Week 2 Recitation

Krushna Shah CS 190I Deep Learning

UC SANTA BARBARA Computer Science

Outline

- Recap of Linear Algebra Concepts
- Basics of Vector Calculus
- Homework 1 Question 4

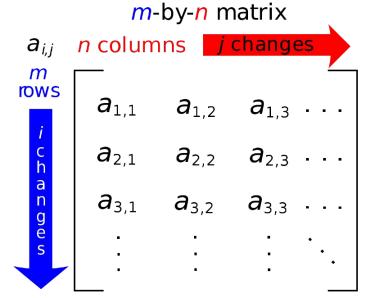
Scalars and Vectors

- Scalars: A scalar is just a single number. Example: 5, 10, 15
- Vectors: A vector is an ordered array of numbers. We can identify each individual number by its index in that ordering. Example:

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight]$$

Matrices and Tensors

• *Matrices*: A matrix is a rectangular array of numbers, and we can identify each number using its *row and column indices*.



• *Tensors*: A tensor is like a high-dimensional matrix that can be indexed similarly. For example, the element at (i, j, k) coordinate of a 3D tensor is denoted by $A_{i,j,k}$.

Matrix and Vector Operations

• *Matrix addition:* Matrices can be added as long as their shapes match

$$C = A + B$$
, where $C_{i,j} = A_{i,j} + B_{i,j}$

• Scalar multiplication and addition: Scalars can be multiplied and added to each element of a matrix

$$D = a \cdot B + c$$
, where $D_{i,j} = a \cdot B_{i,j} + c$

• Broadcasting: Vectors can be added to matrices (shapes must match)

$$C = A + B$$
, where $C_{i,j} = A_{i,j} + B_j$
The vector gets added to every row in

Matrix and Vector operations

- Dot product of two vectors $x^T y = y^T x = \sum_k x_k y_k$
- *Product of two matrices A* is defined as

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

- $C_{i,j}$ is the *dot product* of the i th row of A and jth column of B Number of columns in A must match number of rows in B
- Distributive law:
- Associativity:
- *Commutativity* does not always hold:

A(B + C) = AB + ACA(BC) = (AB)C

 $AB \neq BA$

Matrix and vector Operations

• *Transpose* of a matrix is obtained by "flipping" along the diagonal.

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \\ \mathbf{A}_{3,1} & \mathbf{A}_{3,2} \end{bmatrix} \Rightarrow \mathbf{A}^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

• Transpose of a product:

$$(AB)^T = B^T A^T$$

Some Special Matrices

• A square matrix has the same number of rows and columns. The identity matrix is a square matrix with 1s along the diagonal:

$$I_1 = \begin{bmatrix} 1 \end{bmatrix}, \ I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \dots, \ I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

• The inverse of a square matrix is a matrix A^{-1} that satisfies:

$$AA^{-1} = A^{-1}A = I$$

Norms

• *Norm* is a function that intuitively measures the size of a vector.

•
$$L^{1} \operatorname{norm} : ||x||_{1} = \sum_{i} |x_{i}|$$

• $L^{2} \operatorname{norm} : ||x||_{2} = \sum_{i} |x_{i}|^{2}$

• L^{∞} norm : $// x //_{\infty} = \max_{i} |x_{i}|$. Also known as the max norm.

Calculus

Derivative of Sums

y = u + v $\frac{\partial y}{\partial x} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x}$ $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Chain Rule

