CS 190I

 Deep LearningGraph Neural Networks

$$
\begin{gathered}
\text { Lei Li (leili@cs) } \\
\text { UCSB }
\end{gathered}
$$

Course Evaluation

- https://esci.id.ucsb.edu
- https://bit.ly/3FSqFs0
- Feedback is important and helpful for improving the course
- Encourage narrative comments
- Bonus 5% to final exam, if response rate > 90\% (20\% today)

Recap

	training objective	backbone	size(\#params)	training data (\#tokens)
ELMo	next token prediction	two separate LSTM	94 M	5.5 billion
BERT	masked token prediction + next sentence prediction	Transformer Encoder	110M (240M	3.3 billion
T5	masked prediction for spans	Transformer Enc-Dec	700G	300 billion
GPT-3	next token prediction	Transformer Decoder	175B	500 billion

Graph Data is everywhere

Social Graphs

Web Graphs

Transportation Graphs Brain Graphs

Molecular Graphs

Gene Graphs

ML on Graphs

Numerous real-world problems can be summarized as a set of tasks on graphs

- Link prediction
- Node Classification
- Community Detection
- Ranking

Ranking

Slides adapted from Yao Ma \& Jiliang Tang@MSU

Example: predict toxicity of a drug

Toxic?

Deep Learning Meets Graphs: Challenges

Traditional DL is designed for simple grids or sequences

- CNNs for fixed-size images/grids
- RNNs for text/sequences

But nodes on graphs have different connections

- Arbitrary neighbor size
- Complex topological structure
- No fixed node ordering

Graph Representation

Graph: $G=\{V, E\}$
Nodes: $V=\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}$
Edges: $E=\left\{e_{1}, e_{2}, \ldots, e_{M}\right\} \subset V \times V$

Node Embedding

$$
\operatorname{Enc}(\cdot): V \rightarrow \mathbb{R}^{d}
$$

"Shallow" Node Embedding

- is just a lookup-table
embedding

Embedding matrix
$\mathbf{Z}=$

Deep Graph Neural Network

Graph
Convolution

Graph
Convolution

Output is embedding matrix for nodes
for further downstream tasks: e.g. node classification n_{11}

Graph Neural Network

Every node's neighbor defines a convolutional kernel

aggregate information from its neighbors

Aggregate Neighbors

h_{i} : node (hidden) embedding vector
aggregate information from its neighbors

$N\left(v_{i}\right):$ Neighbors of the node v_{i}.
$f(\cdot)$: Feedforward network.

Multiple Computation Layers

A Simple Graph Convolution Layer

- Simple approach: averaging neighbor's message and apply nonlinear transformation
initial embedding: $\quad h_{i}^{0}=x_{i}$

computing next layer:

$$
h_{i}^{k+1}=\sigma\left(W_{k} \frac{1}{\left|N\left(v_{i}\right)\right|} \sum_{v_{j} \in N\left(v_{i}\right)} h_{j}^{k}+B_{k} h_{i}^{k}\right)
$$

$$
h_{1}^{2}=\tanh \left(W_{1} \cdot \frac{1}{3}\left(h_{3}^{1}+h_{5}^{1}+h_{8}^{1}\right)+B_{1} h_{1}^{1}\right)
$$

A Simple Graph Convolution Layer

- More layers:

$h_{1}^{(3)}=\tanh \left(W_{2} \cdot \frac{1}{3}\left(h_{3}^{(2)}+h_{5}^{(2)}+h_{8}^{(2)}\right)+B_{2} h_{1}^{(2)}\right)$

Matrix Representations of Graphs

Adjacency Matrix: $A[i, j]=1$ if v_{i} is adjacent to v_{j}

$$
A[i, j]=0, \text { otherwise }
$$

Adjacency Matrix \boldsymbol{A}

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representation of GCN

- Neighbor Aggregation can be performed efficiently using matrix operations
$H^{k}=\left[h_{1}^{k}, \ldots, h_{|V|}^{k}\right]^{T}$
Then $\sum h_{j}^{k}=A_{i,:} H^{k}$

$$
v_{j} \in N\left(v_{i}\right)
$$

Let D be diagonal matrix (0 elsewhere)
$D_{i, i}=\operatorname{Degree}\left(v_{i}\right)=\sum_{j} A_{i, j}$
Then $\frac{1}{\left|N\left(v_{i}\right)\right|} \sum_{v_{j} \in N\left(v_{i}\right)} h_{j}^{k}=D^{-1} A H^{k}$

Aggregation Neighbor's Information in

 Matrix form

Graph Convolution in Matrix Form

- Neighbor Aggregation can be performed efficiently using matrix operations
$H^{k}=\left[h_{1}^{k}, \ldots, h_{|V|}^{k}\right]^{T}$
$\tilde{A}=D^{-1} A$
$H^{k+1}=\sigma\left(\tilde{A} H^{k} \cdot W_{k}^{T}+H^{k} B_{k}^{T}\right)$

Graph Convolution Network

- Neighbor Aggregation can be performed efficiently using matrix operations
- To make \tilde{A} symmetric
$H^{k}=\left[h_{1}^{k}, \ldots, h_{|V|}^{k}\right]^{T}$
$\tilde{A}=D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$
$H^{k+1}=\sigma\left(\tilde{A} H^{k} \cdot W_{k}^{T}+H^{k} B_{k}^{T}\right)$

