ref.

data with back-translation. Back-translation results
in a large gain of +3.9 BLEU score over the base-
line. Therefore, back-translation is a strong base-
line for multilingual NMT. In the back-translation
setting, XLM-T can further improve this strong
baseline by a significant gain of +0.7 points, show-
ing the effectiveness of XLM-T. As for the many-
to-many setting, the improvement is even larger,
reaching a difference of +0.9 points. We compare
XLM-T with Wang et al. (2020)’s method. Be-
sides back-translation, they use the monolingual
data (i.e. the target side of back-translation data)
with two tasks of Mask Language Model (MLM)
and Denoising AutoEncoder (DAE). It shows that
XLM-T can outperform this method in both the
many-to-one and many-to-many settings.

Table 2 summarizes the results on the En ! X
test sets. Similar to the results of X ! En, the
multilingual NMT improves the average BLEU
score of the bilingual baseline, while XLM-T beats

the multilingual baseline by +0.6 points. As for
the many-to-many and back-translation scenarios,
XLM-T yields the increments of +0.4 points, +0.4
points, and +0.3 points, respectively. Compared
with Wang et al. (2020)’s method, XLM-T has sim-
ilar performance in the one-to-many setting, and a
slightly improvement of +0.5 BLEU in the many-
to-many scenario. The performance of XLM-T in
Gu is worse than that of Wang et al. (2020). We
conjecture that this is related to the implementation
details of data sampling. Generally, the improve-
ments are smaller than X ! En. We believe it is
because the multilingual part of En ! X is at the
decoder side, which XLM-R is not an expert in.
How to improve En ! X with pretrained models
is a promising direction to explore in the future.

4.2 OPUS-100
To further verify the effectiveness of XLM-T on
massively multilingual machine translation, we

XLM-T: Scaling up Multilingual Machine Translation with Pretrained Cross-lingual Transformer Encoders  [Ma et al]



• Multilingual fused pre-training

– Cross-lingual Language Model Pre-training [NeurIPS, 2019] 

– Alternating Language Modeling Pre-training [AAAI, 2020]

– XLM-T: Cross-lingual Transformer Encoders 


• Multilingual sequence to sequence pre-training

– mBART [TACL, 2020]

– CSP [EMNLP, 2020]

– mRASP & mRASP2 [EMNLP, 2020] [ACL, 2021]


– LaSS: Learning language-specific sub-network via pre-training & 
fine-tuning [ACL, 2021]

PART 3: Multilingual  Pre-training for NMT
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Where did __ from ? </s> Who __ I __ </s> <En> <En> Who am I ? </s> Where did I come from ? </s> 

Who am I ? </s> Where did I come from ? </s> <En> 

Who am I ? </s> <En> 

Transformer Encoder Transformer Decoder

ᐺ�΅�抑�Ҙ </s> <Ja>

<Ja> ᐺ�΅�抑�Ҙ </s> 

Transformer Encoder Transformer Decoder

 BB�ก෭�̶ </s> ͳ΢�BB��V!�<Ja> <Ja> ͳ΢�ͮΙ�͘ ̵��V!�΀͵�ก෭�̶ </s> 

ͳ΢�ͮΙ�͘ ̵��V!�΀͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

Multilingual Denoising Pre-Training  (mBART) Fine-tuning on Machine Translation

ͳ΢�ͮΙ�͘ ̵��V!�΀͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

:HOO�WKHQ�����V! See you tomorrow .</s> <En>

<En> :HOO�WKHQ�����V! See you tomorrow .</s> 

Doc-MT

Sent-MT

Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks
(right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id
token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Noise function Following Lewis et al. (2019),
we use two types of noise in g. We first remove
spans of text and replace them with a mask to-
ken. We mask 35% of the words in each instance
by random sampling a span length according to a
Poisson distribution (� = 3.5). We also permute
the order of sentences within each instance. The
decoder input is the original text with one posi-
tion offset. A language id symbol <LID> is used
as the initial token to predict the sentence. It is also
possible to use other noise types, such as those in
Lample et al. (2018c), but we leave the exploration
of the optimal noising strategy to future work.

Instance format For each instance of a batch,
we sample a language id symbol <LID>, and
we pack as many consecutive sentences as pos-
sible sampled from the corresponding corpus of
<LID>, until either it hits the document boundary
or reaches the 512 max token length. Sentences
in the instance are separated by the end of sen-
tence (</S>) token. Then, we append the selected
<LID> token to represent the end of this instance.
Pre-training at “multi-sentence” level enables us to
work on both sentence and document translation.

Optimization Our full model (including 25 lan-
guages) is trained on 256 Nvidia V100 GPUs
(32GB) for 500K steps. The total batch size
is around 128K tokens per GPU, matching
BART (Lewis et al., 2019) configuration. We use
the Adam optimizer (✏ = 1e�6, �2 = 0.98) and
linear learning rate decay scheduling. The total
training time was approximately 2.5 weeks. We
started the training with dropout 0.1 and reduced it
to 0.05 at 250K steps and 0 at 400K steps. All ex-
periments are done with Fairseq (Ott et al., 2019).

2.3 Pre-trained Models
To better measure the effects of different levels
of multilinguality during pre-training, we built a
range of models as follows:

• mBART25 We pre-train a model on all 25 lan-
guages, using the setting described in §2.2.

• mBART06 To explore the effect of pre-training
on related languages, we pretrain a model on a
subset of six European languages: Ro, It, Cs, Fr,
Es and En. For a fair comparison, we use ⇠ 1/4
of the mBART25 batch size, which allows our
model to have the same number of updates per
language during pre-training.

• mBART02 We pre-train bilingual models, us-
ing English and one other language for four
language pairs: En-De, En-Ro, En-It. We use a
batch size of ⇠ 1/12 of that in the mBART25.

• BART-En/Ro To help establish baseline per-
formance levels, we also train monolingual
BART models on the same En and Ro corpus
only.

• Random As additional baselines, we will also
include a comparison with a model randomly
initialized without pre-training for each trans-
lation task. Since the sizes of different down-
stream datasets vary, we always grid-search the
hyper-parameters (architecture, dropout, etc.) to
find the best non-pretrained configuration.

All models use the same vocabulary (§2.1). Not
all tokens will frequently occur in all pre-training
corpora, but later experiments show that this large
vocabulary can improve generalization in multilin-
gual settings even for unseen languages.

• Multilingual denoising pre-training (25 languages)

– Sentence permutation 

–Word-span masking


• Fine-tuning on MT with special language id
Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 



• Data: CC25 corpus

– CC25 includes 25 languages from 

different families and with varied amounts 
of text from Common Crawl (CC)


– Rebalanced the corpus by up/down-
sampling text




– Sentence Piece which includes 25,000 

subwords

– Noisy function follows BART

We also show that mBART enables new types
of transfer across language pairs. For example,
fine-tuning on bi-text in one language pair (e.g.,
Korean-English) creates a model that can trans-
late from all other languages in the monolingual
pre-training set (e.g., Italian-English), with no fur-
ther training. We also show that languages not
in pre-training corpora can benefit from mBART,
strongly suggesting that the initialization is at least
partially language universal. Finally, we present a
detailed analysis of which factors contribute the
most to effective pre-training, including the num-
ber of languages and their overall similarity.

