CS 190I Deep Learning Regularization

Lei Li (leili@cs) UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and Mu Li & Alex Smola's 157 courses on Deep Learning, with modification

Recap

- Back propagation for Feed-forward neural network
- Model evaluation
- Cross validation
- Overfitting and underfitting

Underfitting and Overfitting

Image credit: hackernoon.com

Regularization

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

L₂ Regularization as Hard Constraint

 Reduce model complexity by limiting value range

min $\ell(\theta)$ subject to $\|\theta\|^2 \leq \lambda$

- Often do not regularize bias b
 - Doing or not doing has little difference in practice
- A small λ means more regularization

L₂ Regularization as Soft Constraint

- Using Lagrangian multiplier method
- Minimizing the loss plus additional penalty

$$\min \ \ell(\theta) + \frac{\lambda}{2} \|\theta\|^2$$

- Hyper-parameter controls regularization importance
- $\lambda = 0$: no effect
- $\hat{} \lambda \to \infty, \theta^* \to \mathbf{0}$

Illustrate the Effect on Optimal Solutions

$$\mathbf{w}^{*} = \arg\min \frac{1}{2} ||w^{T}x + b - y||_{2}^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

$$\mathbf{w}^{*} = \arg\min \frac{1}{2} ||w^{T}x + b - y||_{2}^{2}$$

Update Rule - Weight Decay

• Compute the gradient

$$\frac{\partial}{\partial \theta} \left(\ell(\theta) + \frac{\lambda}{2} \|\theta\|^2 \right) = \frac{\partial \ell(\theta)}{\partial \theta} + \lambda \theta$$

- Update weight at step *t* $\theta_{t+1} = (1 - \eta\lambda)\theta_t - \eta \frac{\partial \ell(\theta_t)}{\partial \theta_t}$ backprop
 - Often $\eta\lambda < 1$, so also called weight decay in deep learning

Weight Decay in Pytorch

import torch

```
learning_rate = 1e-3
weight_decay = 1.0
optimizer =
torch.optim.SGD(model.parameters()
, lr=learning_rate,
weight_decay=weight_decay)
```


Minimizing the loss plus additional penalty

 $\min \ \mathcal{E}(\theta) + R(\theta)$

- $\mathscr{\ell}(\theta)$ is the original loss
- $R(\theta)$ is penalty (or regularization term), not necessary smooth

L1 Regularization

Minimizing the loss plus additional penalty

$$\min \ \ell(\theta) + \lambda |\theta|$$

- $\ell(\theta)$ is the original loss
- using L1 norm as penalty

L1 Update Rule - Soft Thresholding

- $\ell(\theta) + \lambda |\theta|$ is not always differentiable!
- Soft-threshold (Proximal operator):

 $S_{\lambda}(x) = \operatorname{sign}(x) \max(0, |x| - \lambda) = \operatorname{sign}(x)\operatorname{Relu}(|x| - \lambda)$

• Update weight at step t

$$\tilde{\theta}_t = \theta_t - \eta \frac{\partial \ell(\theta_t)}{\partial \theta_t}$$

 $\theta_{t+1} = S_{\lambda}(\tilde{\theta})$

Also known as Proximal Gradient Descent

Effects of L1 and L2 Regularization

- L1 Regularization
 - will make parameters sparse (many parameters will be zeros)
 - could be useful for model pruning
- L2 Regularization
 - will make the parameter shrink towards 0, but not necessary 0.

Motivation

- A good model should be robust under modest changes in the input
 - Dropout: inject noises
 into internal layers
 (simulating the noise)

Add Noise without Bias

• Add noise into **x** to get **x**', we hope

$$\mathbf{E}[\mathbf{x}'] = \mathbf{x}$$

Dropout perturbs each element by

$$x'_{i} = \begin{cases} 0 & \text{with probablity } p \\ \frac{x_{i}}{1-p} & \text{otherise} \end{cases}$$

Apply Dropout

 Often apply dropout on the output of hidden fully-connected layers

 $\mathbf{h} = \sigma(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$ $\mathbf{h}' = dropout(\mathbf{h})$ $\mathbf{o} = \mathbf{W}_2\mathbf{h}' + \mathbf{b}_2$ $\mathbf{y} = softmax(o)$