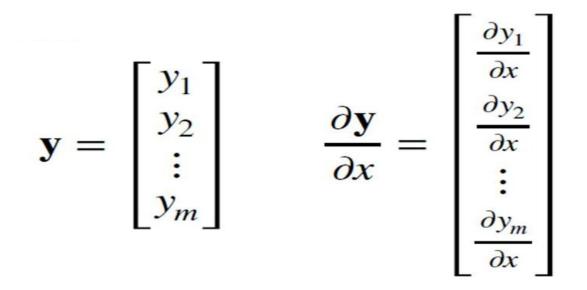
Product Rule

 $rac{dy}{dx} = rac{dy}{du}rac{du}{dx}$

A Brief Note about Numerator and Denominator Layout

	Numerator Layout	Denominator Layout
$\frac{\partial y}{\partial \mathbf{x}}$	1-D row vector	1-D column vector
$\frac{\partial \mathbf{y}}{\partial x}$	1-D column vector	1-D row vector
$\frac{\partial \mathbf{a}^T \mathbf{z}}{\partial \mathbf{z}}$	$\mathbf{a}^{\mathbf{T}}$	a
<u>Az</u>	M	$\mathbf{M}^{\mathbf{T}}$

Numerator Layout



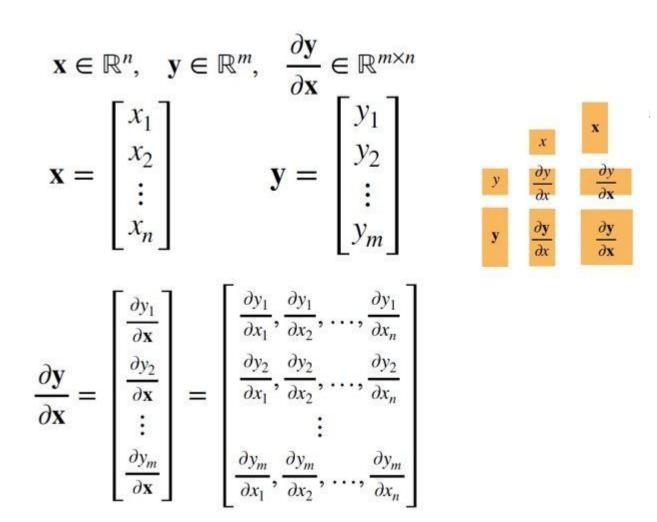
dy/dx is a column vector

Numerator Layout

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \dots, \frac{\partial y}{\partial x_n} \end{bmatrix}$$

dy/d**x** is a row vector

Numerator Layout



Differentiation Rules for Matrices and Vectors:

The following rules for vector and matrix differentiation are good to remember. Note here that a and z are vectors and M is a matrix.

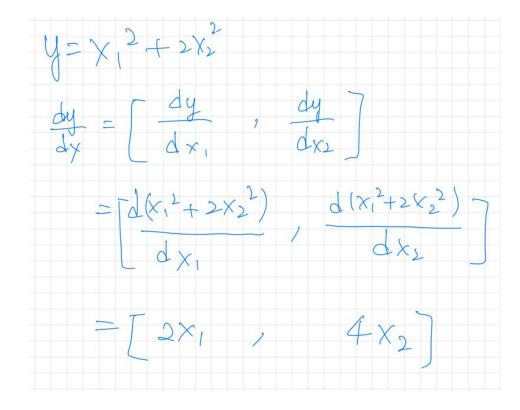
1.
$$\frac{\partial \mathbf{a}^T \mathbf{z}}{\partial \mathbf{z}} = \mathbf{a}$$

2. $\frac{\partial M \mathbf{z}}{\partial \mathbf{z}} = M^T$
3. $\frac{\partial \mathbf{z}^T M \mathbf{z}}{\partial \mathbf{z}} = (M + M^T)\mathbf{z}$