2 Multilingual Denoising Pre-training

We use a large-scale common crawl (CC) corpus
(§2.1) to pre-train BART models (§2.2). Our ex-
periments in the later sections involve finetuning a
range of models pre-trained on different subsets of
the CC languages §2.3).

2.1 Data: CC25 corpus
Datasets We pre-train on a subset of 25 lan-
guages – CC25 – extracted from the Common
Crawl (CC) (Wenzek et al., 2019; Conneau et al.,
2019)1. CC25 includes languages from different
families and with varied amounts of text (Table 1).
Following Lample and Conneau (2019), we re-
balanced the corpus by up/down-sampling text
from each language i with a ratio �i:

�i =
1

pi
· p↵iP

i p
↵
i

, (1)

where pi is the percentage of each language in CC-
25. We use the smoothing parameter ↵ = 0.7.

Pre-processing We tokenize with a sentence-
piece model (SPM, Kudo and Richardson, 2018)
learned on the full CC data that includes 250, 000
subword tokens. While not all of these languages
are used for pre-training, this tokenization sup-
ports fine-tuning on additional languages. We do
not apply additional preprocessing, such as true-
casing or normalizing punctuation/characters.

2.2 Model: mBART
Our models follow the BART (Lewis et al., 2019)
sequence-to-sequence pre-training scheme, as re-
viewed in this section. While BART was only pre-
trained for English, we systematically study the ef-
fects of pre-training on different sets of languages.

1https://commoncrawl.org

Code Language Tokens/M Size/GB

En English 55608 300.8
Ru Russian 23408 278.0
Vi Vietnamese 24757 137.3
Ja Japanese 530 (*) 69.3
De German 10297 66.6
Ro Romanian 10354 61.4
Fr French 9780 56.8
Fi Finnish 6730 54.3
Ko Korean 5644 54.2
Es Spanish 9374 53.3
Zh Chinese (Sim) 259 (*) 46.9
It Italian 4983 30.2
Nl Dutch 5025 29.3
Ar Arabic 2869 28.0
Tr Turkish 2736 20.9
Hi Hindi 1715 20.2
Cs Czech 2498 16.3
Lt Lithuanian 1835 13.7
Lv Latvian 1198 8.8
Kk Kazakh 476 6.4
Et Estonian 843 6.1
Ne Nepali 237 3.8
Si Sinhala 243 3.6
Gu Gujarati 140 1.9
My Burmese 56 1.6

Table 1: Languages and Statistics of the CC25 Cor-
pus. A list of 25 languages ranked with monolingual
corpus size. Throughout this paper, we replace the lan-
guage names with their ISO codes for simplicity. (*)
Chinese and Japanese corpus are not segmented, so the
tokens counts here are sentences counts

Architecture We use a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2017), with 12 layers of encoder and 12 layers
of decoder with model dimension of 1024 on 16
heads (⇠ 680M parameters). We include an addi-
tional layer-normalization layer on top of both the
encoder and decoder, which we found stabilized
training at FP16 precision.

Learning Our training data covers K languages:
D = {D1, ...,DK} where each Di is a collection
of monolingual documents in language i. We (1)
assume access to a noising function g, defined be-
low, that corrupts text, and (2) train the model to
predict the original text X given g(X). More for-
mally, we aim to maximize L✓:

L✓ =
X

Di2D

X

X2Di

logP (X|g(X); ✓) , (2)

where X is an instance in language i and the dis-
tribution P is defined by the Seq2Seq model.

Dataset
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We also show that mBART enables new types
of transfer across language pairs. For example,
fine-tuning on bi-text in one language pair (e.g.,
Korean-English) creates a model that can trans-
late from all other languages in the monolingual
pre-training set (e.g., Italian-English), with no fur-
ther training. We also show that languages not
in pre-training corpora can benefit from mBART,
strongly suggesting that the initialization is at least
partially language universal. Finally, we present a
detailed analysis of which factors contribute the
most to effective pre-training, including the num-
ber of languages and their overall similarity.

2 Multilingual Denoising Pre-training

We use a large-scale common crawl (CC) corpus
(§2.1) to pre-train BART models (§2.2). Our ex-
periments in the later sections involve finetuning a
range of models pre-trained on different subsets of
the CC languages §2.3).

2.1 Data: CC25 corpus
Datasets We pre-train on a subset of 25 lan-
guages – CC25 – extracted from the Common
Crawl (CC) (Wenzek et al., 2019; Conneau et al.,
2019)1. CC25 includes languages from different
families and with varied amounts of text (Table 1).
Following Lample and Conneau (2019), we re-
balanced the corpus by up/down-sampling text
from each language i with a ratio �i:
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, (1)

where pi is the percentage of each language in CC-
25. We use the smoothing parameter ↵ = 0.7.

Pre-processing We tokenize with a sentence-
piece model (SPM, Kudo and Richardson, 2018)
learned on the full CC data that includes 250, 000
subword tokens. While not all of these languages
are used for pre-training, this tokenization sup-
ports fine-tuning on additional languages. We do
not apply additional preprocessing, such as true-
casing or normalizing punctuation/characters.

2.2 Model: mBART
Our models follow the BART (Lewis et al., 2019)
sequence-to-sequence pre-training scheme, as re-
viewed in this section. While BART was only pre-
trained for English, we systematically study the ef-
fects of pre-training on different sets of languages.

1https://commoncrawl.org

Code Language Tokens/M Size/GB

En English 55608 300.8
Ru Russian 23408 278.0
Vi Vietnamese 24757 137.3
Ja Japanese 530 (*) 69.3
De German 10297 66.6
Ro Romanian 10354 61.4
Fr French 9780 56.8
Fi Finnish 6730 54.3
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Zh Chinese (Sim) 259 (*) 46.9
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Ar Arabic 2869 28.0
Tr Turkish 2736 20.9
Hi Hindi 1715 20.2
Cs Czech 2498 16.3
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Lv Latvian 1198 8.8
Kk Kazakh 476 6.4
Et Estonian 843 6.1
Ne Nepali 237 3.8
Si Sinhala 243 3.6
Gu Gujarati 140 1.9
My Burmese 56 1.6

Table 1: Languages and Statistics of the CC25 Cor-
pus. A list of 25 languages ranked with monolingual
corpus size. Throughout this paper, we replace the lan-
guage names with their ISO codes for simplicity. (*)
Chinese and Japanese corpus are not segmented, so the
tokens counts here are sentences counts

Architecture We use a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2017), with 12 layers of encoder and 12 layers
of decoder with model dimension of 1024 on 16
heads (⇠ 680M parameters). We include an addi-
tional layer-normalization layer on top of both the
encoder and decoder, which we found stabilized
training at FP16 precision.

