CS 190I Deep Learning Graph Neural Networks Lei Li (leili@cs) UCSB

Course Evaluation

- https://esci.id.ucsb.edu
- <u>https://bit.ly/3FSqFs0</u>
- Feedback is important and helpful for improving the course
- Encourage narrative comments
- Bonus 5% to final exam, if response rate > 90% (20% today)

	training objective	backbone	size(#params)	training data (#tokens)
ELMo	next token prediction	two separate LSTM	94M	5.5 billion
BERT	masked token prediction + next sentence prediction	Transformer Encoder	110M 340M	3.3 billion
T5	masked prediction for spans	Transformer Enc-Dec	700G	300 billion
GPT-3	next token prediction	Transformer Decoder	175B	500 billion

Graph Data is everywhere

Social Graphs

Transportation Graphs Brain Graphs

Web Graphs

Molecular Graphs

Gene Graphs

ML on Graphs

Numerous real-world problems can be summarized as a set

Slides adapted from Yao Ma & Jiliang Tang@MSU

Example: predict toxicity of a drug

Deep Learning Meets Graphs: Challenges

Traditional DL is designed for simple grids or sequences

- CNNs for fixed-size images/grids
- RNNs for text/sequences

But nodes on graphs have different connections

- Arbitrary neighbor size
- Complex topological structure
- No fixed node ordering

Slides adapted from Yao Ma & Jiliang Tang@MSU

Graph Representation

Graph: $G = \{V, E\}$

Nodes: $V = \{v_1, v_2, ..., v_N\}$

Edges: $E = \{e_1, e_2, \dots, e_M\} \subset V \times V$

"Shallow" Node Embedding

Deep Graph Neural Network

Output is embedding matrix for nodes for further downstream tasks: e.g. node classification¹¹

Graph Neural Network

Every node's neighbor defines a convolutional kernel

aggregate information from its neighbors

Aggregate Neighbors

 h_i : node (hidden) embedding vector

aggregate information from its neighbors $h_{3}, l_{3} \qquad h_{3}, l_{3} \qquad h_{3}, l_{4} \qquad h_{i}^{k+1} = \text{Aggregate}_{v_{j} \in N(v_{i})} f(h_{i}^{k}, h_{j}^{k}), \forall v_{i} \in V$ $h_{2}, l_{2} \qquad h_{3}, l_{3} \qquad h_{3}, l_{4} \qquad h_{5}, l_{5} \qquad h_{6}, l_{6} \qquad h_{6}, l_{6} \qquad h_{6}, l_{6} \qquad h_{6}, l_{6}$

 $N(v_i)$: Neighbors of the node v_i .

 $f(\cdot)$: Feedforward network.

Multiple Computation Layers

A Simple Graph Convolution Layer

Simple approach: averaging neighbor's message and apply nonlinear transformation

initial embedding:
$$h_i^0 = x_i$$

computing
next layer: $h_i^{k+1} = \sigma(W_k \frac{1}{|N(v_i)|} \sum_{v_j \in N(v_i)} h_j^k + B_k h_i^k)$
 $h_1^2 = tanh\left(W_1 \cdot \frac{1}{3}(h_3^1 + h_5^1 + h_8^1) + B_1 h_1^1\right)$

A Simple Graph Convolution Layer

• More layers:

$$h_1^{(3)} = tanh\left(W_2 \cdot \frac{1}{3}(h_3^{(2)} + h_5^{(2)} + h_8^{(2)}) + B_2 h_1^{(2)}\right)$$

Matrix Representations of Graphs

Adjacency Matrix: A[i, j] = 1 if v_i is adjacent to v_i

A[i, j] = 0, otherwise

 Adjacency Matrix

 $\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

Spectral graph theory. American Mathematical Soc.; 1997.

 v_8

 $\bigcirc v_5$

 v_7

 v_1

 v_3

Matrix Representation of GCN

 Neighbor Aggregation can be performed efficiently using matrix operations

 $H^{k} = [h_{1}^{k}, \dots, h_{|V|}^{k}]^{T}$ Then $\sum_{v_{j} \in N(v_{i})} h_{j}^{k} = A_{i,:}H^{k}$

Let D be diagonal matrix (0 elsewhere)

$$D_{i,i} = \text{Degree}(v_i) = \sum_j A_{i,j}$$

Then $\frac{1}{|N(v_i)|} \sum_{v_j \in N(v_i)} h_j^k = D^{-1}AH^k$

Aggregation Neighbor's Information in Matrix form

Graph Convolution in Matrix Form

- Neighbor Aggregation can be performed efficiently using matrix operations
- $H^{k} = [h_{1}^{k}, \dots, h_{|V|}^{k}]^{T}$ $\tilde{A} = D^{-1}A$ $H^{k+1} = \sigma(\tilde{A}H^{k} \cdot W_{k}^{T} + H^{k}B_{k}^{T})$

