Week 2 Recitation

Krushna Shah
CS 190I Deep Learning

Outline

$>$ Recap of Linear Algebra Concepts
$>$ Basics of Vector Calculus
> Homework 1 Question 4

Scalars and Vectors

- Scalars: A scalar is just a single number. Example: 5, 10, 15
- Vectors: A vector is an ordered array of numbers. We can identify each individual number by its index in that ordering. Example:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Matrices and Tensors

- Matrices: A matrix is a rectangular array of numbers, and we can identify each number using its row and column indices.
m-by-n matrix

- Tensors: A tensor is like a high-dimensional matrix that can be indexed similarly. For example, the element at (i, j, k) coordinate of a 3D tensor is denoted by $\mathbf{A}_{i, j, k}$

Matrix and Vector Operations

- Matrix addition: Matrices can be added as long as their shapes match

$$
C=A+B, \text { where } C_{i, j}=A_{i, j}+B_{i, j}
$$

- Scalar multiplication and addition: Scalars can be multiplied and added to each element of a matrix

$$
D=a \cdot B+c, \text { where } D_{i, j}=a \cdot B_{i, j}+c
$$

- Broadcasting: Vectors can be added to matrices (shapes must match)

$$
C=A+B, \text { where } C_{i, j}=A_{i, j}+B_{j}
$$

The vector gets added to every row in.

Matrix and Vector operations

- Dot product of two vectors $x^{T} y=y^{T} x=\Sigma_{k} x_{k} y_{k}$
- Product of two matrices
A is defined as

$$
C_{i, j}=\Sigma_{k} A_{i, k} B_{k, j}
$$

$C_{i j}$ is the dot product of the i th row of A and jth column of B Number of columns in A must match number of rows in B

- Distributive law:
- Associativity:

$$
\begin{aligned}
& A(B+C)=A B+A C \\
& A(B C)=(A B) C
\end{aligned}
$$

- Commutativity does not always hold:

$$
A B \neq B A
$$

Matrix and vector Operations

- Transpose of a matrix is obtained bv "flippina" along the diagonal.

$$
\boldsymbol{A}=\left[\begin{array}{cc}
A_{1,4} & A_{1,2} \\
A_{2,1} & A_{2, \mathbf{8}} \\
A_{3,1} & A_{3,2}
\end{array}\right] \Rightarrow \boldsymbol{A}^{\top}=\left[\begin{array}{lll}
A_{1,1} & A_{2,1} & A_{3,1} \\
A_{1,2} & A_{2,2} & A_{3,2}
\end{array}\right]
$$

- Transpose of a product:

$$
(A B)^{T}=B^{T} A^{T}
$$

Some Special Matrices

- A square matrix has the same number of rows and columns. The identity matrix is a square matrix with 1 s along the diagonal:

$$
I_{1}=[1], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \ldots, I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] .
$$

- The inverse of a square matrix is a matrix A^{-1} that satisfies:

$$
A A^{-1}=A^{-1} A=I
$$

Norms

- Norm is a function that intuitively measures the size of a vector.
- L^{1} norm : $/ / x \|_{1}=\Sigma_{i}\left|x_{i}\right|$
- L^{2} norm : $/ / x \|_{2}=\Sigma_{i}\left|x_{i}\right|^{2}$
- L^{∞} norm : $/ / x \|_{\infty}^{2}=\max _{i}\left|x_{i}\right|$. Also known as the max norm.

Calculus

- Derivative of Sums

$$
\begin{aligned}
& y=u+v \\
& \frac{\partial y}{\partial x}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}
\end{aligned}
$$

- Product Rule

$$
\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

- Chain Rule

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

A Brief Note about Numerator and Denominator Layout

	Numerator Layout	Denominator Layout
$\frac{\partial y}{\partial \mathbf{x}}$	1-D row vector	1-D column vector
$\frac{\partial \mathbf{y}}{\partial x}$	1-D column vector	1-D row vector
$\frac{\partial \mathbf{a}^{\top} \mathbf{z}}{\partial \mathrm{z}}$	$\mathbf{a}^{\mathbf{T}}$	\mathbf{a}
$\frac{\partial \mathbf{M z}}{\partial \mathbf{z}}$	\mathbf{M}	$\mathbf{M}^{\mathbf{T}}$

Numerator Layout

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \quad \frac{\partial \mathbf{y}}{\partial x}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x} \\
\frac{\partial y_{2}}{\partial x} \\
\vdots \\
\frac{\partial y_{m}}{\partial x}
\end{array}\right]
$$