Learning Our training data covers K languages:
D = {D1, ...,DK} where each Di is a collection
of monolingual documents in language i. We (1)
assume access to a noising function g, defined be-
low, that corrupts text, and (2) train the model to
predict the original text X given g(X). More for-
mally, we aim to maximize L✓:

L✓ =
X

Di2D

X

X2Di

logP (X|g(X); ✓) , (2)

where X is an instance in language i and the dis-
tribution P is defined by the Seq2Seq model.
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Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko
Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K
Direction  !  !  !  !  !  !

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3
mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K
Direction  !  !  !  !  !  !

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction  !  !  !  !  !  !

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-
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Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko
Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K
Direction  !  !  !  !  !  !

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3
mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K
Direction  !  !  !  !  !  !

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction  !  !  !  !  !  !

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-
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Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko
Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K
Direction  !  !  !  !  !  !

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3
mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K
Direction  !  !  !  !  !  !

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction  !  !  !  !  !  !

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-
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• Test on low resource FLoRes dataset [Guzmán et al., 2019]

• Use the same monolingual data to generate BT data

• Initializing the model with mBART25 pre-trained parameters 

improves BLEU scores at each iteration of back translation, resulting 
in new state-of-the-art results in all four translation directions
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Figure 2: Pre-training + Back Translation on FLoRes with two iterations of BT.

Pre-training Fine-tuning
Model Data En!Ro Ro!En +BT

Random None 34.3 34.0 36.8

XLM (2019) En Ro - 35.6 38.5
MASS (2019) En Ro - - 39.1
BART (2019) En - - 38.0
XLM-R (2019) CC100 35.6 35.8 -

BART-En En 36.0 35.8 37.4
BART-Ro Ro 37.6 36.8 38.1
mBART02 En Ro 38.5 38.5 39.9
mBART25 CC25 37.7 37.8 38.8

Table 4: Comparison with Other Pre-training Ap-
proaches on WMT16 Ro-En.

amples for tuning. In these settings, unsupervised
translation is more appropriate, see §5.2.

For high resource cases (Table 3), we do not
observe consistent gains, and pre-training slightly
hurts performance when >25M parallel sentence
are available. When a significant amount of bi-text
data is given, we suspect that supervised training
washes out the pre-trained weights completely.

+ Back Translation Back-translation (BT, Sen-
nrich et al., 2016b) is a standard approach to aug-
ment bi-text with target side monolingual data. We
combine our pre-training with BT and test it on
low resource language pairs – En-Si and En-Ne –
using the FLoRes dataset (Guzmán et al., 2019).
For a fair comparison, we use the same mono-
lingual data as (Guzmán et al., 2019) to gener-
ate BT data. Figure 2 shows that initializing the
model with our mBART25 pre-trained parameters
improves BLEU scores at each iteration of back
translation, resulting in new state-of-the-art results
in all four translation directions.

v.s. Other Pre-training Approaches We also
compare our pre-trained models with recent self-
supervised pre-training methods, as shown in Ta-
ble 4. We consider En-Ro translation, the only
pair with established results. Our mBART model

outperforms all the other pre-trained models, both
with and without BT augmentation. We also show
comparisons with the conventional BART model
trained on the same En and Ro data only. Both
have improvements over baselines, while worse
than mBART results, indicating pre-training in a
multilingual setting is essential. Moreover, com-
bining BT leads to additional gains, resulting in a
new state-of-the-art for Ro-En translation.

3.3 Analysis
We also present additional analysis, to better quan-
tify when our pre-training helps.

How many languages should you pre-train on?
We investigate when it is helpful for pre-training
to include languages other than the targeted lan-
guage pair that will be used during fine tuning. Ta-
ble 5 shows performance on four X-En pairs. Pre-
training on more languages helps most when the
target language monolingual data is limited (e.g.
En-My, the size of My is around 0.5% of En).

In contrast, when monolingual data is plenti-
ful (De, Ro), pre-training on multiple languages
slightly hurts the final results (<1 BLEU). In these
cases, additional languages may reduce the ca-
pacity available for each test language. Addition-
ally, the fact that mBART06 performs similar to
mBART02 on Ro-En suggests that pre-training
with similar languages is particularly helpful.

How many pre-training steps are needed? We
plot Ro-En BLEU score v.s. Pre-training steps in
Figure 3, where we take the saved checkpoints (ev-
ery 25K steps) and apply the same fine-tuning pro-
cess described in §3.1. Without any pre-training,
our model overfits and performs much worse than
the baseline. However, after just 25K steps (5% of
training), both models outperform the best base-
line. The models keep improving by over 3 BLEU
for the rest of steps and have not fully con-
verged after 500K steps. mBART25 is consistently



• BART model trained on the same En and Ro data only. Both have improvements over 
baselines, while worse than mBART results, indicating pre-training in a multilingual setting is 
essential.


• Combining BT leads to additional gains, resulting in a new state-of-the-art for Ro-En translation

• mBART02 is better than mBART25. The more seems not the better? 

Is pre-training on multilingual better than on single language?
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Figure 2: Pre-training + Back Translation on FLoRes with two iterations of BT.

Pre-training Fine-tuning
Model Data En!Ro Ro!En +BT

Random None 34.3 34.0 36.8

XLM (2019) En Ro - 35.6 38.5
MASS (2019) En Ro - - 39.1
BART (2019) En - - 38.0
XLM-R (2019) CC100 35.6 35.8 -

BART-En En 36.0 35.8 37.4
BART-Ro Ro 37.6 36.8 38.1
mBART02 En Ro 38.5 38.5 39.9
mBART25 CC25 37.7 37.8 38.8

Table 4: Comparison with Other Pre-training Ap-
proaches on WMT16 Ro-En.

amples for tuning. In these settings, unsupervised
translation is more appropriate, see §5.2.

For high resource cases (Table 3), we do not
observe consistent gains, and pre-training slightly
hurts performance when >25M parallel sentence
are available. When a significant amount of bi-text
data is given, we suspect that supervised training
washes out the pre-trained weights completely.

+ Back Translation Back-translation (BT, Sen-
nrich et al., 2016b) is a standard approach to aug-
ment bi-text with target side monolingual data. We
combine our pre-training with BT and test it on
low resource language pairs – En-Si and En-Ne –
using the FLoRes dataset (Guzmán et al., 2019).
For a fair comparison, we use the same mono-
lingual data as (Guzmán et al., 2019) to gener-
ate BT data. Figure 2 shows that initializing the
model with our mBART25 pre-trained parameters
improves BLEU scores at each iteration of back
translation, resulting in new state-of-the-art results
in all four translation directions.

v.s. Other Pre-training Approaches We also
compare our pre-trained models with recent self-
supervised pre-training methods, as shown in Ta-
ble 4. We consider En-Ro translation, the only
pair with established results. Our mBART model

outperforms all the other pre-trained models, both
with and without BT augmentation. We also show
comparisons with the conventional BART model
trained on the same En and Ro data only. Both
have improvements over baselines, while worse
than mBART results, indicating pre-training in a
multilingual setting is essential. Moreover, com-
bining BT leads to additional gains, resulting in a
new state-of-the-art for Ro-En translation.

