CS 1901
Deep Learning
Regularization

Lei Li (leili@cs)
UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and Mu
Li & Alex Smola’s 157 courses on Deep Learning, with modification

Recap

Back propagation for Feed-forward neural
network

Model evaluation
Cross validation
Overfitting and underfitting

Underfitting and Overfitting

® o '

W

Underfitting Desired Overfitting

Image credit: hackernoon.com

Regularization

Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

Training Etror: 0.100 : Training Ermor. 0,160
Test Enor: 0.259 Test Emor: 0.223
Bayes Emor. 0.210 - Bayes Emor. 0.210

L> Regularization as Hard Constraint

 Reduce model
complexity by limiting
value range ﬂ

min Z(0) subjectto ||0]* < A y

— Often do not regularize
bias b

* Doing or not doing has
little difference in practice

— A small A means more
regularization

L> Regularization as Soft Constraint

» Using Lagrangian multiplier method
* Minimizing the loss plus additional penalty

A

— Hyper-parameter controls regularization
importance

-)= O: no effect

A= 00,0 > ()

lllustrate the Effect on Optimal
Solutions

w* = arg min EHWTX + b — y\l% + EHWHZ

W* = arg min EHWTX + b — yH%

Update Rule - Weight Decay

« Compute the gradient

0 y) NAC
— | 26)+—=10]I” | = ()+/19
00 2 00

» Update weight at step ¢ backprop
00
0. = (1—ni)—r a(Ht) /

— Often 74<1 so also called weight decay in deep
learning

Weight Decay In Pytorch

import torch

learning_rate = le-3

welight _decay = 1.0

optimizer =
torch.optim.SGD(model.parameters()
, Lr=learning_rate,

welght decay=weight decay)

General Penalty

* Minimizing the loss plus additional penalty
min £ (6) + R(6)

— £(0) is the original loss

— R(0) is penalty (or regularization term), not
necessary smooth

10

L1 Regularization

* Minimizing the loss plus additional penalty
min 2(0) + 1|0

— £(0) is the original loss
— using L1 norm as penalty

11

L1 Update Rule - Soft Thresholding

» £(0) + 1| 0] is not always differentiable!
» Soft-threshold (Proximal operator):
S,(x) = sign(x) max(0, | x| — 4) = sign(x)Relu(| x| — A1)
» Update weight at step ¢
AN
00,
0,1 = S,(0)
* Also known as Proximal Gradient Descent

ét:‘gt_’/]

12

Effects of L1 and L2 Regularization

* L1 Regqularization

— will make parameters sparse (many parameters
will be zeros)

— could be useful for model pruning

» L2 Regularization

— will make the parameter shrink towards O, but not
necessary 0.

13

Dropout

1GH SCH(
GRADUATION

T T L T RIL I T

e
=
=

—

Motivation

* A good model
should be robust
under modest
changes in the input
— Dropout: inject noises

into internal layers
(simulating the noise)

15

Add Noise without Bias

* Add noise into x to get x°, we hope
ElxX']=x
* Dropout perturbs each element by

0 with probablity p
otherise

1 —p

16

Apply Dropout

» Often apply dropout on the output of hidden
fully-connected layers

h=06(Wx+b)
h’ = dropout(h)
o0 = W,h'+ b,

y = softmax(o)

A4/
ORI
X7 ‘\\é;/ ‘§\V/

(O~ "QXO"\.A}"‘A\
XX

P\

W
'O'AQ‘?&\""@‘:‘/ ST

17

Dropout in Training and Inference

* Dropout is only used In training

h’ = dropout(h)
* No dropout is applied during inference!
» Pytorch Layer:

torch.nn.Dropout(p=0.5)

18

Dropout: Typical results

« From Sr 2,5_) ________________________ _________________________ _________________________ r different
architect | | ropout
— 2-4 hidc .,

H 49 A WAY / 4 .
: { A/ NP ALY ™ SN
v A Y/ \ X/ J
[' | y . ‘ . A
{ /! A N N INA :
| : A A \ . | A wmrA . -
f | v %A "\ Y\ / -~ | \ \ AV AVIY | =i = 2N 2 X/ \
‘.:' I"' ' ,: |.| 'In \\J \/ N\ 7 N VA] A \ J Y, v“) / :k \ ,",. VA
\ . vV . | . v .
b . P B E e PR IBEE PRI NI NASE IR EENEIEINeNE e INesEsNININePE I NEsEININenesEINYNERRINEnES s
1.5F \ : : .

AL ~ With dropou

..

Classification Error %

. VAR VAN .

0 200000 400000 600000 800000 1000000
Number of weight updates

19

Recap

* Regularization
— to avoid model overfitting
— L1 ==> more sparse parameters
— L2/Weight decay ==> shrink parameters
— Dropout, equivalent to L2, but as a network Layer

20

Numerical Stability

Gradients for Neural Networks

» Consider a network with d layers
h' =£(h"Y) and y=~Fof0...0f(x)
+ Compute the gradient of the loss w.r.t.

o of oh® oh'™" oh'
OW! ohd ohd-1""" oh! IW!