$d y / d x$ is a column vector

Numerator Layout

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \frac{\partial y}{\partial \mathbf{x}}=\left[\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}, \ldots, \frac{\partial y}{\partial x_{n}}\right]
$$

$d y / d x$ is a row vector

Numerator Layout

$$
\begin{aligned}
& \mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{y} \in \mathbb{R}^{m}, \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n} \\
& \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \\
& \begin{array}{lll}
y & \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \\
y & \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x}
\end{array} \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial \mathbf{x}} \\
\frac{\partial y_{2}}{\partial \mathbf{x}} \\
\vdots \\
\frac{\partial y_{m}}{\partial \mathbf{x}}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x_{1}}, \frac{\partial y_{1}}{\partial x_{2}}, \ldots, \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}}, \frac{\partial y_{2}}{\partial x_{2}}, \ldots, \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots \\
\frac{\partial y_{m}}{\partial x_{1}}, \frac{\partial y_{m}}{\partial x_{2}}, \ldots, \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
\end{aligned}
$$

Differentiation Rules for Matrices and Vectors:

The following rules for vector and matrix differentiation are good to remember. Note here that a and z are vectors and M is a matrix.

1. $\frac{\partial \mathbf{a}^{T} \mathbf{z}}{\partial \mathbf{z}}=\mathbf{a}$
2. $\frac{\partial M \mathbf{z}}{\partial \mathbf{z}}=M^{T}$
3. $\frac{\partial \mathbf{z}^{T} M \mathbf{z}}{\partial \mathbf{z}}=\left(M+M^{T}\right) \mathbf{z}$

Example 1

$$
\begin{aligned}
& y=x_{1}^{2}+2 x_{2}^{2} \\
& \frac{\partial y}{\partial \mathbf{x}}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& y=x_{1}^{2}+2 x_{2}^{2} \\
& \frac{\partial y}{\partial \mathbf{x}}=\left[2 x_{1}, 4 x_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
y & =x_{1}^{2}+2 x_{2}^{2} \\
\frac{d y}{d x} & =\left[\frac{d y}{d x_{1}}, \frac{d y}{d x_{2}}\right] \\
& =\left[\frac{d\left(x_{1}^{2}+2 x_{2}^{2}\right)}{d x_{1}}, \frac{d\left(x_{1}^{2}+2 x_{2}^{2}\right)}{d x_{2}}\right] \\
& =\left[2 x_{1}, 4 x_{2}\right]
\end{aligned}
$$

Example 2

$$
\mathrm{y}=\mathrm{Ax}
$$

$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

Example 2

$$
\begin{aligned}
& \mathbf{y}=\mathbf{A} \mathbf{x} \\
& y_{i}=\sum_{k=1}^{n} a_{i k} x_{k} \\
& \frac{\partial y_{i}}{\partial x_{j}}=a_{i j}
\end{aligned}
$$

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{x}}=\mathbf{A}
$$

$$
y=A x
$$

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]^{n} \quad{ }_{n}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
\left.\frac{d y}{d x}=? \begin{array}{c}
y= \\
\vdots \\
(M \times 1) \\
\vdots
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{\operatorname{mn}} x_{n}
\end{array}\right]
$$

$$
\begin{gathered}
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \quad \frac{d y_{i}}{d x}=\left[\frac{d y_{i}}{d x_{1}}, \frac{d y_{i}}{d x_{2}}, \ldots, \frac{d y_{i}}{d x_{n}}\right] \\
\quad \frac{d y_{i}}{d x_{i}}=a_{i j} \quad \frac{d y}{d x}=\frac{d}{d x} A x=A
\end{gathered}
$$

Example 3

$$
\mathbf{y}=\mathbf{x}^{T} \mathbf{A}
$$

$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

Example 3

$$
\begin{aligned}
& \mathbf{y}=\mathbf{x}^{T} \mathbf{A} \\
& y_{i}=\sum_{k=1}^{n} x_{k} a_{k i} \\
& \frac{\partial y_{i}}{\partial x_{j}}=a_{j i} \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\mathbf{A}^{T} \\
& y=x^{\top} A=\left[a_{11} x_{1}+\cdots+a_{m 1} x_{m}, \cdots, a_{n} x_{1}+\cdots+a_{m} x_{m}\right] \\
& (1 \times n) \quad y_{i}=\sum_{j=1}^{m} a_{j i} x_{j} \quad \frac{d y_{i}}{d \times j}=a_{j i} \\
& \frac{d y}{d x}=\frac{d}{d x} x^{\top} A=A^{\top}
\end{aligned}
$$