3.3 Analysis
We also present additional analysis, to better quan-
tify when our pre-training helps.

How many languages should you pre-train on?
We investigate when it is helpful for pre-training
to include languages other than the targeted lan-
guage pair that will be used during fine tuning. Ta-
ble 5 shows performance on four X-En pairs. Pre-
training on more languages helps most when the
target language monolingual data is limited (e.g.
En-My, the size of My is around 0.5% of En).

In contrast, when monolingual data is plenti-
ful (De, Ro), pre-training on multiple languages
slightly hurts the final results (<1 BLEU). In these
cases, additional languages may reduce the ca-
pacity available for each test language. Addition-
ally, the fact that mBART06 performs similar to
mBART02 on Ro-En suggests that pre-training
with similar languages is particularly helpful.

How many pre-training steps are needed? We
plot Ro-En BLEU score v.s. Pre-training steps in
Figure 3, where we take the saved checkpoints (ev-
ery 25K steps) and apply the same fine-tuning pro-
cess described in §3.1. Without any pre-training,
our model overfits and performs much worse than
the baseline. However, after just 25K steps (5% of
training), both models outperform the best base-
line. The models keep improving by over 3 BLEU
for the rest of steps and have not fully con-
verged after 500K steps. mBART25 is consistently
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• Pretraining on more languages helps most when the target 
language monolingual data is limited


• When monolingual data is plentiful (De, Ro), pre-training on 
multiple languages slightly hurts the final results (<1 BLEU)
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Languages De Ro It My En

Size/GB 66.6 61.4 30.2 1.6 300.8

mBART02 31.3 38.5 39.7 36.5
mBART06 - 38.5 39.3 -
mBART25 30.5 37.7 39.8 36.9

Table 5: Pretraining Languages on En-X translation.
The size refers to the size of monolingual data for X.
The size of En is shown as reference. All the pretrained
models were controlled to see the same number of En-
glish instances during training.

Models En-My Training Cost
 ! GPU hours

Random (2019) 23.3 34.9 5
+ BT 32.0 37.7 5 + 300 + 350

mBART02 29.1 37.8 300⇠3000 + 40
+ BT 34.9 39.2 -

Table 6: Comparison with Back-Translation on My-En
translation using same mono-lingual data. We also esti-
mate the computational costs for both pre-training and
back-translation based on Nvidia V100 GPUs.

slightly worse than mBART02.

How does the size of bitexts inference the gain
from pre-training? Tables 2 and 3 show that
pre-training consistently improves for low and
medium resource language pairs. To verify this
trend, we plot performance for differing sized sub-
sets of the En-De dataset. More precisely, we take
the full En-De corpus (28M pairs) and randomly
sample 10K, 50K, 100K, 500K, 1M, 5M, 10M
datasets. We compare performance without pre-
training to the mBART02 results, as shown in Fig-
ure 4. The pre-trained model is able to achieve
over 20 BLEU with only 10K training examples,
while the baseline system scores 0. Unsurpris-
ingly, increasing the size of bi-text corpus im-
proves both models. Our pre-trained model con-
sistently outperforms the baseline models, but the
gap reduces with increasing amounts of bi-text, es-
pecially after 10M sentence pairs. This result con-
firms our observation in §3.2 that our pre-training
does not help translation in high-resource pairs.

Is pre-training complementary to BT? Fig-
ure 2 presents that our pre-trained models can
be combined with iterative back-translation (BT)
on additional data, however, it is still not a fair
comparison. Table 6 shows the results when using

Figure 3: Fine-tuning curves for Ro-En along with
Pre-training steps. Both mBART25 and mBART02
outperform the best baseline system after 25K steps.

Figure 4: Fine-tuning curves for En-De along with
size of bitext. The x-axis is on a log scale.

same monolingual data where we use 79M En and
29M My sentences following Chen et al. (2019).

With the same amount of monolingual corpus,
mBART pre-training achieves the same perfor-
mance on En!My as BT, while still 3 BLEU
worse on My!En. We suspect BT benefits from
bigger monolingual data (En). Moreover, combin-
ing mBART02 model with BT, we see further
gains even with same monolingual data. Besides,
we also provide estimated training costs where BT
has a longer pipeline involving training a baseline
system (5h), translating monolingual data (300h)
and formal training (350h). Instead, most of train-
ing costs of mBART lies in the pre-training part
and can be easily adjusted to be more efficient.

3.4 Generalization to Languages NOT in
Pre-training

In this section, we show that mBART can im-
prove performance even with fine tuning for lan-
guages that did not appear in the pre-training cor-
pora, suggesting that the pre-training has language
universal aspects, especially within the parameters
learned at the Transformer layers.

30
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De Ro It My

mbart02 mbart06 mbart25
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• Without any pre-training, the model overfits and performs much worse than the baseline

• After just 25K steps (5% of training), both models outperform the best baseline. 

• The models keep improving by over 3 BLEU for the rest of steps and have not fully converged after 

500K steps.

• The more the better

Analysis: Pre-training steps matters
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Languages De Ro It My En

Size/GB 66.6 61.4 30.2 1.6 300.8

mBART02 31.3 38.5 39.7 36.5
mBART06 - 38.5 39.3 -
mBART25 30.5 37.7 39.8 36.9

Table 5: Pretraining Languages on En-X translation.
The size refers to the size of monolingual data for X.
The size of En is shown as reference. All the pretrained
models were controlled to see the same number of En-
glish instances during training.

Models En-My Training Cost
 ! GPU hours

Random (2019) 23.3 34.9 5
+ BT 32.0 37.7 5 + 300 + 350

mBART02 29.1 37.8 300⇠3000 + 40
+ BT 34.9 39.2 -

Table 6: Comparison with Back-Translation on My-En
translation using same mono-lingual data. We also esti-
mate the computational costs for both pre-training and
back-translation based on Nvidia V100 GPUs.

slightly worse than mBART02.

How does the size of bitexts inference the gain
from pre-training? Tables 2 and 3 show that
pre-training consistently improves for low and
medium resource language pairs. To verify this
trend, we plot performance for differing sized sub-
sets of the En-De dataset. More precisely, we take
the full En-De corpus (28M pairs) and randomly
sample 10K, 50K, 100K, 500K, 1M, 5M, 10M
datasets. We compare performance without pre-
training to the mBART02 results, as shown in Fig-
ure 4. The pre-trained model is able to achieve
over 20 BLEU with only 10K training examples,
while the baseline system scores 0. Unsurpris-
ingly, increasing the size of bi-text corpus im-
proves both models. Our pre-trained model con-
sistently outperforms the baseline models, but the
gap reduces with increasing amounts of bi-text, es-
pecially after 10M sentence pairs. This result con-
firms our observation in §3.2 that our pre-training
does not help translation in high-resource pairs.

