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• Back propagation for Feed-forward neural 
network


• Model evaluation

• Cross validation

• Overfitting and underfitting
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Recap
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Underfitting and Overfitting 

Image credit: hackernoon.com



Regularization



• Reduce model 
complexity by limiting 
value range


– Often do not regularize 
bias b 

• Doing or not doing has 

little difference in practice


– A small  means more 
regularization

λ
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L2 Regularization as Hard Constraint

min ℓ(θ) subject to ∥θ∥2 ≤ λ



• Using Lagrangian multiplier method

• Minimizing the loss plus additional penalty


– Hyper-parameter    controls regularization 
importance


–          : no effect

–
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L2 Regularization as Soft Constraint

min ℓ(θ) +
λ
2

∥θ∥2

λ = 0

λ → ∞, θ* → 0
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Illustrate the Effect on Optimal 
Solutions

w̃*
w*

w* = arg min
1
2

∥wT x + b − y∥2
2 +

λ
2

∥w∥2

w̃* = arg min
1
2

∥wT x + b − y∥2
2



• Compute the gradient 
 
 

• Update weight at step t


– Often            , so also called weight decay in deep 
learning 
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Update Rule - Weight Decay

∂
∂θ (ℓ(θ) +

λ
2

∥θ∥2) =
∂ℓ(θ)

∂θ
+ λθ

θt+1 = (1 − ηλ)θt − η
∂ℓ(θt)

∂θt

ηλ < 1

backprop
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Weight Decay in Pytorch
import torch


learning_rate = 1e-3

weight_decay = 1.0

optimizer = 
torch.optim.SGD(model.parameters()
, lr=learning_rate, 
weight_decay=weight_decay)




• Minimizing the loss plus additional penalty


–  is the original loss


–  is penalty (or regularization term), not 
necessary smooth

ℓ(θ)
R(θ)
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General Penalty

min ℓ(θ) + R(θ)



• Minimizing the loss plus additional penalty


–  is the original loss

– using L1 norm as penalty

ℓ(θ)

11

L1 Regularization

min ℓ(θ) + λ |θ |



•  is not always differentiable!

• Soft-threshold (Proximal operator): 




• Update weight at step t








• Also known as Proximal Gradient Descent

ℓ(θ) + λ |θ |

Sλ(x) = sign(x) max(0, |x | − λ) = sign(x)Relu( |x | − λ)

θ̃t = θt − η
∂ℓ(θt)

∂θt

θt+1 = Sλ(θ̃)
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L1 Update Rule - Soft Thresholding



• L1 Regularization

– will make parameters sparse (many parameters 

will be zeros)

– could be useful for model pruning


• L2 Regularization

– will make the parameter shrink towards 0, but not 

necessary 0. 
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Effects of L1 and L2 Regularization



Dropout



• A good model 
should be robust 
under modest 
changes in the input

– Dropout: inject noises 

into internal layers 
(simulating the noise)
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Motivation



• Add noise into x to get x’, we hope 


• Dropout perturbs each element by 
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Add Noise without Bias

E[x′￼] = x

x′￼i = {
0 with probablity p

xi

1 − p otherise



• Often apply dropout on the output of hidden 
fully-connected layers
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Apply Dropout

h = σ(W1x + b1)
h′￼= dropout(h)
o = W2h′￼+ b2

y = softmax(o)



• Dropout is only used in training


• No dropout is applied during inference!

• Pytorch Layer:
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Dropout in Training and Inference

h′￼ = dropout(h)

torch.nn.Dropout(p=0.5)



• From Srivastava et al., 2013.  Test error for different 
architectures on MNIST with and without dropout

– 2-4 hidden layers with 1024-2048 units
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Dropout: Typical results



• Regularization

– to avoid model overfitting

– L1 ==> more sparse parameters

– L2/Weight decay ==> shrink parameters

– Dropout, equivalent to L2, but as a network Layer
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Recap



Numerical Stability



• Consider a network with d layers


• Compute the gradient of the loss    w.r.t. 
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Gradients for Neural Networks

ht = ft(ht−1) and y = ℓ ∘ fd ∘ … ∘ f1(x)

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of d-t matrices
{



• Two common issues with 
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Two Issues for Deep Neural Networks
d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10



• Assume FFN (without bias for simplicity)
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Example: FFN

ft(ht−1) = σ(Wtht−1)

∂ht

∂ht−1
= diag (σ′￼(Wtht−1))(Wt)T

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′￼(Wihi−1))(Wi)T

σ is the activation function

σ′￼ is the gradient function of σ



• Use ReLU as the activation function


• Elements of                                      may 
from


– Leads to large values when d-t is large 
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Gradient Exploding 

σ(x) = max(0,x) and σ′￼(x) = {1  if x > 0
0 otherwise

d−1

∏
i=t

(Wi)T

1.5100 ≈ 4 × 1017

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′￼(Wihi−1))(Wi)T



• Value out of range: infinity value

– Severe for using 16-bit floating points 

‣ Range: 6E-5  ~ 6E4


• Sensitive to learning rate (LR)

