
CS 190I 
Deep Learning 
Regularization

Lei Li (leili@cs)

UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj’s 11485 and Mu
Li & Alex Smola’s 157 courses on Deep Learning, with modification

1

• Back propagation for Feed-forward neural
network

• Model evaluation

• Cross validation

• Overfitting and underfitting

2

Recap

3

Underfitting and Overfitting

Image credit: hackernoon.com

Regularization

• Reduce model
complexity by limiting
value range

– Often do not regularize
bias b

• Doing or not doing has

little difference in practice

– A small means more
regularization

λ

5

L2 Regularization as Hard Constraint

min ℓ(θ) subject to ∥θ∥2 ≤ λ

• Using Lagrangian multiplier method

• Minimizing the loss plus additional penalty

– Hyper-parameter controls regularization
importance

– : no effect

–

6

L2 Regularization as Soft Constraint

min ℓ(θ) +
λ
2

∥θ∥2

λ = 0

λ → ∞, θ* → 0

7

Illustrate the Effect on Optimal
Solutions

w̃*
w*

w* = arg min
1
2

∥wT x + b − y∥2
2 +

λ
2

∥w∥2

w̃* = arg min
1
2

∥wT x + b − y∥2
2

• Compute the gradient 
 
 

• Update weight at step t

– Often , so also called weight decay in deep
learning

8

Update Rule - Weight Decay

∂
∂θ (ℓ(θ) +

λ
2

∥θ∥2) =
∂ℓ(θ)

∂θ
+ λθ

θt+1 = (1 − ηλ)θt − η
∂ℓ(θt)

∂θt

ηλ < 1

backprop

9

Weight Decay in Pytorch
import torch

learning_rate = 1e-3

weight_decay = 1.0

optimizer =
torch.optim.SGD(model.parameters()
, lr=learning_rate,
weight_decay=weight_decay)

• Minimizing the loss plus additional penalty

– is the original loss

– is penalty (or regularization term), not
necessary smooth

ℓ(θ)
R(θ)

10

General Penalty

min ℓ(θ) + R(θ)

• Minimizing the loss plus additional penalty

– is the original loss

– using L1 norm as penalty

ℓ(θ)

11

L1 Regularization

min ℓ(θ) + λ |θ |

• is not always differentiable!

• Soft-threshold (Proximal operator):

• Update weight at step t

• Also known as Proximal Gradient Descent

ℓ(θ) + λ |θ |

Sλ(x) = sign(x) max(0, |x | − λ) = sign(x)Relu(|x | − λ)

θ̃t = θt − η
∂ℓ(θt)

∂θt

θt+1 = Sλ(θ̃)

12

L1 Update Rule - Soft Thresholding

• L1 Regularization

– will make parameters sparse (many parameters

will be zeros)

– could be useful for model pruning

• L2 Regularization

– will make the parameter shrink towards 0, but not

necessary 0.

13

Effects of L1 and L2 Regularization

Dropout

• A good model
should be robust
under modest
changes in the input

– Dropout: inject noises

into internal layers
(simulating the noise)

15

Motivation

• Add noise into x to get x’, we hope

• Dropout perturbs each element by

16

Add Noise without Bias

E[x′￼] = x

x′￼i = {
0 with probablity p

xi

1 − p otherise

• Often apply dropout on the output of hidden
fully-connected layers

17

Apply Dropout

h = σ(W1x + b1)
h′￼= dropout(h)
o = W2h′￼+ b2

y = softmax(o)

• Dropout is only used in training

• No dropout is applied during inference!

• Pytorch Layer:

18

Dropout in Training and Inference

h′￼ = dropout(h)

torch.nn.Dropout(p=0.5)

• From Srivastava et al., 2013. Test error for different
architectures on MNIST with and without dropout

– 2-4 hidden layers with 1024-2048 units

19

Dropout: Typical results

• Regularization

– to avoid model overfitting

– L1 ==> more sparse parameters

– L2/Weight decay ==> shrink parameters

– Dropout, equivalent to L2, but as a network Layer

20

Recap

Numerical Stability

• Consider a network with d layers

• Compute the gradient of the loss w.r.t.

22

Gradients for Neural Networks

ht = ft(ht−1) and y = ℓ ∘ fd ∘ … ∘ f1(x)

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of d-t matrices
{

• Two common issues with

23

Two Issues for Deep Neural Networks
d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10

• Assume FFN (without bias for simplicity)

24

Example: FFN

ft(ht−1) = σ(Wtht−1)

∂ht

∂ht−1
= diag (σ′￼(Wtht−1))(Wt)T

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′￼(Wihi−1))(Wi)T

σ is the activation function

σ′￼ is the gradient function of σ

• Use ReLU as the activation function

• Elements of may
from

– Leads to large values when d-t is large

25

Gradient Exploding

σ(x) = max(0,x) and σ′￼(x) = {1 if x > 0
0 otherwise

d−1

∏
i=t

(Wi)T

1.5100 ≈ 4 × 1017

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′￼(Wihi−1))(Wi)T

• Value out of range: infinity value

– Severe for using 16-bit floating points

‣ Range: 6E-5 ~ 6E4

• Sensitive to learning rate (LR)