Is pre-training complementary to BT? Fig-
ure 2 presents that our pre-trained models can
be combined with iterative back-translation (BT)
on additional data, however, it is still not a fair
comparison. Table 6 shows the results when using

Figure 3: Fine-tuning curves for Ro-En along with
Pre-training steps. Both mBART25 and mBART02
outperform the best baseline system after 25K steps.

Figure 4: Fine-tuning curves for En-De along with
size of bitext. The x-axis is on a log scale.

same monolingual data where we use 79M En and
29M My sentences following Chen et al. (2019).

With the same amount of monolingual corpus,
mBART pre-training achieves the same perfor-
mance on En!My as BT, while still 3 BLEU
worse on My!En. We suspect BT benefits from
bigger monolingual data (En). Moreover, combin-
ing mBART02 model with BT, we see further
gains even with same monolingual data. Besides,
we also provide estimated training costs where BT
has a longer pipeline involving training a baseline
system (5h), translating monolingual data (300h)
and formal training (350h). Instead, most of train-
ing costs of mBART lies in the pre-training part
and can be easily adjusted to be more efficient.

3.4 Generalization to Languages NOT in
Pre-training

In this section, we show that mBART can im-
prove performance even with fine tuning for lan-
guages that did not appear in the pre-training cor-
pora, suggesting that the pre-training has language
universal aspects, especially within the parameters
learned at the Transformer layers.

Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 



• The pre-trained model is able to achieve over 20 BLEU with only 10K training 
examples, while the baseline system scores 0. 


• Unsurprisingly,  mBART consistently outperforms the baseline models, but the gap 
reduces with increasing amounts of bi-text, especially after 10M sentence pairs

Analysis: Perform better on low resource

47

Languages De Ro It My En

Size/GB 66.6 61.4 30.2 1.6 300.8

mBART02 31.3 38.5 39.7 36.5
mBART06 - 38.5 39.3 -
mBART25 30.5 37.7 39.8 36.9

Table 5: Pretraining Languages on En-X translation.
The size refers to the size of monolingual data for X.
The size of En is shown as reference. All the pretrained
models were controlled to see the same number of En-
glish instances during training.

Models En-My Training Cost
 ! GPU hours

Random (2019) 23.3 34.9 5
+ BT 32.0 37.7 5 + 300 + 350

mBART02 29.1 37.8 300⇠3000 + 40
+ BT 34.9 39.2 -

Table 6: Comparison with Back-Translation on My-En
translation using same mono-lingual data. We also esti-
mate the computational costs for both pre-training and
back-translation based on Nvidia V100 GPUs.

slightly worse than mBART02.

How does the size of bitexts inference the gain
from pre-training? Tables 2 and 3 show that
pre-training consistently improves for low and
medium resource language pairs. To verify this
trend, we plot performance for differing sized sub-
sets of the En-De dataset. More precisely, we take
the full En-De corpus (28M pairs) and randomly
sample 10K, 50K, 100K, 500K, 1M, 5M, 10M
datasets. We compare performance without pre-
training to the mBART02 results, as shown in Fig-
ure 4. The pre-trained model is able to achieve
over 20 BLEU with only 10K training examples,
while the baseline system scores 0. Unsurpris-
ingly, increasing the size of bi-text corpus im-
proves both models. Our pre-trained model con-
sistently outperforms the baseline models, but the
gap reduces with increasing amounts of bi-text, es-
pecially after 10M sentence pairs. This result con-
firms our observation in §3.2 that our pre-training
does not help translation in high-resource pairs.

Is pre-training complementary to BT? Fig-
ure 2 presents that our pre-trained models can
be combined with iterative back-translation (BT)
on additional data, however, it is still not a fair
comparison. Table 6 shows the results when using

Figure 3: Fine-tuning curves for Ro-En along with
Pre-training steps. Both mBART25 and mBART02
outperform the best baseline system after 25K steps.

Figure 4: Fine-tuning curves for En-De along with
size of bitext. The x-axis is on a log scale.

same monolingual data where we use 79M En and
29M My sentences following Chen et al. (2019).

With the same amount of monolingual corpus,
mBART pre-training achieves the same perfor-
mance on En!My as BT, while still 3 BLEU
worse on My!En. We suspect BT benefits from
bigger monolingual data (En). Moreover, combin-
ing mBART02 model with BT, we see further
gains even with same monolingual data. Besides,
we also provide estimated training costs where BT
has a longer pipeline involving training a baseline
system (5h), translating monolingual data (300h)
and formal training (350h). Instead, most of train-
ing costs of mBART lies in the pre-training part
and can be easily adjusted to be more efficient.

3.4 Generalization to Languages NOT in
Pre-training

In this section, we show that mBART can im-
prove performance even with fine tuning for lan-
guages that did not appear in the pre-training cor-
pora, suggesting that the pre-training has language
universal aspects, especially within the parameters
learned at the Transformer layers.

Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 



• mBART can improve performance even with fine tuning for languages that did not 
appear in the pre-training corpora, 


• Pre-training has language universal aspects, especially within the parameters 
learned at the Transformer layers.


• The more pre-trained languages the better

Analysis: Generalization to unseen  languages
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Monolingual Nl-En En-Nl Ar-En En-Ar Nl-De De-Nl

Random None 34.6 (-8.7) 29.3 (-5.5) 27.5 (-10.1) 16.9 (-4.7) 21.3 (-6.4) 20.9 (-5.2)

mBART02 En Ro 41.4 (-2.9) 34.5 (-0.3) 34.9 (-2.7) 21.2 (-0.4) 26.1 (-1.6) 25.4 (-0.7)
mBART06 En Ro Cs It Fr Es 43.1 (-0.2) 34.6 (-0.2) 37.3 (-0.3) 21.1 (-0.5) 26.4 (-1.3) 25.3 (-0.8)
mBART25 All 43.3 34.8 37.6 21.6 27.7 26.1

Table 7: Generalization to Unseen Languages Language transfer results, fine-tuning on language-pairs without
pre-training on them. mBART25 uses all languages during pre-training, while other settings contain at least one
unseen language pair. For each model, we also show the gap to mBART25 results.

Experimental Settings We analyze the results
of three pairs: Nl-En, Ar-En and De-Nl using the
pre-trained mBART25, mBART06 and mBART02
(EnRo) models. During pre-training, mBART06
and EnRo Bilingual do not contain Arabic (Ar),
German (De) or Dutch (Nl) data, but all languages
are in mBART25. Both De and Nl are European
languages and are related to En, Ro and other the
languages in mBART06 pre-training data.

Results mBART25 uses all languages during
pre-training, but other settings contain at least one
unseen language. We find large gains from pre-
training on English-Romanian, even when trans-
lating a distantly related unseen language (Arabic)
and two unseen languages (German and Dutch).
The best results are achieved when pre-training in-
cludes both test languages, however pre-training
on other languages is surprisingly competitive.

Unseen Vocabularies Arabic is distantly related
to the languages in mBART02 and mBART06, and
its use of a disjoint character set means that it word
embeddings will be largely untrained. However,
we obtain similar improvements on Ar-En pairs to
those on Nl-En. This result suggests that the pre-
trained Transformer layers learn universal prop-
erties of language that generalize well even with
minimal lexical overlap.