Example 4
$y=x^{T} A x$
$\frac{\partial y}{\partial x}$

Example 4

$$
y=x^{T} A x
$$

$$
b=A x
$$

$$
y=x^{T} b
$$

$$
\frac{\partial y}{\partial x}=b^{T} \frac{\partial x}{\partial x}+x^{T} \frac{\partial b}{\partial x}
$$

$$
\frac{\partial y}{\partial x}=b^{T}+x^{T} A
$$

$$
\frac{\partial y}{\partial x}=x^{T} A^{T}+x^{T} A
$$

$$
\frac{\partial y}{\partial x}=x^{T}\left(A+A^{T}\right)
$$

Example 5

$$
\begin{aligned}
& y=\mathbf{u}^{T} \mathbf{v} \\
& y=\sum_{i=1}^{n} u_{i} v_{i}
\end{aligned}
$$

$$
\frac{\partial y}{\partial x_{j}}=\sum_{i=1}^{n}\left(v_{i} \frac{\partial u_{i}}{\partial x_{j}}+u_{i} \frac{\partial v_{i}}{\partial x_{j}}\right)
$$

$$
\frac{\partial y}{\partial \mathbf{x}}=\mathbf{v}^{T} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\mathbf{u}^{T} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}
$$

$$
y=u^{\top} v \quad u=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right] \quad v=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]
$$

$$
\begin{aligned}
& \frac{d y}{d x}=? \quad y=u^{\top} v=\left[u_{1} \ldots u_{n}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \\
&=u_{1} v_{1}+\cdots+u_{\mu} v_{m} \quad \\
&=\sum_{i=1}^{m} u_{i} v_{i} \quad \text { product rule } \\
& \frac{d y}{d x}=\frac{d}{d x} \sum_{i=1}^{m} u_{i} v_{i} \quad \frac{d y}{d x_{k}}=\sum_{i=1}^{n}\left(u_{i} \frac{d v_{i}}{d x_{k}}+v_{i} \frac{d u_{i}}{d x_{k}}\right)
\end{aligned}
$$

$$
=\left[\begin{array}{c}
u_{1}, \cdots, u_{n} \\
\uparrow \\
u^{\top}
\end{array}\right]\left[\begin{array}{c}
\frac{d v_{1}}{d x_{k}} \\
\vdots \\
\frac{d v_{n}}{d x_{k}}
\end{array}\right]+\left[v_{1}, \cdots, v_{n}\right]\left[\begin{array}{c}
\frac{d u_{1}}{d x_{k}} \\
\vdots \\
u^{\top} \\
\vdots \\
\frac{d u_{n}}{d x_{k}}
\end{array}\right]
$$

$$
=u^{\top} \frac{d v}{d x}+v^{\top} \frac{d u}{d x} \frac{d v}{d x k}
$$

$\uparrow \frac{d u}{d x_{k}}$

Example 4

$$
\begin{array}{ll}
y=\mathbf{u}^{T} \mathbf{v} & \frac{\partial y}{\partial \mathbf{x}}=\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\frac{\partial y}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\
y=\sum_{i=1}^{n} u_{i} v_{i} & \frac{\partial y}{\partial \mathbf{x}}=\mathbf{v}^{T} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\mathbf{u}^{T} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\
\frac{\partial y}{\partial x_{j}}=\sum_{i=1}^{n}\left(v_{i} \frac{\partial u_{i}}{\partial x_{j}}+u_{i} \frac{\partial v_{i}}{\partial x_{j}}\right) & \\
\frac{\partial y}{\partial \mathbf{x}}=\mathbf{v}^{T} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\mathbf{u}^{T} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} &
\end{array}
$$

Homework 1 Problem 4

Suppose x is a 3 -d vector.

$$
f(x)=\left|e^{A \cdot x+b}-c\right|_{2}^{2}
$$

where

$$
A=\left[\begin{array}{ccc}
2 & -2 & 3 \\
3 & 2.5 & -1
\end{array}\right], b=\left[\begin{array}{l}
-2 \\
-3
\end{array}\right], c=\left[\begin{array}{l}
1.5 \\
1.5
\end{array}\right]
$$

$|\cdot|_{2}$ is 2-norm: $|x|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots}$
What is the differential $\frac{\partial f}{\partial x}$?

Reference for Basics of PyTorch

https://towardsdatascience.com/understanding-pytorch-with-an-example-a-step-by-step-tutorial-81fc5f8c4e8e\#3a3f

Any Questions?