22

Two Issues for Deep Neural Networks

. . d—1 ahi+1
* Two common issues with []—

Gradient Exploding Grad}ent Vanishing

1.5100 ~ 4 % 107 0.8100 ~ 2 % 10710

23

Example: FFN

* Assume FFN (without bias for simplicity)

£ = (Wh'™ o is the activation function

oh’
ohi—1

= diag (¢'(Wh'™"))(W)" ¢’ is the gradient function of &

1
diag (¢'(Wh'=)) (W)’

s

155

1=t

d—1 ahi+1 d—
i

24

Gradient Exploding

« Use RelU as the activation function

1 ifx>0

o(x) = max(0,x) and o'(x) = _
0 otherwise

d—1 ahi+l d—1

— =[] diag (s/(Whi=1)) (WH' may

oh’

e Elements of
d—1
from T owor

=t

— Leads to large values when d-t is large

1.5100 ~ 4 % 107

25

Issues with Gradient Exploding

* Value out of range: infinity value
— Severe for using 16-bit floating points
» Range: 6E-5 ~ 6E4
» Sensitive to learning rate (LR)

— Not small enough LR -> large weights -> larger
gradients

— Too small LR -> No progress

— May need to change LR dramatically during
training

26

Gradient Vanishing

* Use sigmoid as the activation function

1.0 -

0.8 -

0.6

0.4 -

0.2 1

0.0

1
o(x) = - o'(x) = o(x)(1 — 6(x))
Il +e>
— sigmoid
——— gradient
Small Small
-8 —6 —4 —2 0 2 4 6 8

27

Gradient Exploding

* Use sigmoid as the activation function

1
o(x) = o'(x) = o(x)(1 = 6(x))

l +e~

 Elements [-[Jaescwnnywyr are

oh!

products of d-t small values

0.8190 ~ 2 x 10710

28

Issues with Gradient Vanishing

» Gradients with value O
— Severe with 16-bit floating points

* No progress in training
— No matter how to choose learning rate

» Severe with bottom layers
— Only top layers are well trained
— No benefit to make networks deeper

29

Survey

 https://edstem.org/us/courses/31035/
lessons/55024/slides/311554

30

Stabilize Training

Stabilize Training

Goal: make sure gradient values are in a proper
range

— E.g. In[1e-6, 1e3]

Multiplication -> plus

— ResNet, LSTM (later lecture)

Normalize

— Gradient clipping

— Batch Normalization / Layer Normalization (later)

Proper weight initialization and activation
functions

32

Weight Initialization

+ Initialize weights with random

random values in a proper
range
* The beginning of training
easily suffers to numerical
instabllity
— The surface far away from an
optimal can be complex

— Near optimal may be flatter
* |nitializing according to (0. 0.01)
works well for small

networks, but not guarantee
for deep neural networks

near optimal

33

Constant Variance for each Layer

* [reat both layer outputs and gradients are

random variables

e Make the mean and variance for each
layer’s output are same, similar for gradients

Forward
E[h]]=0 P
EF | —
Var[h!] = a ohf

=0 Var

a and b are constants

Backward

af

=b Vi, t

34

Example: FFN

* Assumptions Epw/ =0, variw!1=7,

= = z-
— LL.d w;;,

— h7lis independent to w;;
— Identity activation:

E(h/] = E

]Zw

t pt—1
i,jhj

9

ht — Wtht—l Wlth Wt = R 74X

=) E[w! JE[A"'] =0
J

35

Forward Variance

2
Var[h!] = E[(h)?*] — E[h/]* = E [Z Wl hi”]

— ; (Wf,
= ;[E [(Wf,j

) (hf—) N

JFk

)<l

=) Var[w! [Var[h/~'] = n,_,y,Var[h!~']

J

n,_yy; =1

n,_y is the number of units in t-1 layer

Backward Mean and Variance

* Apply forward analysis as well

o

o

ohi—1

Var

-
Oh!~1

-
Ot~

= ngy,var

=—-W' leads to

v
i oh! |

T
t—l) = (I)T<

ny, = 1

37

Xavier Initialization

- Conflict goal to satisfies both n,_;y, = 1 and
ny, = 1
° XaV|er v(n_+n)2=1 — vy =2/n_+n)

— Normal distribution . (0./27, -+ 7))

— Uniform distribution %(_ NG \/6/<nt_1+nt>)
~ Variance of %[-a,al IS a?/3

* Adaptive to weight shape, especially when
1, varies

38

Other heuristics: Early stopping

» Continued training can result in over fitting to
training data
— Track performance on a held-out validation set

— Apply one of several early-stopping criterion to
terminate training when performance on validation set
degrades significantly

error validation

training

epochs 39

Additional heuristics: Gradient clipping

“ /

» Often the derivative will be too high
— When the divergence has a steep slope
— This can result in instability

e @Gradient clipping: set a ceiling on derivative value

ifo D> 0then 0,D =10

— Typical 0 value is 5
— Can be easily set in pytorch/tensorflow

40

Recap

* Numerical issues In training
— gradient explosion
— gradient vanishing

* Proper initialization of parameters

41

Next Up

» Reading Material: Chap 7 in D2L
* Convolutional Neural Networks
* Visual perception:

— Image classification

— Object recognition

— Face detection

42

