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Outline

> Questions?

>  Deep learning? -- model architecture (neural network) & learning method

> Probability Concepts

> Maximum Likelihood Estimation

> Maximum a Posterior Estimation



Random Variable

> Random Variable

» A mathematical formalization of an object which depends on random event. It's a mapping from possible
outcomes in a sample space to a measurable space.

> Eug.
>  Event: Flipping a coin
»  Sample space: the set {Head, Tail}
»  Possible outcomes: Head/Tail
»  Measurable space: {1, -1}

> Probability Distribution

>  Record the probabilities of all outcomes of a random variable X
> E.g.:P(X=1)=05,P(X=-1)=0.5



Discrete Random Variable

> Sample Space

> A set of discrete values

> Probability Mass Function

>  The probability distribution of a discrete random variable is given by its probability mass function

> A probability mass function should satisfy:
» Vxe X,0<Pkx) L 1.

» T P() =1



Continuous Random Variable

> Sample Space

>  The random variable is valued in an interval of real numbers

> Probablln‘y Density Function

A function whose value at any given sample in the sample space describes a relative likelihood that the
value of the random variable would be
»  PDF should satisfy:
»  The domain of PDF must be the set of all possible states of x
Vx e X, px) > 0.
> Note we don't require p(x) <=1

J px)dx =1
>



Joint and Marginal Probability Distribution

> Joint Distribution

» A probability distribution over multiple random variables
> E.g.,P(X=x, Y=y) denotes the probability that event X=x and Y=y happen simultaneously

» Marginal Distribution

»  For discrete variables, given the joint distribution P(X, Y), we can get the marginal distribution P(X) by
the sum rule

Px=x)=2,PX=xy=Y)

>  For continuous random variables,
P(X=x) =fy P(X =x,Y =y)dy



Conditional Probability

> Definition

>  Probability of an event happens given another event
Py =y, x=x)
Px =x)
> Chain Rule (General Product Rule)
Px®,x@, . x™) = px®) ML, Px®|xD), ..., xD)

Py=ylx=1x) =

» E.g., Language modeling

» Independence

»  If two random variables are independent, then their joint distribution equals to the product of their
marginal distribution

Px=x,y=y)=PX=x)P(y =Yy)



Expectation

> Definition

»  The expectation of some function f(x) with respect to a probability distribution P(X) is the average value
of f(x) when we take samples from P

> For discrete random variables,
Exp[f(x)] = ) P(x)f(z)

> For continuous random variables,

Ee,[f(2)] = / p(2)f(z)dz

> Expectations are linear,

Ex[af(z) + Bg(z)] = oEx|f(z)] + BEx[g(z)]



Variance

> Definition

»  The variance gives a measure of how much the values of a function vary when we take samples from a
probability distribution

Var(f(2)) = E| (f(2) - E[f(@)))’

»  The square root of the variance is called the standard deviation



Common Probability Distributions

> For discrete random variables

>  Bernoulli distribution
»  Adistribution over a single binary random variable, which is controlled by a single parameter p:

P(X=1) =p, P(X=0)=1-p
e.g. binary classification

»  Categorical distribution
>  Extends the above binary case to k states
»  E.g. multi-class classification

Categorical 7=0.1 7=0.5 7=1.0 7=10.0

N B A

category

expectation

b)

sample




Common Probability Distributions

> For continuous random variables

>  Gaussian distribution (Normal Distribution)

N (z;p,0%) = 7: exp <—%(x _ “)2)

>  Expectation is u
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>  Variance is o




Bayes Rule

> Definition

>  Describes the probability of an event based on prior knowledge of conditions that might be related to that

event
P
D=0
-~ P<x>PP((yy)|x)>
Py = POPOIY
Y S PGOP(Y | X)
> E.qg.

»  Bayesian inference



Maximum Likelihood Estimation (MLE)

> Definition

> Xi1,Xy,.., Xy --iidrandom variables with probability distribution P(X| 6), where 6 is the parammeter

>  Likelihood function L(x| 8) with a set of observations = {x, x,, ..., xy}

N
Lx10) = | [ Pealo)
i=1

» Then we can use MLE to find the empirically best 6 that maximizes L(x| 0)

6 = argmax L(x| 0)

> For convenient computation,

N
6 = argmaxlog L(x|0) = argmax Z log P(x;|6)
i=1



MLE Example

> One-dimensional Gaussian distribution

N (o) = oo )

(2mo2)1/2 202
1 ZN N N
2\ _ 2 2
lnp (XI[,L,O' ) = _ﬁ (a:n — ,U,) — E Ino” — 7 ln(27r)

»  Seftting the partial derivatives to O, we can get
1 N
HmL = Nz Xi

=1

N
o= Y~ )
ML N - l ML

i=

» We can directly calculate the analytical solution for Gaussian distribution

» However, for more complicated functions such as neural networks (MLP, CNN, Transformer), there is no
analytical solution. Usually, we can use gradient ascent to get the MLE solution
» E.g., A language model such as GPT-2



MLE Example

> One-dimensional Gaussian distribution: Note

N
1
E(uym) = E(ﬁz Xi) =u

i=1

N

2 1 2 N-1 2

E(oy) = E NZ(xi—HML) =N
i=1

» MLE systematically underestimates the variance of the distribution. This phenomenon is called bias

» When N is large enough and in the limit N -> oo, the bias is less significant
> But when there are not enough samples (small N), the bias may be a serious problem

» The issue of bias in maximum likelihood lies at the root of the over-fitting problem



MLE Example

> Solve this problem

»  Adding regularization to the parameter
» E.g., L1(Lasso) or L2 (Ridge) regularization
>  Dropout

»  Using Maximum Posterior estimation (MAP)



MAP

> Description

»  MAP can be used to obtain a point estimated of an unobserved quantity on the basis of empirical data.
Different from MLE, it employs an augmented optimization objective which incorporates a prior
distribution

0, = argmax P(x|0)

HAMAP = argmax P(6|x)
0

 argmax _ LIOPO)
o [, P(x|0)P(6)do

= argmax P (x|0)P(6)
0

»  For Gaussian example, if we also use a Gaussian distribution for prior, then
—~ 92
Opap = argmax log f(x|0) — Y
> Equal to adding L2 regularization

» Compared with Bayesian inference?



Any Question?