– Not small enough LR -> large weights -> larger

gradients

– Too small LR -> No progress

– May need to change LR dramatically during

training

26

Issues with Gradient Exploding

• Use sigmoid as the activation function

27

Gradient Vanishing

σ(x) =
1

1 + e−x
σ′￼(x) = σ(x)(1 − σ(x))

Small Small

• Use sigmoid as the activation function

• Elements are
products of d-t small values

28

Gradient Exploding

σ(x) =
1

1 + e−x
σ′￼(x) = σ(x)(1 − σ(x))

0.8100 ≈ 2 × 10−10

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′￼(Wihi−1))(Wi)T

• Gradients with value 0

– Severe with 16-bit floating points

• No progress in training

– No matter how to choose learning rate

• Severe with bottom layers

– Only top layers are well trained

– No benefit to make networks deeper

29

Issues with Gradient Vanishing

• https://edstem.org/us/courses/31035/
lessons/55024/slides/311554

30

Survey

Stabilize Training

• Goal: make sure gradient values are in a proper
range

– E.g. in [1e-6, 1e3]

• Multiplication -> plus

– ResNet, LSTM (later lecture)

• Normalize

– Gradient clipping

– Batch Normalization / Layer Normalization (later)

• Proper weight initialization and activation
functions

32

Stabilize Training

• Initialize weights with
random values in a proper
range

• The beginning of training
easily suffers to numerical
instability

– The surface far away from an

optimal can be complex

– Near optimal may be flatter

• Initializing according to
works well for small
networks, but not guarantee
for deep neural networks

33

Weight Initialization

𝒩(0, 0.01) near optimal

random

• Treat both layer outputs and gradients are
random variables

• Make the mean and variance for each
layer’s output are same, similar for gradients

34

Constant Variance for each Layer

𝔼[ht
i] = 0

Var[ht
i] = a

𝔼 [∂ℓ
∂ht

i] = 0 Var [∂ℓ
∂ht

i] = b

Forward Backward

a and b are constants

∀i, t

• Assumptions

– i.i.d ,

– is independent to

– identity activation: with

35

Example: FFN

wt
i,j

ht−1
i wt

i,j

ht = Wtht−1 Wt ∈ ℝnt×nt−1

𝔼[ht
i] = 𝔼 ∑

j

wt
i,jh

t−1
j = ∑

j

𝔼[wt
i,j]𝔼[ht−1

j] = 0

𝔼[wt
i,j] = 0, Var[wt

i,j] = γt

36

Forward Variance

Var[ht
i] = 𝔼[(ht

i)
2] − 𝔼[ht

i]
2 = 𝔼 ∑

j

wt
i,jh

t−1
j

2

= 𝔼 ∑
j

(wt
i,j)

2

(ht−1
j)

2
+ ∑

j≠k

wt
i,jw

t
i,kh

t−1
j ht−1

k

= ∑
j

𝔼 [(wt
i,j)

2] 𝔼 [(ht−1
j)

2]
= ∑

j

Var[wt
i,j]Var[ht−1

j] = nt−1γtVar[ht−1
j] nt−1γt = 1

 is the number of units in t-1 layernt−1

• Apply forward analysis as well

37

∂ℓ
∂ht−1

=
∂ℓ
∂ht

Wt (∂ℓ
∂ht−1)

T

= (Wt)T(∂ℓ
∂ht)

T

leads to

Backward Mean and Variance

𝔼 [∂ℓ
∂ht−1

i] = 0

Var [∂ℓ
∂ht−1

i] = ntγtVar [∂ℓ
∂ht

j] ntγt = 1

• Conflict goal to satisfies both and

• Xavier

– Normal distribution

– Uniform distribution

‣ Variance of is

• Adaptive to weight shape, especially when
 varies

nt−1γt = 1
ntγt = 1

nt

38

Xavier Initialization

γt(nt−1 + nt)/2 = 1 →

𝒩 (0, 2/(nt−1 + nt))
𝒰 (− 6/(nt−1 + nt), 6/(nt−1 + nt))

𝒰[−a, a] a2/3

γt = 2/(nt−1 + nt)

• Continued training can result in over fitting to
training data

– Track performance on a held-out validation set

– Apply one of several early-stopping criterion to

terminate training when performance on validation set
degrades significantly

error

epochs

training

validation

39

Other heuristics: Early stopping

• Often the derivative will be too high

– When the divergence has a steep slope

– This can result in instability

• Gradient clipping: set a ceiling on derivative value

– Typical value is 5

– Can be easily set in pytorch/tensorflow

𝑖𝑓 𝜕𝑤𝐷 > 𝜃 𝑡h𝑒𝑛 𝜕𝑤𝐷 = 𝜃
𝜃

40

Additional heuristics: Gradient clipping

Loss

w

• Numerical issues in training

– gradient explosion

– gradient vanishing

• Proper initialization of parameters

41

Recap

• Reading Material: Chap 7 in D2L

• Convolutional Neural Networks

• Visual perception:

– Image classification

– Object recognition

– Face detection

42

Next Up