 $y = x_1^2 + 2x_2^2$

 $\frac{\partial y}{\partial \mathbf{x}}$

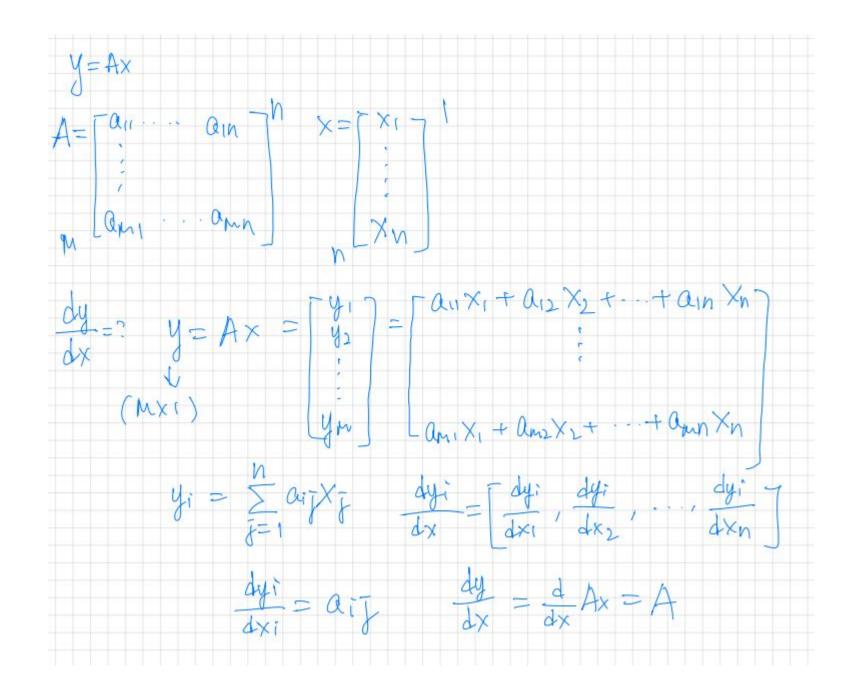
$$y = x_1^2 + 2x_2^2$$
$$\frac{\partial y}{\partial \mathbf{x}} = [2x_1, 4x_2]$$



$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

 $rac{\partial \mathbf{y}}{\partial \mathbf{x}}$

Example 2 $\mathbf{y} = \mathbf{A}\mathbf{x}$ n $y_i = \sum a_{ik} x_k$ k=1 $\frac{\partial y_i}{\partial x_j} = a_{ij}$ $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}$



 $\mathbf{y} = \mathbf{x}^T \mathbf{A}$

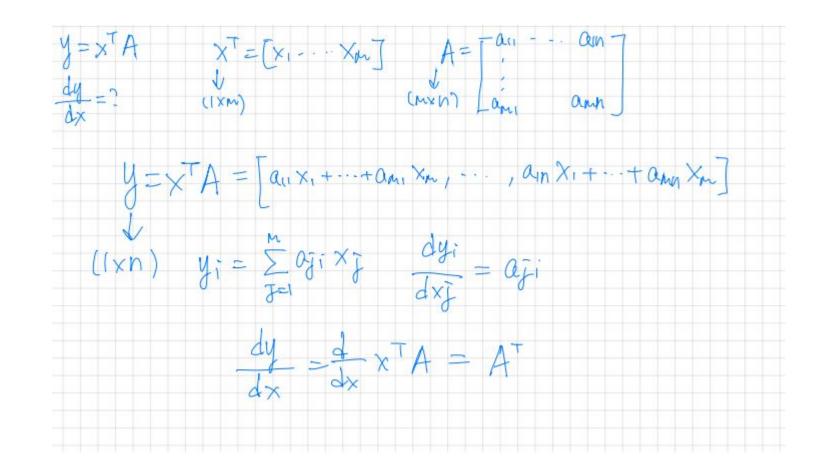
 $rac{\partial \mathbf{y}}{\partial \mathbf{x}}$

