CS 190I Deep Learning Object Detection

Lei Li (leili@cs) UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and Mu Li & Alex Smola's 157 courses on Deep Learning, with modification

Survey Result

Lecture Topic:

А	VAE	17%
В	GAN	35%
С	Diffusion Generative Models	37%
D	Deep Learning for Recommender Systems	30%
Е	Graph Neural Network	42%
F	ChatGPT	65%

Industrial Lecture:

Α	Computer Vision applications in industry	38%
D	NLP applications in industry	71%
D	NLP applications in industry	7190
С	Recommender systems in industry	30%

NLP Seminar

Why Task Centricity Matters When You Build for Industry Applications

Sameena Shah, Ph.D. Managing Director, J.P. Morgan Artificial Intelligence Research Friday, February 24th, 2023 12:00 pm - 1:00 pm HH 1010

Host: William Wang

Abstract:

The use of AI in finance is gaining traction as organizations realize the advantages of using algorithms to streamline and improve the accuracy of financial tasks. The data, models, algorithms, and solutions are all evolving over time but the task often stays for a longer time. We need to develop a task-centric view of AI. Step through use cases that examine how a task-centric view of AI can be used to minimize financial risk, maximize financial returns, optimize venture capital funding by connecting entrepreneurs to the right investors.

Bio:

Sameena Shah is a Managing Director, Artificial Intelligence Research in Digital & Platform Services, where she and the team work across the firm to create Artificial Intelligence technologies for business transformation and growth. She is a highly accomplished leader with over 20 years of educational and industry experience in AI, engineering, data. Her leadership has resulted in award-winning AI technologies that have transformed products and businesses. Read more about Sameena and her accomplishments in the flyer attached below.

- Gradient descent can be sped up by incremental updates
 - Convergence is guaranteed under most conditions
 - Learning rate must shrink with time for convergence
 - Stochastic gradient descent: update after each observation.
 Can be much faster than batch learning
 - Mini-batch updates: update after batches. Can be more efficient than SGD
- Convergence can be improved using smoothed updates
 - AdaGrad, RMSprop, Adam and more advanced techniques

AdaGrad

 AdaGrad (Duchi, Hazan, and Singer 2010) very popular adaptive method.

$$G_{t+1} = G_t + \nabla \ell(x_t)^2$$

$$x_{t+1} = x_t - \eta \frac{1}{\sqrt{G_{t+1} + \epsilon}} \nabla \ell(x_t)$$

element-wise

- Benefits:
 - AdaGrad does not require tuning learning rate η
 - Actual learning rate will decrease
 - Can drastically improve over SGD

Image classification

Dog

Critical in applications: autonomous driving

Locating the Object: Bounding Box

- A bounding box can be defined by 4 numbers,
 - (top-left x, top-left y, bottom-right x, bottom-right y)
 - (top-left x, top-right y, width, height)

Object Detection Dataset

- Each row present an object
 - Image_filename, object_category, bounding box
- PASCAL VOC
 - 11.53k images, 27.45k objects, 20 classes
- COCO (<u>cocodataset.org</u>)
 - 80 object classes
 - 330K images
 - 1.5M objects

Object Detection Dataset

- Open Image (v6):
 - 9M images,
 - 1.9M images with 16M bounding boxes, 600 classes
 - Includes 3.3M visual relations (of 1466 types)
 - <u>https://storage.googleapis.com/</u>
 <u>openimages/web/factsfigures.html</u>
- BDD100k
 - 100k videos in driving scenario
 - <u>https://github.com/bdd100k/</u>
 <u>bdd100k</u>

Anchor Boxes

- A detection algorithm often
 - Proposes multiple regions, called anchor boxes
 - Predict if an anchor box contains an object
 - If yes, predict the offset from the anchor box to the ground truth bounding box

IoU - Intersection over Union

- IoU measures the similarity between two boxes
 - 0 means no-overlapping
 - 1 means identical
- It's an especial case of Jacquard index
 - Given sets A and B $J(A,B) = \frac{|A \cap B|}{|A \cup B|}$

Assign Labels to Anchor Boxes

- Each anchor box is a training example
- Label each anchor box with
 - Background
 - Associate with a bounding box
- We may generate a large amount of anchor boxes
 - Leads to a large portion of negative examples

Assign Labels to Anchor Boxes

Output with non-maximum suppression (NMS)

- Each anchor box generates one bounding box prediction
- Select the one with the highest score (not background)
- Remove all other predictions with IoU > θ compared to the selected one
- Repeat until all are selected or removed

Region-based CNNs

R-CNN

- Select anchor boxes with a heuristic algorithm
- Use a pre-trained networks to extract features for each anchor box
 - Adding classifier layer
 - and regression layer to predict bounding boxes 18

Region of Interest (Rol) Pooling

- Given an anchor box, uniformly cuts it into *n x m* blocks, output the maximal value in each block
- Returns nm values for each anchor box
- A special case of maxpooling

Fast RCNN

- A CNN to extract features
- Siding windows on the feature maps
- Rol pooling returns fixed length feature for each anchor box

Faster R-CNN

 Use a region proposal network to replace select search for high quality anchor boxes

Faster R-CNN

 Use a region proposal network to replace select search for high quality anchor boxes

https://gluoncv.mxnet.io/ model_zoo/ detection.html

Single Shot Multibox Detection (SSD)

