CS 190I Deep Learning Sequence-to-sequence Learning and Transformer

Lei Li (leili@cs)
UCSB

Outline

- Recurrent Neural Network (last lecture)
- Sequence-to-sequence learning (this lecture)
- Transformer network (this lecture)
- Pretrained Language Models (next)
 - BERT
 - GPT, ChatGPT

Encoder-Decoder Paradigm

A generic formulation for many tasks

Encoder-Decoder Paradigm

我喜欢唱歌和跳舞。 Machine Translation I like singing and dancing.

Image Captioning

A giraffe standing next to forest

Automatic Speech Recognition

"Alexa, turn off the lights"

Graduate student reading Text-to-Image Generation papers on beach

Sequence To Sequence (Seq2seq)

 Machine translation as directly learning a function mapping from source sequence to target sequence

Sequence To Sequence (Seq2seq)

 Machine translation as directly learning a function mapping from source sequence to target sequence

$$P(Y|X) = \prod P(y_t|y_{< t}, x)$$

Training loss: Cross-Entropy

$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_{n}, y_{n,1}, \dots, y_{n,t-1})$$

Teacher-forcing during training. (pretend to know groundtruth for prefix)

Source: 天

Decoder: LSTM

好

Stacked LSTM for seq-2-seq

More layers of LSTM

Limitation of RNN/LSTM

Source: 天 气很 好 Decoder: LSTM

- No full context (only oneside)
 - Bidirectional LSTM encoder could alleviate
 - But still no long context
- Sequential computation in nature (encoder)
 - not possible to parallelize the computation
- Vanishing gradient

Motivation for New Network Architecture

- Full context and parallel: use Attention in both encoder and decoder
- no recurrent

Source: 我喜欢唱歌和跳舞。

Attention

Each output token depends on input tokens differently

A context vector c represents the related source context for current predicting word.

$$\alpha_{mj} = \text{Softmax}(D(g_m, h_{1...n})) = \frac{\exp(D(g_m, h_j))}{\sum_k \exp(D(g_m, h_k))}$$

$$c_m = \sum_{i} \alpha_{mj} h_j$$

$$D(g_m, h_j) = g_m \cdot h_j$$

The probability of word <u>y_i</u> is computed as:

$$p(y_m) = \text{Softmax}(W \cdot \begin{bmatrix} g_m \\ c_m \end{bmatrix} + b)$$

Transformer

How Does Transformer Translate?

Transformer Multi-head Attention

- C layers of encoder (=6)
- D layers of decoder (=6)

MultiHead Attention And Feed Forward Network

Scaled Dot-Product Attention

Attention(Q, K, V) = Softmax(
$$\frac{QK^T}{\sqrt{d}}$$
)V

Multi-head Attention

- Instead of one vector for each token
- break into multiple heads
- each head perform attention

$$\text{Head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$

 $MultiHead(Q, K, V) = Concat(Head_1, Head_2, ..., Head_h)W^o$

Self-Attention for Decoder

Maskout right side before softmax (-inf)

Feedforward Net

- FFN(x) = $\max(0, x \cdot W_1 + b_1) \cdot W_2 + b_2$
- internal dimension size = 2048 (in Vaswani 2017)

Residual Connection and Layer Normalization

Residual Connection

Make it zero mean and unit variance within

layer

Post-norm

Pre-norm

Embedding

- Token Embedding: 512 (base), 1024 (large)
 - Shared (tied) input and output embedding
- Positional Embedding:
 - to distinguish words in different position, Map position labels to embedding, dimension is same as Tok Emb

$$PE_{pos,2i} = \sin(\frac{pos}{1000^{2i/d}})$$

$$PE_{pos,2i+1} = \cos(\frac{pos}{1000^{2i/d}})$$

Transformer

Training Loss

$$P(Y|X) = \prod P(y_t|y_{< t}, x)$$

Training loss: Cross-Entropy

$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_n, y_{n,1}, ..., y_{n,t-1})$$

Teacher-forcing during training.

(pretend to know groundtruth for prefix)

target:

I like singing and dancing.

Source: 我喜欢唱歌和跳舞。

Training

- Dropout
 - Applied to before residual
 - and to embedding, pos emb.
 - $p=0.1 \sim 0.3$
- Label smoothing
 - 0.1 probability assigned to non-truth
- Vocabulary:
 - En-De: 37K using BPE
 - En-Fr: 32k word-piece (similar to BPE)

Label Smoothing

• Assume $y \in \mathbb{R}^n$ is the one-hot encoding of label $y_i = \begin{cases} 1 & \text{if belongs to class } i \\ 0 & \text{otherwise} \end{cases}$

- Approximating 0/1 values with softmax is hard
- The smoothed version

$$y_i = \begin{cases} 1 - \epsilon & \text{if belongs to class } i \\ \epsilon/(n-1) & \text{otherwise} \end{cases}$$

– Commonly use $\epsilon = 0.1$

Training

Batch

- group by approximate sentence length
- still need shuffling

Hardware

- one machine with 8 GPUs (in 2017 paper)
- base model: 100k steps (12 hours)
- large model: 300k steps (3.5 days)