– Not small enough LR -> large weights -> larger 

gradients

– Too small LR -> No progress 

– May need to change LR dramatically during 

training
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Issues with Gradient Exploding



• Use sigmoid as the activation function  
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Gradient Vanishing 

σ(x) =
1

1 + e−x
σ′￼(x) = σ(x)(1 − σ(x))

Small Small 



• Use sigmoid as the activation function  


• Elements                                      are 
products of d-t small values
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Gradient Exploding 

σ(x) =
1

1 + e−x
σ′￼(x) = σ(x)(1 − σ(x))

0.8100 ≈ 2 × 10−10

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′￼(Wihi−1))(Wi)T



• Gradients with value 0

– Severe with 16-bit floating points


• No progress in training

– No matter how to choose learning rate


• Severe with bottom layers

– Only top layers are well trained

– No benefit to make networks deeper
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Issues with Gradient Vanishing



• https://edstem.org/us/courses/31035/
lessons/55024/slides/311554
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Survey



Stabilize Training



• Goal: make sure gradient values are in a proper 
range

– E.g. in [1e-6, 1e3]


•  Multiplication -> plus

– ResNet, LSTM (later lecture)


• Normalize

– Gradient clipping

– Batch Normalization / Layer Normalization (later) 


• Proper weight initialization and activation 
functions 
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Stabilize Training



• Initialize weights with 
random values in a proper 
range


• The beginning of training 
easily suffers to numerical 
instability 

– The surface far away from an 

optimal can be complex

– Near optimal may be flatter 


• Initializing according to                  
works well for small 
networks, but not guarantee 
for deep neural networks
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Weight Initialization

𝒩(0, 0.01) near optimal

random 



• Treat both layer outputs and gradients are 
random variables


• Make the mean and variance for each 
layer’s output are same, similar for gradients
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Constant Variance for each Layer

𝔼[ht
i ] = 0

Var[ht
i ] = a

𝔼 [ ∂ℓ
∂ht

i ] = 0 Var [ ∂ℓ
∂ht

i ] = b

Forward Backward

a and b are constants

∀i, t



• Assumptions

– i.i.d       ,

–      is independent to 

– identity activation:                   with                         
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Example: FFN

wt
i,j

ht−1
i wt

i,j

ht = Wtht−1 Wt ∈ ℝnt×nt−1

𝔼[ht
i ] = 𝔼 ∑

j

wt
i,jh

t−1
j = ∑

j

𝔼[wt
i,j]𝔼[ht−1

j ] = 0

𝔼[wt
i,j] = 0, Var[wt

i,j] = γt
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Forward Variance 

Var[ht
i ] = 𝔼[(ht

i )
2] − 𝔼[ht

i ]
2 = 𝔼 ∑

j

wt
i,jh

t−1
j

2

= 𝔼 ∑
j

(wt
i,j)

2

(ht−1
j )

2
+ ∑

j≠k

wt
i,jw

t
i,kh

t−1
j ht−1

k

= ∑
j

𝔼 [(wt
i,j)

2] 𝔼 [(ht−1
j )

2]
= ∑

j

Var[wt
i,j]Var[ht−1

j ] = nt−1γtVar[ht−1
j ] nt−1γt = 1

 is the number of units in t-1 layernt−1



• Apply forward analysis as well
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∂ℓ
∂ht−1

=
∂ℓ
∂ht

Wt ( ∂ℓ
∂ht−1 )

T

= (Wt)T( ∂ℓ
∂ht )

T

leads to

Backward Mean and Variance

𝔼 [ ∂ℓ
∂ht−1

i ] = 0

Var [ ∂ℓ
∂ht−1

i ] = ntγtVar [ ∂ℓ
∂ht

j ] ntγt = 1



• Conflict goal to satisfies both  and 



• Xavier

– Normal distribution 

– Uniform distribution

‣ Variance of               is 


• Adaptive to weight shape, especially when 
 varies

nt−1γt = 1
ntγt = 1

nt
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Xavier Initialization

γt(nt−1 + nt)/2 = 1 →

𝒩 (0, 2/(nt−1 + nt))
𝒰 (− 6/(nt−1 + nt), 6/(nt−1 + nt))

𝒰[−a, a] a2/3

γt = 2/(nt−1 + nt)



• Continued training can result in over fitting to 
training data

– Track performance on a held-out validation set

– Apply one of several early-stopping criterion to 

terminate training when performance on validation set 
degrades significantly

error

epochs

training

validation
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Other heuristics: Early stopping



• Often the derivative will be too high

– When the divergence has a steep slope

– This can result in instability


• Gradient clipping: set a ceiling on derivative value


– Typical value is 5

– Can be easily set in pytorch/tensorflow

𝑖𝑓 𝜕𝑤𝐷 >  𝜃 𝑡h𝑒𝑛  𝜕𝑤𝐷 = 𝜃
𝜃 
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Additional heuristics: Gradient clipping

Loss

w



• Numerical issues in training

– gradient explosion

– gradient vanishing


• Proper initialization of parameters
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Recap



• Reading Material: Chap 7 in D2L

• Convolutional Neural Networks

• Visual perception: 


– Image classification

– Object recognition

– Face detection
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Next Up


