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Outline
Ø Questions?

Ø Deep learning?  -- model architecture (neural network) & learning method

Ø Probability Concepts

Ø Maximum Likelihood Estimation

Ø Maximum a Posterior Estimation
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Random Variable
Ø Random Variable

Ø A mathematical formalization of an object which depends on random event. It’s a mapping from possible 
outcomes in a sample space to a measurable space.

Ø E.g.
Ø Event: Flipping a coin
Ø Sample space: the set {Head, Tail}
Ø Possible outcomes: Head/Tail
Ø Measurable space: {1, -1}

Ø Probability Distribution
Ø Record the probabilities of all outcomes of a random variable X
Ø E.g.: P(X=1) =0.5, P(X=-1)=0.5
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Discrete Random Variable
Ø Sample Space

Ø A set of discrete values

Ø Probability Mass Function
Ø The probability distribution of a discrete random variable is given by its probability mass function

Ø A probability mass function should satisfy:
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Continuous Random Variable
Ø Sample Space

Ø The random variable is valued in an interval of real numbers

Ø Probability Density Function
Ø A function whose value at any given sample in the sample space describes a relative likelihood that the 

value of the random variable would be 
Ø PDF should satisfy:

Ø The domain of PDF must be the set of all possible states of x

Ø Note we don’t require p(x) <= 1

Ø
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Joint and Marginal Probability Distribution
Ø Joint Distribution

Ø A probability distribution over multiple random variables
Ø E.g., P(X=x, Y=y) denotes the probability that event X=x and Y=y happen simultaneously

Ø Marginal Distribution

Ø For discrete variables, given the joint distribution P(X, Y), we can get the marginal distribution P(X) by 
the sum rule

Ø For continuous random variables, 
P(X=x) =∫! 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 𝑑𝑦
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Conditional Probability
Ø Definition

Ø Probability of an event happens given another event

Ø Chain Rule (General Product Rule)

Ø E.g., Language modeling

Ø Independence
Ø If two random variables are independent, then their joint distribution equals to the product of their 

marginal distribution
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Expectation 
Ø Definition

Ø The expectation of some function f(x) with respect to a probability distribution P(X) is the average value 
of f(x) when we take samples from P

Ø For discrete random variables,

Ø For continuous random variables, 

Ø Expectations are linear, 



9

Variance 
Ø Definition

Ø The variance gives a measure of how much the values of a function vary when we take samples from a 
probability distribution

Ø The square root of the variance is called the standard deviation
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Common Probability Distributions 
Ø For discrete random variables

Ø Bernoulli distribution
Ø A distribution over a single binary random variable, which is controlled by a single parameter p:

P(X=1)  = p,  P(X=0) = 1 - p

e.g. binary classification

Ø Categorical distribution
Ø Extends the above binary case to k states
Ø E.g. multi-class classification
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Common Probability Distributions 
Ø For continuous random variables

Ø Gaussian distribution (Normal Distribution)

Ø Expectation is 𝝁

Ø Variance is 𝝈𝟐
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Bayes Rule
Ø Definition

Ø Describes the probability of an event based on prior knowledge of conditions that might be related to that 
event

Ø E.g.
Ø Bayesian inference
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Maximum Likelihood Estimation (MLE)
Ø Definition

Ø 𝑿𝟏, 𝑿𝟐, …, 𝑿𝑵 -- i.i.d random variables with probability distribution P(X| 𝜽), where 𝜽 is the parammeter

Ø Likelihood function L(x| 𝜽) with a set of observations = {𝒙, 𝒙𝟐, …, 𝒙𝑵 }

𝐿 𝑋 𝜃 =1
%&'

(

𝑃(𝑥%|𝜃)

Ø Then we can use MLE to find the empirically best 𝜽 that maximizes L(x| 𝜽) 

5𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 L(x| 𝜽) 

Ø For convenient computation, 

5𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 log 𝐿 𝑥 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 =
%&'

(

log 𝑃(𝑥%|𝜃)
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MLE Example
Ø One-dimensional Gaussian distribution

Ø Setting the partial derivatives to 0, we can get

𝜇)* =
1
𝑁
=
%&'

(

𝑥%

𝜎)*+ =
1
𝑁
=
%&'

(

(𝑥% − 𝜇)*)+

Ø We can directly calculate the analytical solution for Gaussian distribution

Ø However, for more complicated functions such as neural networks (MLP, CNN, Transformer), there is no 
analytical solution.  Usually, we can use gradient ascent to get the MLE solution
Ø E.g., A language model such as GPT-2
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MLE Example
Ø One-dimensional Gaussian distribution: Note

E 𝜇)* = 𝑬
1
𝑁
=
%&'

(

𝑥% = 𝝁

𝑬 𝜎)*+ = 𝐄
1
𝑁
=
%&'

(

𝑥% − 𝜇)* + =
𝑵− 𝟏
𝑵

𝝈𝟐

Ø MLE systematically underestimates the variance of the distribution. This phenomenon is called bias

Ø When N is large enough and in the limit N -> ∞, the bias is less significant

Ø But when there are not enough samples (small N), the bias may be a serious problem

Ø The issue of bias in maximum likelihood lies at the root of the over-fitting problem 
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MLE Example
Ø Solve this problem

Ø Adding regularization to the parameter

Ø E.g., L1 (Lasso) or L2 (Ridge) regularization

Ø Dropout

Ø Using Maximum Posterior estimation (MAP)
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MAP
Ø Description

Ø MAP can be used to obtain a point estimated of an unobserved quantity on the basis of empirical data. 
Different from MLE, it employs an augmented optimization objective which incorporates a prior 
distribution

5𝜃)*, = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝒙|𝜃)

Ø For Gaussian example, if we also use a Gaussian distribution for prior, then
I𝜃)-. = 𝑎𝑟𝑔𝑚𝑎𝑥 log 𝑓(𝑥|𝜃) − /!

+
Ø Equal to adding L2 regularization

Ø Compared with Bayesian inference?



Any Question?