Generate Anchor Boxes

- For each pixel, generate multiple anchor boxes centered at this pixel
- Given *n* sizes $s_1, ..., s_n$ and *m* ratios $r_1, ..., r_m$, generate n+m-1anchor boxes $(s_1, r_1), (s_2, r_1), ..., (s_n, r_1), (s_1, r_2), ..., (s_1, r_m)$

SSD Model

- A base network to extract feature, followed by conv-blocks to halve width and height
- Generate anchor boxes a each sale
 - Bottom for small objects and top for large objects
- Predict class and bounding box for each anchor box

 https://edstem.org/us/courses/31035/ lessons/56184/slides/318357

You Only Look Once (YOLO)

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi CVPR 2016

by J Redmon · 2016 · Cited by 21627

YOLO

- Anchor boxes are highly overlapped in SSD
- YOLO cuts the input image uniformly into S x S anchor boxes
- Each anchor box predicts *B* bounding boxes

 $S \times S$ grid on input

normalize (x,y,w,h) P

(x,y,w,h)Ρ

Each cell also predicts a class probability.

Each cell also predicts a class probability.

Conditioned on object: P(Car I Object)

Then we combine the box and class predictions.

39

Finally we do NMS and threshold detections

The output

Each cell predicts:

- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7 x 7 x (2 x 5 + 20) = 7 x 7 x 30 tensor = **1470 outputs**

A single pipeline for detection

backbone network: VGG16, ResNet101, ...

During training, match example to the right cell

center of object

During training, match example to the right cell

Adjust that cell's class prediction

Dog = 1 Cat = 0 Bike = 0

Look at that cell's predicted boxes

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Decrease the confidence of other boxes

Decrease the confidence of other boxes

Some cells don't have any ground truth detections!

Some cells don't have any ground truth detections!

Decrease the confidence of these boxes

Decrease the confidence of these boxes

Don't adjust the class probabilities or coordinates

Training YOLO

1010

. . .

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] & \text{if i-th cell contain object and} \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ & + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 & \text{if i-th cell contain object and} \\ & + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ & + \sum_{i=0}^{S^2} \mathbb{1}_{ij}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ & + \sum_{i=0}^{S^2} \mathbb{1}_{ij}^{B} \sum_{c \in \text{classes}}^{S} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Other tricks

- Pretraining on Imagenet
- SGD with decreasing learning rate
- Extensive data augmentation

YOLO works across a variety of natural images

It also generalizes well to new domains (like art)

YOLO outperforms methods like DPM and R-CNN when generalizing to person detection in artwork

S. Ginosar, D. Haas, T. Brown, and J. Malik. Detecting people in cubist art. In Computer Vision-ECCV 2014 Workshops, pages 101–116. Springer, 2014.

H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-depiction problem: Computer vision algorithms for recognising objects in artwork and in photographs. 62

Results: Performance vs Speed

		Pascal 2007 mAP	Speed	
	DPM v5	33.7	.07 FPS	14 s/img
	R-CNN	66.0	.05 FPS	20 s/img
	Fast R-CNN	70.0	.5 FPS	2 s/img
	Faster R-CNN	73.2	7 FPS	140 ms/img
	YOLO	69.0	45 FPS	22 ms/img

YOLO Series

- YOLO
- YOLOv2 improves the detection of small objects in groups and the localization accuracy.
 - and adding batch norm
- YOLOv3,
 - 106 layer resnet
 - multi-scale detection (three scales)
- YOLOv4, ...

Additional Tricks: Mixup

Apply to object detection as well

Results for YOLOv3

Incremental Tricks	mAP	$\mid \Delta$	Cumu Δ
- data augmentation	64.26	-15.99	-15.99
baseline	80.25	0	0
+ synchronize BN	80.81	+0.56	+0.56
+ random training shapes	81.23	+0.42	+0.98
+ cosine lr schedule	81.69	+0.46	+1.44
+ class label smoothing	82.14	+0.45	+1.89
+ mixup	83.68	+1.54	+3.43

Zhi et al, Bag of Freebies for Training Object Detection Neural Networks

- Object Detection
 RCNN
 - YOLO: single pipeline model (e2e) for object detection

Next Up

- Recurrent neural networks
- Friday talk on NLP in industry

NLP Seminar

Why Task Centricity Matters When You Build for Industry Applications

Sameena Shah, Ph.D. Managing Director, J.P. Morgan Artificial Intelligence Research Friday, February 24th, 2023 12:00 pm - 1:00 pm HH 1010

Host: William Wang

Abstract:

The use of AI in finance is gaining traction as organizations realize the advantages of using algorithms to streamline and improve the accuracy of financial tasks. The data, models, algorithms, and solutions are all evolving over time but the task often stays for a longer time. We need to develop a task-centric view of AI. Step through use cases that examine how a task-centric view of AI can be used to minimize financial risk, maximize financial returns, optimize venture capital funding by connecting entrepreneurs to the right investors.

Bio:

Sameena Shah is a Managing Director, Artificial Intelligence Research in Digital & Platform Services, where she and the team work across the firm to create Artificial Intelligence technologies for business transformation and growth. She is a highly accomplished leader with over 20 years of educational and industry experience in AI, engineering, data. Her leadership has resulted in award-winning AI technologies that have transformed products and businesses. Read more about Sameena and her accomplishments in the flyer attached below.