Adam Optimizer

increase learning rate during warmup, then decrease

$$\eta = \frac{1}{\sqrt{d}} \min(\frac{1}{\sqrt{t}}, \frac{t}{\sqrt{t_0^3}})$$

ADAM

$$m_{t+1} = \beta_1 m_t - (1 - \beta_1) \nabla \ell(x_t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) (\nabla \ell(x_t))^2$$

$$\hat{m}_{t+1} = \frac{m_{t+1}}{1 - \beta_1^{t+1}}$$

$$\hat{v}_{t+1} = \frac{v_{t+1}}{1 - \beta_2^{t+1}}$$

$$x_{t+1} = x_t - \frac{\eta}{\sqrt{\hat{v}_{t+1} + \epsilon}} \hat{m}_{t+1}$$

Model Average

- A single model obtained by averaging the last 5 checkpoints, which were written at 10-minute interval (base)
- decoding length: within source length + 50

Quiz

 https://edstem.org/us/courses/31035/ lessons/57196/slides/321725

Sequence Decoding

Autoregressive Generation

greedy decoding: output the token with max next token prob

But, this is not necessary the best

Inference

- Now already trained a model heta
- Decoding/Generation: Given an input sentence x, to generate the target sentence y that maximize the probability $P(y \mid x; \theta)$
- $\underset{y}{\bullet} \operatorname{argmax} P(y \mid x) = f_{\theta}(x, y)$
- Two types of error
 - the most probable translation is bad → fix the model
 - search does not find the most probably translation → fix the search
- Most probable translation is not necessary the highest BLEU one!

Decoding

$$\underset{y}{\text{argmax}} P(y \mid x) = f_{\theta}(x, y)$$

- naive solution: exhaustive search
 - too expensive
- Beam search
 - (approximate) dynamic programming

Beam Search

- start with empty S
- at each step, keep k best partial sequences
- expand them with one more forward generation
- collect new partial results and keep top-k

Beam Search (pseudocode)

```
best_scores = []
add {[0], 0.0} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length:
  new_seqs = PriorityQueue()
  for (candidate, s) in best_scores:
    if candidate[-1] is EOS:
        prob = all - inf
        prob[EOS] = 0
      else:
      prob = using model to take candidate and compute next token
probabilities (logp)
    pick top k scores from prob, and their index
    for each score, index in the top-k of prob:
      new_candidate = candidate.append(index)
      new score = s + score
      if not new_seqs.full():
```

Beam Search

Machine Translation using Seq2seq and Transformer

LSTM Seq2Seq w/ Attention

Jean et al. On Using Very Large Target Vocabulary for Neural Machine Translation, 2015

Performance with Model Ensemble

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

Results on WMT14

Model	BL	EU	Training C	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [15]	23.75					
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$		
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$		
Transformer (base model)	27.3	38.1		10 ¹⁸		
Transformer (big)	28.4	41.0	$2.3 \cdot$	10^{19}		

Effectiveness of Choices

- num. head
- dim of key
- num layers
- hid dim
- ffn dim
- dropout
- pos emb

	N	$d_{ m model}$	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params ×10 ⁶
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
(B)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Deep Transformer

- 30 ~ 60 encoder
- 12 decoder
- dynamic linear combination of layers (DLCL)
 - or. deeply supervised
 - combine output from all layers

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

	Model	Param.	Batch (×4096)	Updates (×100k)	†Times	BLEU	Δ
Vasw	rani et al. (2017) (Base)	65M	1	1	reference	27.3	-
Bapna et	al. (2018)-deep (Base, 16L)	137M	-	-	-	28.0	-
Vasv	vani et al. (2017) (Big)	213M	1	3	-3x	28.4	
Che	en et al. (2018a) (Big)	379M	16	$^{\dagger}0.075$	1.2x	28.5	-
He et al. (2018) (Big)		†210M	1	-	-	29.0	-
Shaw et al. (2018) (Big)		†210M	1	3	3x	29.2	-
Dou et al. (2018) (Big)		356M	1	-	-	29.2	-
Ott et al. (2018) (Big)		210M	14	0.25	3.5x	29.3	-
	Transformer (Base)	62M	1	1	1x	27.5	reference
	Transformer (Big)	211M	1	3	3x	28.8	+1.3
post-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1x	failed	failed
-	DLCL (Base)	62M	1	1	1x	27.6	+0.1
	DLCL-deep (Base, 25L)	121M	2	0.5	1x	29.2	+1.7
pre-norm	Transformer (Base)	62M	1	1	1x	27.1	reference
	Transformer (Big)	211M	1	3	3x	28.7	+1.6
	Transformer-deep (Base, 20L)	106M	2	0.5	1x	28.9	+1.8
	DLCL (Base)	62M	1	1	1x	27.3	+0.2
	DLCL-deep (Base, 30L)	137M	2	0.5	1x	29.3	+2.2

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Model	Param.	newstest17	newstest18	$\Delta_{avg.}$
Wang et al. (2018a) (post-norm, Base)	102.1M	25.9	-	-
pre-norm Transformer (Base)	102.1M	25.8	25.9	reference
pre-norm Transformer (Big)	292.4M	26.4	27.0	+0.9
pre-norm DLCL-deep (Base, 25L)	161.5M	26.7	27.1	+1.0
pre-norm DLCL-deep (Base, 30L)	177.2M	26.9	27.4	+1.3

Table 4: BLEU scores [%] on WMT'18 Chinese-English translation.

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Hot Topics in MT

- Parallel Decoding (e.g. NAT, GLAT, DAT,...)
- Low-resource MT
- Unsupervised MT
- Multilingual NMT, Zero-shot NMT
- Speech-to-text translation
 - (Offline) ST
 - Streaming ST

Summary

- Key components in Transformer
 - Positional Embedding (to distinguish tokens at different pos)
 - Multihead attention
 - Residual connection
 - layer norm
- Transformer is effective for machine translation, and many other tasks

Next Up

- Pretraining for NLP
 - BERT
 - GPT, ChatGPT