Dropout in Training and Inference

- Dropout is only used in training
 h' = dropout(h)
- No dropout is applied during inference!
- Pytorch Layer:

torch.nn.Dropout(p=0.5)

Dropout: Typical results

- Regularization
 - to avoid model overfitting
 - L1 ==> more sparse parameters
 - L2/Weight decay ==> shrink parameters
 - Dropout, equivalent to L2, but as a network Layer

Numerical Stability

Gradients for Neural Networks

Consider a network with d layers

$$\mathbf{h}^t = f_t(\mathbf{h}^{t-1})$$
 and $y = \ell \circ f_d \circ \dots \circ f_1(\mathbf{x})$

• Compute the gradient of the loss w.r.t. W_{t}

Multiplication of *d-t* matrices

Two Issues for Deep Neural Networks

Two common issues with

Gradient Exploding

$1.5^{100} \approx 4 \times 10^{17}$

Gradient Vanishing

 $0.8^{100}\approx 2\times 10^{-10}$

• Assume FFN (without bias for simplicity)

 $f_t(\mathbf{h}^{t-1}) = \sigma(\mathbf{W}^t \mathbf{h}^{t-1})$ σ is the activation function

 $\frac{\partial \mathbf{h}^{t}}{\partial \mathbf{h}^{t-1}} = \operatorname{diag} \left(\sigma'(\mathbf{W}^{t} \mathbf{h}^{t-1}) \right) (W^{t})^{T} \quad \sigma' \text{ is the gradient function of } \sigma$

$$\prod_{i=t}^{d-1} \frac{\partial \mathbf{h}^{i+1}}{\partial \mathbf{h}^i} = \prod_{i=t}^{d-1} \operatorname{diag} \left(\sigma'(\mathbf{W}^i \mathbf{h}^{i-1}) \right) (W^i)^T$$

Gradient Exploding

Use ReLU as the activation function

$$\sigma(x) = \max(0,x)$$
 and $\sigma'(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

• Elements of from $\prod_{i=t}^{d-1} \frac{\partial \mathbf{h}^{i+1}}{\partial \mathbf{h}^i} = \prod_{i=t}^{d-1} \operatorname{diag} \left(\sigma'(\mathbf{W}^i \mathbf{h}^{i-1}) \right) (W^i)^T \qquad \text{may}$

Leads to large values when *d-t* is large

$$1.5^{100} \approx 4 \times 10^{17}$$

Issues with Gradient Exploding

- Value out of range: infinity value
 - Severe for using 16-bit floating points
 - ► Range: 6E-5 ~ 6E4
- Sensitive to learning rate (LR)
 - Not small enough LR -> large weights -> larger gradients
 - Too small LR -> No progress
 - May need to change LR dramatically during training

Gradient Vanishing

Use sigmoid as the activation function

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Gradient Exploding

Use sigmoid as the activation function

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

• Elements $\prod_{i=t}^{d-1} \frac{\partial \mathbf{h}^{i+1}}{\partial \mathbf{h}^i} = \prod_{i=t}^{d-1} \operatorname{diag} \left(\sigma'(\mathbf{W}^i \mathbf{h}^{i-1}) \right) (W^i)^T \qquad \text{are}$ products of *d-t* small values

 $0.8^{100}\approx 2\times 10^{-10}$

Issues with Gradient Vanishing

- Gradients with value 0
 - Severe with 16-bit floating points
- No progress in training
 - No matter how to choose learning rate
- Severe with bottom layers
 - Only top layers are well trained
 - No benefit to make networks deeper

 https://edstem.org/us/courses/31035/ lessons/55024/slides/311554

Stabilize Training

Stabilize Training

- Goal: make sure gradient values are in a proper range
 - E.g. in [1e-6, 1e3]
- Multiplication -> plus
 - ResNet, LSTM (later lecture)
- Normalize
 - Gradient clipping
 - Batch Normalization / Layer Normalization (later)
- Proper weight initialization and activation functions

Weight Initialization

- Initialize weights with random values in a proper range
- The beginning of training easily suffers to numerical instability
 - The surface far away from an optimal can be complex
 - Near optimal may be flatter
- Initializing according to $\mathcal{N}(0, 0.01)$ works well for small networks, but not guarantee for deep neural networks