 $\mathbf{y} = \mathbf{x}^T \mathbf{A}$

$$y_i = \sum_{k=1}^n x_k a_{ki}$$

 $\frac{\partial y_i}{\partial x_j} = a_{ji}$

 $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}^T$



Example 4 $y = x^T A x$

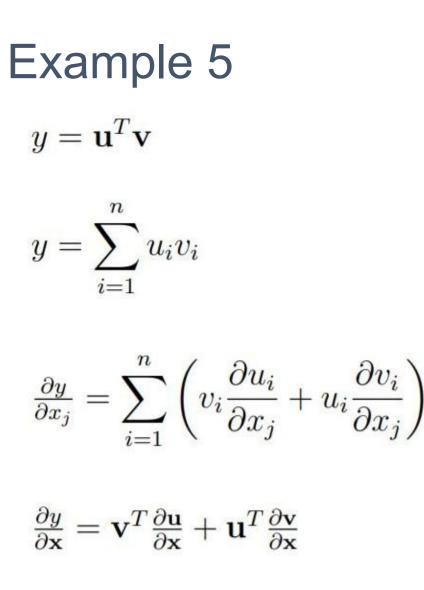
 $rac{\partial y}{\partial x}$

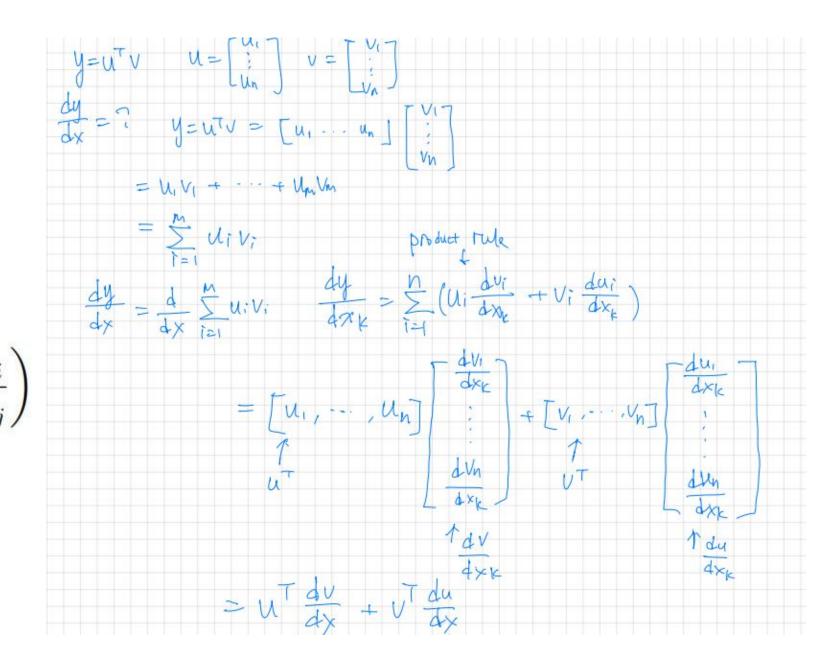
 $y = x^T A x$

b = Ax

 $y = x^T b$

 $\frac{\partial y}{\partial x} = b^T \frac{\partial x}{\partial x} + x^T \frac{\partial b}{\partial x}$ $\frac{\partial y}{\partial x} = b^T + x^T A$ $\frac{\partial y}{\partial x} = x^T A^T + x^T A$ $\frac{\partial y}{\partial x} = x^T (A + A^T)$





$$y = \mathbf{u}^T \mathbf{v}$$

$$y = \sum_{i=1}^{n} u_i v_i$$

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial y}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$$
$$\frac{\partial y}{\partial \mathbf{x}} = \mathbf{v}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u}^T \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$$

$$\frac{\partial y}{\partial x_j} = \sum_{i=1}^n \left(v_i \frac{\partial u_i}{\partial x_j} + u_i \frac{\partial v_i}{\partial x_j} \right)$$

 $\frac{\partial y}{\partial \mathbf{x}} = \mathbf{v}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u}^T \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$

Homework 1 Problem 4

Suppose x is a 3-d vector. $f(x) = |e^{A \cdot x + b} - c|_2^2$ where $A = \begin{bmatrix} 2 & -2 & 3 \\ 3 & 2.5 & -1 \end{bmatrix}, b = \begin{bmatrix} -2 \\ -3 \end{bmatrix}, c = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix}$ $|\cdot|_2 \text{ is 2-norm: } |x|_2 = \sqrt{x_1^2 + x_2^2 + \dots}$ What is the differential $\frac{\partial f}{\partial x}$?

Reference for Basics of PyTorch

https://towardsdatascience.com/understanding-pytorch-with-an-examplea-step-by-step-tutorial-81fc5f8c4e8e#3a3f Any Questions?