Graph Convolution Network

- Neighbor Aggregation can be performed efficiently using matrix operations
- To make \tilde{A} symmetric
- $\begin{aligned} H^k &= [h_1^k, \dots, h_{|V|}^k]^T \\ \tilde{A} &= D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \\ H^{k+1} &= \sigma (\tilde{A} H^k \cdot W_k^T + H^k B_k^T) \end{aligned}$

Prediction Layer

- For node classification: $o_i = \text{Softmax}(h_i^{(m)})$
- For graph classification: $o = \text{Softmax}(\frac{1}{N}\sum_{i}h_{i}^{(m)})$

Property: Equivariant

 the embeddings computed from graph convolution layers is invariant to node permutation

$$h_i^0 = x_i$$

$$h_i^{k+1} = \sigma(W_k \frac{1}{|N(v_i)|} \sum_{v_j \in N(v_i)} h_j^k + B_k h_i^k)$$

Model Training

Parameters: weight matrix for each layer

$$h_{i}^{k+1} = \sigma(W_{k} \frac{1}{|N(v_{i})|} \sum_{v_{j} \in N(v_{i})} h_{j}^{k} + B_{k} h_{i}^{k})$$

• Supervised training: e.g. Node classification – Linked nodes have similar embedding $L = \sum_{i} CE(y_i, f(h_i^K))$ $f_i = \text{Softmax}(h_i^{(K)})$

 $-y_i$ is node label

Model Training

• Parameters: weight matrix for each layer

$$h_{i}^{k+1} = \sigma(W_{k} \frac{1}{|N(v_{i})|} \sum_{v_{j} \in N(v_{i})} h_{j}^{k} + B_{k}h_{i}^{k})$$

- Unsupervised training:
 - Linked nodes have similar embedding

$$L = \sum_{i,j} CE(y_{i,j}, Sim(h_i^K, h_j^K))$$

- $y_{i,j} = 1$ if there is edge from v_i to v_j
- Similarity can be defined in many ways: e.g. inner product $h_i \cdot h_j$

Generic GNN framework

- GNN layer = message passing + Aggregation
 - different design choices under this framework
 - Graph convolutional network (GCN)
 - GraphSAGE
 - GAT

Message Computation

- Each node will create a message
- e.g. Linear projection $m_i^k = W_k \cdot h_i^{(k)}$

Aggregation/Pooling

- Each node will aggregate messages from its neighbors
- e.g.
 - Sum, Mean, Max operator
- Concat(AGG{m_j}, m_i)
- Apply nonlinear activation

GraphSAGE

$$h_i^{k+1} = \sigma\left(W_k \cdot \text{CONCAT}\left(h_i^k, \text{AGG}(\{h_j^k, \forall v_j \in N(v_i)\})\right)\right)$$

AGG can be designed in multiple ways, like pooling (sum, avg, max)

Graph Attention Network (GAT)

$$h_i^{k+1} = \sigma(\sum_{v_j \in N(v_i)} \alpha_{ij} W_k h_{v_j}^k)$$

attention weight

$$\alpha_{ij} = \text{Attention}(W_k h_i, W_k h_j) = \frac{\nabla P}{\nabla P}$$

Multi-head Attention for GAT? Yes

$$h_{i}^{k+1} = \sigma(\sum_{v_{j} \in N(v_{i})} \alpha_{ij} W_{k} h_{v_{j}}^{k})$$

$$\alpha_{ij} = \text{Attention}(W_{k} h_{i}, W_{k} h_{j}) = \frac{\exp(W_{k} h_{i})^{T} W_{k} h_{j}}{\sum_{j'} \exp(W_{k} h_{i})^{T} W_{k} h_{j'}}$$

 https://edstem.org/us/courses/31035/ lessons/57873/slides/325166

Tasks on Graph-Structured Data

Relation between GNN and CNN

Image

CNN can be viewed as a special GNN on grid graph³⁴

GNN vs. Transformer

 Transformer is special GNN on a fullconnected graph

Book: Deep Learning on Graphs

https://cse.msu.edu/~mayao4/ dlg_book/

Summary

- Graph neural network
 - message passed along graph edges
 - aggregate message/embedding by FFN
 - many variants

Next Up

Variational Auto-Encoder