Unseen Source or Target Languages Table 7
shows different performance when the unseen lan-
guages are on the source side, target side, or both
sides. If both sides are unseen, the performance
(in terms of difference from mBART25) is worse
than where at least one language is seen dur-
ing pre-training. Furthermore, although the En-X
pairs perform similarly, mBART06 outperforms
mBART02 by a margin on X-En pairs. Fine-tuning
unseen languages on source side is more difficult,
deserving more extensive future study.

Datasets # Docs # Insts # Sents

WMT19 En-De 77K 171K 3.7M
TED15 Zh-En 1.7K 6.5K 0.2M

Table 8: Statistics for the Document-level Corpus of
WMT19 En-De and TED15 Zh-En. # of instances is
the # of training examples in document model.

4 Document-level Machine Translation

We evaluate mBART on document-level machine
translation tasks, where the goal is to translate seg-
ments of text that contain more than one sentence
(up to an entire document). During pre-training,
we use document fragments of up to 512 tokens,
allowing the models to learn dependencies be-
tween sentences. We show that this pre-training
significantly improves document-level translation.

4.1 Experimental Settings

Datasets We evaluate performance on two com-
mon document-level MT datasets: WMT19 En-De
and TED15 Zh-En (statistics in Table 8). For En-
De, we use the document data from WMT19 to
train our model, without any additional sentence-
level data; Zh-En dataset is from the IWSLT 2014
and 2015 evaluation campaigns (Cettolo et al.,
2012, 2015). Following Miculicich et al. (2018),
we use 2010-2013 TED as the test set.

Pre-processing We use the same pre-processing
as that in pre-training. For each block, sentences
are separated by end of sentence symbols (</S>)
and the entire instance is ended with the specific
language id (<LID>). The numbers of segmented
instances are also shown in Table 8 where on av-
erage, every document is split into 2-4 instances.

Fine-tuning & Decoding We use the same fine-
tuning scheme as for sentence-level translation
(§3.1), without using any task-specific techniques
developed by previous work (Miculicich et al.,

Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 

Nl-De and Ar are not included in the pre-training corpus



• Following the same procedure with UNMT,  but initialize the translation model 
with the pre-trained mBART


• To avoid simply copying the source text, constrain mBART to only generating 
tokens in target language  


• Achieve very competitive results 

Unsupervised Machine Translation 
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UNMT with back translation

mBART

Generated En Text

Monolingual Ne Text

mBART

Decode

MLE lossInput

Input

mBART

Generated Ne Text

Monolingual En Text

mBART

Decode

MLE loss Input

Input

mBART

Parallel Hi Text

Parallel En Text

mBART

DecodeMLE loss

Input

Transfer 
(no train)

Ne Text

Input

Generated En Text

(a) (b)

Figure 5: Illustrated frameworks for unsupervised machine translation via (a) back-translation (b) language transfer
where Ne-En is used as an example. For both cases, we initialize from multilingual pre-training (e.g. mBART25).

language into the target language. This is a new
evaluation regime, where we will show that
mBART supports effective transfer, even if the
source language has no bi-text of any form.

In this section, we demonstrate the effectiveness
of multilingual pre-training in unsupervised ma-
chine translation via (1) back-translation ( §5.1)
and (3) language transfer (§5.2). An illustration of
both approaches are presented in Figure 5.

5.1 Unsupervised Machine Translation via
Back-Translation

Datasets We evaluate our pre-trained models on
both similar (En-De, En-Ro) and dissimilar pairs
(En-Ne, En-Si), which are determined by measur-
ing the subword units that are shared between the
source and target languages. We use the same test
sets as the supervised benchmarks §3.1, and di-
rectly use the pre-training data (CC25) for back-
translation to avoid introducing new information.

Learning Following the same procedure de-
scribed in Lample et al. (2018c); Lample and
Conneau (2019), we first initialize the transla-
tion model with the pre-trained weights, and then
learn to predict the monolingual sentences condi-
tioned on source sentences generated by on-the-
fly back-translation (BT). Lample and Conneau
(2019) only pre-train an encoder, so perform addi-
tional de-noising training to learn a seq2seq model
– a step which is unnecessary for mBART’s pre-
trained seq2seq model. However, we do constrain
mBART to only generating tokens in target lan-
guage 4 for the first 1000 steps of on-the-fly BT, to
avoid it simply copying the source text.

Results Table 10 shows the unsupervised trans-
lation results compared with non-pretrained mod-

4We mask out the output probability of predicting tokens
which appear less than 1% in the target monolingual corpus.

els, as well as models with existing pre-training
methods. Our models achieve large gains over
non-pretrained models for all directions, and out-
perform XLM significantly for dissimilar pairs
(En-Ne, En-Si) where the existing approaches
completely fail. For similar pairs, our model also
performs well against XLM and MASS, with the
best numbers for En-X pairs.

5.2 Unsupervised Machine Translation via
Language Transfer

The second case of unsupervised machine transla-
tion assumes the target language appears in a bi-
text corpus with some other source language.

Datasets We only consider X!En translation,
and choose the bitexts of 12 language pairs from
§3.1, covering Indic languages (Ne, Hi, Si, Gu),
European languages (Ro, It, Cs, Nl), East Asian
languages (Zh, Ja, Ko) and Arabic languages (Ar).

Results As illustrated in Figure 5 (b), we take
the pre-trained mBART25 model and finetune on
each language pair, and then directly apply them
to the rest of pairs, as seen in Table 11. We also
present the direct fine-tuning performance (§3) on
the diagonal, for reference. We can always ob-
tain reasonable transferring scores at all pairs over
different fine-tuned models except from Gu-En
where the supervised model completely fails (0.3
BLEU). In some cases, we can achieve similar
(Cs-En) or even much better (Ne-En, Gu-En) re-
sults compared to the supervised results.

As a comparison, we also apply the same proce-
dure on randomly initialized models without pre-
training, which always ends up with ⇡ 0 BLEU.
This indicates that multilingual pre-training is
essential and produces universal representations
across languages, so that once the model learns
to translate one language to En, it learns to trans-

Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 

Model
Similar Pairs Dissimilar Pairs

En-De En-Ro En-Ne En-Si
 !  !  !  !

Random 21.0 17.2 19.4 21.2 0.0 0.0 0.0 0.0
XLM (2019) 34.3 26.4 31.8 33.3 0.5 0.1 0.1 0.1
MASS (2019) 35.2 28.3 33.1 35.2 - - - -

mBART 34.0 29.8 30.5 35.0 10.0 4.4 8.2 3.9

Table 10: Unsupervised MT via Back-Translation. En-De, En-Ro are initialized by mBART02, while En-Ne,
En-Si are initialized by mBART25. Our models are trained on monolingual data used in pre-training.

