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Background

Named Entity Recognition (NER). Named entities are phrases that contain the names
of persons, organizations, locations, times and quantities, etc. Example:

[ORG U.N. ] official [PER Ekeus ] heads for [LOC Baghdad ] .

This sentence contains three named entities: Ekeus is a person, U.N. is an organization, and
Baghdad is a location.

Named entity recognition is an important task of information extraction systems that seeks
to locate and classify named entities mentioned in unstructured text. Example: Suppose we
have an unannotated block of text:

Alex moved to Los Angeles to work for Universal Studios.

An NER system should produce annotated text that highlights the named entities:

[PER Alex ] moved to [LOC Los Angeles ] to work for [ORG Universal Studios ] .

A single token person name, a two-token location name, and an organization name have been
detected and classified.

Dataset. CoNLL-2003 1 is a named entity recognition dataset released as part of CoNLL-
2003 shared task concerning language-independent named entity recognition.

The dataset’s English data was taken from the Reuters Corpus, consisting of Reuters news
stories between August 1996 and August 1997. The data was tagged and chunked by the
memory-based MBT tagger 2. Named entity tagging of training, development, and test data,
was done by hand at the University of Antwerp. Mostly, MUC conventions 3 were followed.
An extra named entity category called MISC was added to denote all names which are not
already in the other categories. This includes adjectives, like Italian, and events, like 1000
Lakes Rally, making it a very diverse category.

BIO tagging scheme. The original tagging scheme follows the BIO format put forward by
Ramshaw and Marcus (1995) 4. The dataset we’re using for this homework follows a similar
scheme. The first word of an entity will be tagged B-TYPE to show that it is the beginning
of a chunk. The I-TYPE tag means that the word is inside a named entity of type TYPE. A
word tagged with O is not part of a named entity. For example,

1https://www.clips.uantwerpen.be/conll2003/ner/
2Daelemans et al., 2002 https://www.clips.uantwerpen.be/~walter/papers/2002/dzbs02.pdf
3https://www-nlpir.nist.gov/related_projects/muc/proceedings/ne_task.html
4https://arxiv.org/abs/cmp-lg/9505040
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Alex Cord moved to Los Angeles to work for Universal Studios .
B-PER I-PER O O B-LOC I-LOC O O O B-ORG I-ORG O

The data contains entities of four types: persons (PER), organizations (ORG), locations (LOC)
and miscellaneous names (MISC). For more detailed description of the dataset, you can refer to
Introduction to the CoNLL-2003 shared task: language-independent named entity recognition

Homework Description

Different from the previous machine problem, this is not a Kaggle competition.

Data Three data splits are provided in the zip file. train.csv and val.csv are training
and validation splits where the first field is the space-separated sentence, and the second field
is the space-separated IOB tags. test_tokens.txt contains input tokens for the test split
where each row is a separate sentence.

Template notebook A template notebook named template.ipynb will be provided to
you in the same zip file. Upload the template in your workspace (like Google colab). Make
sure to upload the data splits where mentioned.

Tasks Different from previous machine problems, the template file does not contain a
baseline model. You need to complete three tasks to run a baseline model:

1. Implement the encode method of the Tokenizer class.

def encode(self, text: str, max_length: Optional[int] = None) -> List[int]:

A tokenizer is used to construct the vocabulary of the dataset as well as convert the
input texts into lists of token ids. The encode method takes an input string and an
optional max_length parameter, and returns a list of ids according to the token2idx

property.

The input text is assumed to be a string containing space-separated tokens. Whenever
a token not present in token2idx is detected, the token is replaced by the <unk> token.

If max_length is set, then the returned list should be of length max_length regardless
of the input text. Add padding or truncate the input tokens if needed. You can assume
max_length is a positive integer.

2. Implement the transformer-based NER tagger. The model should include at least:

• nn.Embedding layer to embed input token ids to the embedding space

• nn.TransformerEncoder layer to perform transformer operations

• nn.Linear layer as the output layer to map the output to the number of classes
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An nn.Softmax or nn.LogSoftmax layer is not needed as we will be using the cross-
entropy loss.