Constant Variance for each Layer

- Treat both layer outputs and gradients are random variables
- Make the mean and variance for each layer's output are same, similar for gradients Forward Backward

$$\mathbb{E}[h_i^t] = 0 \qquad \mathbb{E}\left[\frac{\partial \ell}{\partial h_i^t}\right] = 0 \quad \text{Var}\left[\frac{\partial \ell}{\partial h_i^t}\right] = b \qquad \forall i, t$$
$$\text{Var}[h_i^t] = a \qquad \mathbb{E}\left[\frac{\partial \ell}{\partial h_i^t}\right] = 0 \quad \text{Var}\left[\frac{\partial \ell}{\partial h_i^t}\right] = b \qquad \forall i, t$$

a and b are constants

Example: FFN

- **Assumptions** $\mathbb{E}[w_{i,j}^t] = 0$, $\operatorname{Var}[w_{i,j}^t] = \gamma_t$
 - i.i.d $w_{i,j}^t$,
 - h_i^{t-1} is independent to $w_{i,j}^t$
 - identity activation: $\mathbf{h}^{t} = \mathbf{W}^{t}\mathbf{h}^{t-1}$ with $\mathbf{W}^{t} \in \mathbb{R}^{n_{t} \times n_{t-1}}$

$$\mathbb{E}[h_i^t] = \mathbb{E}\left[\sum_j w_{i,j}^t h_j^{t-1}\right] = \sum_j \mathbb{E}[w_{i,j}^t] \mathbb{E}[h_j^{t-1}] = 0$$

Forward Variance

 n_{t-1} is the number of units in t-1 layer

Backward Mean and Variance

Apply forward analysis as well

$$\frac{\partial \ell}{\partial \mathbf{h}^{t-1}} = \frac{\partial \ell}{\partial \mathbf{h}^t} \mathbf{W}^t \quad \text{leads to} \qquad \left(\frac{\partial \ell}{\partial \mathbf{h}^{t-1}}\right)^T = (W^t)^T \left(\frac{\partial \ell}{\partial \mathbf{h}^t}\right)^T$$

$$\mathbb{E}\left[\frac{\partial \mathcal{E}}{\partial h_i^{t-1}}\right] = 0$$

$$\operatorname{Var}\left[\frac{\partial \ell}{\partial h_i^{t-1}}\right] = n_t \gamma_t \operatorname{Var}\left[\frac{\partial \ell}{\partial h_j^t}\right] \qquad \stackrel{}{\longleftrightarrow} \qquad n_t \gamma_t = 1$$

Xavier Initialization

- Conflict goal to satisfies both $n_{t-1}\gamma_t = 1$ and $n_t \gamma_t = 1$
- Xavier $\gamma_t(n_{t-1} + n_t)/2 = 1 \rightarrow \gamma_t = 2/(n_{t-1} + n_t)$
 - Normal distribution

$$\mathcal{N}\left(0,\sqrt{2/(n_{t-1}+n_t)}\right)$$

Uniform distribution

Uniform distribution
$$\mathscr{U}\left(-\sqrt{6/(n_{t-1}+n_t)}, \sqrt{6/(n_{t-1}+n_t)}\right)$$

• Variance of $\mathscr{U}[-a,a]$ is $a^2/3$

 Adaptive to weight shape, especially when n_t varies

Other heuristics: Early stopping

- Continued training can result in over fitting to training data
 - Track performance on a held-out validation set
 - Apply one of several early-stopping criterion to terminate training when performance on validation set degrades significantly

Additional heuristics: Gradient clipping

- Often the derivative will be too high
 - When the divergence has a steep slope
 - This can result in instability
- Gradient clipping: set a ceiling on derivative value
- $if \partial_w D > \theta then \ \partial_w D = \theta$
 - Typical θ value is 5
- Can be easily set in pytorch/tensorflow

Recap

- Numerical issues in training
 - gradient explosion
 - gradient vanishing
- Proper initialization of parameters

Next Up

- Reading Material: Chap 7 in D2L
- Convolutional Neural Networks
- Visual perception:
 - Image classification
 - Object recognition
 - Face detection