Fine-tuning Languages
Zh Ja Ko Cs Ro Nl It Ar Hi Ne Si Gu

Domain News TED TED News News TED TED TED News Wiki Wiki Wiki
Te

st
in

g
La

ng
ua

ge
s

Zh 23.7 8.8 9.2 2.8 7.8 7.0 6.8 6.2 7.2 4.2 5.9 0.0
Ja 9.9 19.1 12.2 0.9 4.8 6.4 5.1 5.6 4.7 4.2 6.5 0.0
Ko 5.8 16.9 24.6 5.7 8.5 9.5 9.1 8.7 9.6 8.8 11.1 0.0
Cs 9.3 15.1 17.2 21.6 19.5 17.0 16.7 16.9 13.2 15.1 16.4 0.0
Ro 16.2 18.7 17.9 23.0 37.8 22.3 21.6 22.6 16.4 18.5 22.1 0.0
Nl 14.4 30.4 32.3 21.2 27.0 43.3 34.1 31.0 24.6 23.3 27.3 0.0
It 16.9 25.8 27.8 17.1 23.4 30.2 39.8 30.6 20.1 18.5 23.2 0.0
Ar 5.8 15.5 12.8 12.7 12.0 14.7 14.7 37.6 11.6 13.0 16.7 0.0
Hi 3.2 10.1 9.9 5.8 6.7 6.1 5.0 7.6 23.5 14.5 13.0 0.0
Ne 2.1 6.7 6.5 5.0 4.3 3.0 2.2 5.2 17.9 14.5 10.8 0.0
Si 5.0 5.7 3.8 3.8 1.3 0.9 0.5 3.5 8.1 8.9 13.7 0.0
Gu 8.2 8.5 4.7 5.4 3.5 2.1 0.0 6.2 13.8 13.5 12.8 0.3

Table 11: Unsupervised MT via Language Transfer on X-En translations. The model fine-tuned on one language
pair is directly tested on another. We use gray color to show the direct fine-tuning results, and lightgray color to
show language transfer within similar language groups. We bold the highest transferring score for each pair.

Pairs BT Transfer Combined

Ro!En 30.5 Cs!En 23.0 33.9
Ne!En 10.0 Hi!En 18.9 22.1
Zh!En 11.3 Ko!En 9.2 15.0
Nl!En 28.5 It!En 34.1 35.4

Table 12: Back-Translation v.s. Language Transfer
for Unsupervised MT. We present the best transfer-
ring scores together with the pairs transferred from.

late all languages with similar representations. We
also present three examples of language transfer-
ring between Zh, Ja and Ko in appendix B.

When is language transfer useful? Table 11
also shows mixed results at each pair. First, for
most pairs, language transfer works better when
fine-tuning is also conducted in the same language
family, especially between Indic languages (Hi,
Ne, Gu). However, significant vocabulary sharing
is not required for effective transfer. For instance,
Zh-En and It-En achieve the best transfer learning
results on Ko-En and Ar-En, respectively. How-

ever, the vocabulary overlapping (even character
overlapping) between Zh and Ko, It and Ar is low.

w/ Back-Translation We also present the com-
parison on 4 pairs of unsupervised MT with back-
translation (BT) v.s. language transfer in Table 12.
The results are also mixed. If there exists high
quality (similar languages) bi-text data, or trans-
lating between dissimilar pairs, language transfer
is able to beat the conventional methods with BT.
Furthermore, we also show promising results for
combining these two techniques. In such cases, we
start from the best transferred model and apply (it-
erative) BT on the same monolingual corpus used
in pre-training. Table 12 presents the results with 1
iteration of BT. For all pairs, we see improvements
by combining both techniques.

6 Related Work

Pre-training for Text Generation This work
inherits from the recent success brought by self-
supervised pre-training for NLP applications (Pe-



mRASP: multilingual Random Aligned Substitution Pre-training
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• mRASP: multilingual Random Aligned Substitution 
Pre-training

‣ Multilingual Pre-training Approach

‣ RAS: specially designed training method to align 

semantic embeddings 

Encoder Decoder
X1 Z2 X3 Z4 X5

Y3 Y4Y2

<s> Y1 Y3Y2 Y4

Y1 Y5

X2 X4

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Overview
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Encoder Decoder

I like singing and dancing<EN id>

I like chanter and danser<EN id>

1 2 3 4 50

1 2 3 4 50

Orig
J’adore chanter et danser<FR id>

1 2 3 40

J’adore chanter et danser

J’adore chanter et danser

J’adore chanter et danser

1 2 3 40

RAS

tok
pos

tok
pos

<EOS>

<EOS>Pre-training

<FR id>

Random Aligned Substitution

En 
Fr 

Es 

De 
It 

<En> I love you.

<Fr> Je t’aime.

<De> Ich liebe dich. 

<Es> Te quiero. 

<It> ti amo.


Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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Encoder Decoder

I like singing and dancing<EN id>

I like chanter and danser<EN id>

1 2 3 4 50

1 2 3 4 50

Orig
J’adore chanter et danser<FR id>

1 2 3 40

J’adore chanter et danser

J’adore chanter et danser

J’adore chanter et danser<FR id>

1 2 3 40

RAS

tok
pos

tok
pos

<EOS>

<EOS>Pre-training

Fine-tuning

Encoder Decoder

tok
pos

I like playing basketball<EN id>

1 2 3 40

J’adore jouer au basketball<FR id>

1 2 3 40

J’adore jouer au basketball <EOS>
En-Fr

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: RAS method
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• Random Aligned Substitution (RAS)

‣ Randomly replace a source word to its synonym in different 

language.

‣ Draw the embedding space closer.

I like chanter and danser

ℒpre = ∑
i,j∈ℰ

𝔼(xi,xj)∼𝒟i,j [−log Pθ (xi ∣ C (xj))]
singing dancing

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



• Pre-training Dataset: PC32 (Parallel Corpus 32)

– 32 English-centric language pairs, resulting in 64 directed 

translation pairs in total

– Contains a total size of 110.4M public parallel sentence pairs

Training Data for mRASP

54

# of En-X sentence pairs

1
10

100
1000

10000
100000

1000000
10000000

100000000

Fr Lv Fi Bg Et It Ru Hi El Cs Tr Ka Sr Af My Gu
Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Fine-tuning Dataset
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• Fine-tuning Dataset

• Indigenous Corpus: included in pre-training phase


‣ Extremely low resource (<100K) (Be, My, etc.)

‣ Low resource(>100k and <1M) (He, Tr, etc.)

‣ Medium resource (>1M and <10M) (De, Et, etc.)

‣ Rich resource (>10M) (Zh, Fr, etc.)

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP:  Rich resource works
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• Rich resource benchmarks can be further 
improved (En->Fr +1.1BLEU).