Prediction Layer

- For node classification:

$$
o_{i}=\operatorname{Softmax}\left(h_{i}^{(m)}\right)
$$

- For graph classification:

$$
o=\operatorname{Softmax}\left(\frac{1}{N} \sum_{i} h_{i}^{(m)}\right)
$$

Property: Equivariant

- the embeddings computed from graph convolution layers is invariant to node permutation

$$
\begin{aligned}
& h_{i}^{0}=x_{i} \\
& h_{i}^{k+1}=\sigma\left(W_{k} \frac{1}{\left|N\left(v_{i}\right)\right|} \sum_{v_{j} \in N\left(v_{i}\right)} h_{j}^{k}+B_{k} h_{i}^{k}\right)
\end{aligned}
$$

Model Training

- Parameters: weight matrix for each layer

$$
h_{i}^{k+1}=\sigma\left(W_{k} \frac{1}{\left|N\left(v_{i}\right)\right|} \sum_{v_{j} \in N\left(v_{i}\right)} h_{j}^{k}+B_{k} h_{i}^{k}\right)
$$

- Supervised training: e.g. Node classification
- Linked nodes have similar embedding

$$
L=\sum_{i} C E\left(y_{i}, f\left(h_{i}^{K}\right)\right) \quad f_{i}=\operatorname{Softmax}\left(h_{i}^{(K)}\right)
$$

$-y_{i}$ is node label

Model Training

- Parameters: weight matrix for each layer

$$
h_{i}^{k+1}=\sigma\left(W_{k} \frac{1}{\left|N\left(v_{i}\right)\right|} \sum_{v_{j} \in N\left(v_{i}\right)} h_{j}^{k}+B_{k} h_{i}^{k}\right)
$$

- Unsupervised training:
- Linked nodes have similar embedding
$L=\sum_{i, j} C E\left(y_{i, j}, \operatorname{Sim}\left(h_{i}^{K}, h_{j}^{K}\right)\right)$
$-y_{i, j}=1$ if there is edge from $\mathrm{v}_{\mathbf{-}} \mathrm{i}$ to v
- Similarity can be defined in many ways: e.g. inner product $h_{i} \cdot h_{j}$

Generic GNN framework

GNN layer = message passing + Aggregation

- different design choices under this framework
- Graph convolutional network (GCN)
- GraphSAGE
- GAT

Message Computation

- Each node will create a message
- e.g. Linear projection

$$
m_{i}^{k}=W_{k} \cdot h_{i}^{(k)}
$$

Aggregation/Pooling

- Each node will aggregate messages from its neighbors
- e.g.
- Sum, Mean, Max operator
- Concat(AGG\{m_j\}, m_i)
- Apply nonlinear activation

GraphSAGE

$h_{i}^{k+1}=\sigma\left(W_{k} \cdot \operatorname{CONCAT}\left(h_{i}^{k}, \operatorname{AGG}\left(\left\langle h_{j}^{k} ; \forall_{j} \in N\left(v_{j}\right)\right\rangle\right)\right)\right)$
AGG can be designed in multiple ways, like pooling (sum, avg, max)

Graph Attention Network (GAT)

$$
h_{i}^{k+1}=\sigma\left(\sum_{v_{j} \in N\left(v_{i}\right)} \alpha_{i j} W_{k} h_{v_{j}}^{k}\right)
$$

attention weight $\alpha_{i j}=\operatorname{Attention}\left(W_{k} h_{i}, W_{k} h_{j}\right)=\frac{\exp \left(W_{k} h_{i}{ }^{T} W_{k} h_{j}\right.}{\sum_{j^{\prime}} \exp \left(W_{k} h_{i}\right)^{T} W_{k} h_{j^{\prime}}}$

Multi-head Attention for GAT? Yes

$$
h_{i}^{k+1}=\sigma\left(\sum_{v_{j} \in N\left(v_{i}\right)} \alpha_{i j} W_{k} h_{v_{j}}^{k}\right)
$$

$\exp \left(W_{k} h_{i}\right)^{T} W_{k} h_{j}$
$\alpha_{i j}=\operatorname{Attention}\left(W_{k} h_{i}, W_{k} h_{j}\right)=\frac{\sum_{j^{\prime}} \exp \left(W_{k} h_{i}\right)^{T} W_{k} h_{j^{\prime}}}{\sum^{\prime}}$

Quiz

- https://edstem.org/us/courses/31035/ lessons/57873/slides/325166

Tasks on Graph-Structured Data

Node-level
Link Prediction

t

Node Classification

Graph-level
Graph Classification

Relation between GNN and CNN

Graph

CNN can be viewed as a special GNN on grid graph ${ }^{34}$

GNN vs. Transformer

- Transformer is special GNN on a fullconnected graph

Book: Deep Learning on Graphs

https://cse.msu.edu/~mayao4/ dlg book/

Summary

- Graph neural network
- message passed along graph edges
- aggregate message/embedding by FFN
- many variants

Next Up

- Variational Auto-Encoder