You should also implement the forwardmethod of the model. The method signature is:
def forward(self, src: torch.Tensor, src_mask: torch.Tensor) -> torch.Tensor:

• src is a torch.LongTensor of shape (batch_size, max_length) representing
the input text tokens.

• src_mask is a torch.BoolTensor of shape (batch_size, max_length) indicat-
ing whether an input position is padded. This is needed to prevent the transformer
model attending to padded tokens.

3. Implement the predict function which takes a trained model and a dataloader, and
predicts the IOB tags for all examples in the data set.

def predict(model: nn.Module, dataloader: DataLoader, device: torch.device)

-> List[List[str]]:

Note that the return value should be a nested list of lists of IOB tags, not the integer
tag ids.

Evaluation The performance of the model will be evaluated with the entity-level F1 score5.
We will be using the conlleval script for measurement. An example is provided in the template
notebook to measure the performance of the model on the validation set. Pay extra attention
that you will not be graded on the accuracy values reported during training and validation
as those are not the entity-level F1 scores. Those values, however, should correlates well with
the final model performance.

Additional Explanation of Entity-level F1 Suppose we have the following sentence,
its ground truth label sequence, and a candidate label sequence.

Alex Cord moved to Los Angeles to work for Universal Studios .
Ground Truth: B-PER I-PER O O B-LOC I-LOC O O O B-ORG I-ORG O

Prediction: B-PER B-MISC O O B-LOC I-LOC O O B-ORG I-ORG O O

In this sentence, there are three ground truth entities: {Alex Cord (PER), Los Angeles (LOC),
Universal Studios (ORG)}.
There are four predicted entites: {Alex (PER), Cord (MISC), Los Angeles (LOC),
for Universal (ORG) }. Notice that the predicted labels of Alex and Cord are not the
same, therefore they belong to two entities.

Let TP = true positive, FP = false positive, FN = false negative.

• TP = 1: Los Angeles has been correctly identified as LOC.

5https://en.wikipedia.org/wiki/F-score
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• FP = 3: Alex, Cord, for Universal are incorrectly labeled as PER, MISC, and ORG

entities.

• FN = 2: Alex Cord and Universal Studios are not recovered by the model as the
correct entity type.

Given that

Precision =
TP

TP+ FP
Recall =

TP

TP+ FN

F1 score is the harmonic mean of precision and recall.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
=

TP

TP+
FP+ FN

2

Precision =
1

1 + 3
= 0.25 Recall =

1

1 + 2
= 1/3 F1 = 2 ∗ 0.25 ∗ 1/3

0.25 + 1/3
= 0.285 = 28.5%.

Submission. The intended workflow is:

1. Complete the three tasks and make sure the code works properly.

2. Work on improving the model. You would need a model that performs fairly well on
the validation set measured by the entity-level F1 score.

3. Download the submission.txt once you are satisfied with the validation performance.

4. Submit both the submission.txt file and the .ipynb file to Gradescope before dead-
line. If you are submitting files in .zip format, make sure you zip the files directly, not
the folder containing the files.

Your code should run as is and should produce the exact same results as the submitted
submission.txt file. Note that submission.txt should be the exact name of the submitted
prediction file.

Upon submission, the autograder will assign a tentative test F1 score measured purely from
submission.txt and rank you on the Gradescope leaderboard. This leaderboard score is
subject to change if the code you submitted does not match the predictions.
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Grading. If your code runs without error and produces the exact same submission.txt

file, the grading scheme is:

Code runs and produces submission.txt: 70 pts
F1 score higher than 0.3 up to 0.6: 90 pts

F1 score higher than 0.6 : 100 pts
Top 5 submissions: +10 pts

If you could not get the code running properly, you will get partial credits up to 55 pts
depending on the completeness of the tasks.
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