28

28.75

29.5

30.25

31

En2De(wmt2016)

Direct CTNMT
XLM MASS
mBERT mRASP

40

41.75

43.5

45.25

47

En2Fr(wmt2014)

Direct CTNMT
mBART mRASP

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Low resource works
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lower resource higher resource

Extremely-Low Resource Directions

0
10
20
30
40

En2Be Be2En En2My My2En En2Af Af2En En2Eo Eo2En

35.8
30.427

31.1
25.328.632.3

25.8

6.74.97.28.35.4
10.29.68.5

Direct mRASP

Low Resource Directions

0
10
20
30
40
50

En2He He2En En2Tr Tr2En En2Ro Ro2En En2Cs Cs2En

29.8
23.2

37.439
33.3

21

44.6

32.4
22.719

29.230.5

19.4
10.7

27.6
19

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Unseen languages
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Fr-Zh(20K) De-Fr(9M)
—> <— —> <—

Exotic Pair
Direct 0.7 3 23.5 21.2
mRASP 25.8 26.7 29.9 23.4

Nl-Pt(12K) Da-El(1.2M)
—> <— —> <—

Exotic Full
Direct 0.0 0.0 14.1 16.9
mRASP 14.1 13.2 17.6 19.9

En-Mr(11K) En-Gl(1.2M)
—> <— —> <—

Exotic Source/
Target

Direct 6.4 6.8 8.9 12.8
mRASP 22.7 22.9 32.1 38.1

En-Eu(726k) En-Sl(2M)
—> <— —> <—

Direct 7.1 10.9 24.2 28.2
mRASP 19.1 28.4 27.6 29.5

12k: Direct not work VS mRASP achieves 10+ BLEU!!

• mRASP generalizes on all exotic scenarios.

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Compare with other methods
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0

7.5

15

22.5

30

En2Gu Gu2En En2Kk Kk2En En2Tr Tr2En En2Et Et2En

Direct mBART
mRASP

0

12.5

25

37.5

50

En2Fi Fi2En En2Lv Lv2En En2Cs En2De En2Fr

• mRASP outperforms mBART for all but two 
language pairs.

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP: Makes multilingual embeddings more similar
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RAS draws the embedding space of languages closer.

0

0.125

0.25

0.375

0.5

Language Pair
En-Zh En-Fr En-De En-Ro En-Ru En-Cs En-Ar En-Tr En-Et En-Af

0.35
0.320.30.31

0.350.33

0.4
0.34

0.41

0.32

0.25
0.210.190.17

0.24
0.2

0.31

0.24

0.33

0.21

mRASP w/o RAS mRASP

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



mRASP 2: Contrastive Learning for Many-to-many Multilingual Neural Machine 
Translation
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Supervised

Unsupervised

Zero-shot

Comparable / better performance on high-resource directions
Arivazhagan et al. 2019

Enabling unsupervised / zero-shot translation

Parallel

Monolingual

Leveraging both parallel & monolingual data

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan et al., ACL 2021] 



mRASP2 introduces monolingual data
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• Parallel text

Encoder Decoder

你 like انواع من Musik<ZH id> quel 的 呢

<EOS>你 喜欢 类型 ⾳乐哪种 的 呢

你 喜欢 类型 ⾳乐<ZH id> 哪种 的 呢

喜欢 类型 ⾳乐哪种

C(x
ZH

)
x
ZH

x
ZH

Encoder Decoder

I like 唱歌 and 跳舞<EN id>

J’adore chanter et danser

J’adore chanter et danser

<EOS>

<FR id>

singing dancing

C(x
EN

) x
FR

x
FR

• Monolingual text

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan et al., ACL 2021] 



mRASP2 maps different languages in a same space
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Encoder Decoder

<Fr> Je t’aime.
<Fr> C’est la vie. 

……


<Zh> 你是谁

<En> It’s sunny. <En> I love you.

…
Anchor

+

<Fr> Je t’aime.

  Contrastive Loss: Lctr        

—

PositiveNegative

  Cross Entropy Loss: Lce           

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan et al., ACL 2021] 



Experiments
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Monolingual Corpus mainly contributes to unsupervised translation

0

10

20

30

40

Supervised Unsupervised Zero-shot

m-Transformer mRASP (w/o finetune) mRASP2 w/o AA mRASP2 w/o MC24 mRASP2



Better Semantic Alignment: Sentence Retrieval
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70

75

80

85

90

Averaged Retrieval acc

89.6

84.4

79.8

m-Transformer mRASP2 w/o AA mRASP2

15-way parallel test set(Ted-M): 2284 
samples

Contrastive Learning and Aligned 
Augmentation both contribute to the 
improvement on sentence retrieval 



Learning Language Specific Sub-network for Multilingual Machine Translation 
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• LaSS accommodates one sub-network for each language pair.

– Each language pair has shared parameters with some other language 

pairs and preserves its language-specific parameters

– For fine-tuning, only updates the corresponding parameters

En Zh
En Fr
En De

En Zh
En Fr
En De

Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]



– WMT
Efficacy in alleviating Parameter Interference
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Transformer-base
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18.25
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24.75
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Low Medium Rich All
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Transformer-big
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26.25

30

Low Medium Rich All
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LaSS obtains consistent gains for both Transformer-base and Transformer-big   

Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]



– WMT
LaSS obtains more gains for rich resource 
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Transformer-base
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Transformer-big
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Low Medium Rich All
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With the dataset scale increasing, the improvement becomes larger, since rich 
resource language pairs suffer more from parameter interference

+1.3

+0.7

+1.7

+0.1

+0.7

+0.8



• Distribute a new sub-network for new language pair 
and train the sub-network for fixed steps

Adaptation to New Language Pairs

69Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]



• Distribute a new sub-network for new language pair 
and train the sub-network for fixed steps

Adaptation to New Language Pairs
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LaSS reaches the bilingual model 
performance with fewer steps.



• Distribute a new sub-network for new language pair 
and train the sub-network for fixed steps

Adaptation to New Language Pairs
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LaSS hardly drops on existing 
language pairs



• Distribute a new sub-network for new language pair 
and train the sub-network for fixed steps

Adaptation to New Language Pairs
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easy adaptation is attributed to the 
language specific sub-network


Only updates the corresponding 
parameters avoids catastrophic 
forgetting



Top/bottom layers prefer language specific capacity
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The top deals with output projection 
layer and the bottom is related to 
embedding layer, which are both 

language-specific.



Mask similarity is positively correlated to language family
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En→X X→En

Similar languages tends to group together 
for both En→X and X→En

Learning Language Specific Sub-network for Multilingual Machine Translation [Lin et al., ACL 2021]



• Multilingual fused pre-training

– Training encoder on masked sequences composed of multiple 

language, concatenated or mixed words. 

• Multilingual sequence-to-sequence pre-training


– mBart: Recover original sentence from noised ones in multiple 
languages. 


– mRASP & mRASP2: augmenting data with randomly substitute of 
words from bilingual lexicon + monolingual reconstruction + 
contrastive learning 


– LaSS: use pre-training and fine-tuning to discover language-
common sub-nets and language-specific sub-nets for MT

Summary for Multilingual Pre-training
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• Song et al. MASS: Pre-train for Sequence to 
Sequence Generation, 2019.


• Lewis et al. BART: Denoising Sequence-to-Sequence 
Pre-training for Natural Language Generation, 
Translation, and Comprehension,  2020

Reading
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