
CS 190I
Deep Learning

Feedforward Network
Lei Li (leili@cs)

UCSB
Acknowledgement: Slides borrowed from Bhiksha Raj’s 11485 and

Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

1

• Logistic Regression for classification
– single linear layer with Softmax output

• How to train LR
• Inference for LR
• How to evaluate LR model (validation/

testing)
• Kullback-Leibler Divergence

2

Recap

3

Logistic Regression

h1

x1 x3x2 …

h2

o1 o2

Softmax
h = W ⋅ x

softmax(h)i =
exp(hi)

∑j exp(hj)

p(y |h) = softmax(h)y

output: prob. of class y

Softmax

Linear

4

Logistic Regression for Binary
Classification

h

x1 x3x2 …

o

Sigmoidh = w ⋅ x

p(y |h) = σ(h) =
eh

eh + 1

output: prob. of class y

Sigmoid

Linear

5

Cross-Entropy Loss for Classification

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− log f(xn)yn

6

Spam Email Classification
Subject: Hello
Sender: Aisha Al-Gaddafi <aishaalgaddafi112@gmail.com>

Tue, Jan 10, 9:35 AM (12 days ago)
to bcc:

I am sorry to encroach into your privacy in this manner, There is absolutely going to be
a great doubt and distrust in your heart in respect of this email, coupled with the fact
that so many individuals have taken possession of the Internet to facilitate their
nefarious deeds, thereby making it extremely difficult for genuine and legitimate
business class persons to get attention and recognition.

I am seeking your assistance for the transfer of Twenty Seven Million Five Hundred
Thousand United State Dollars ($27.500.000.00) to your account for private
investment purpose.

I look forward to your response.
Mrs. Aisha Al-Gaddafi.

7

Feature

dollor $ money account … sender

1 1 0 1

h = w ⋅ x

p(y |h) = σ(h) =
eh

eh + 1

x

y: 0 or 1 (spam)

• Single layer has
limited capability
– cannot learn XOR

• The decision
boundary is linear
– cannot learn a

nonlinear decision
boundary

– why?

8

Limitation of Logistic Regression

o1

x1 x3x2 …

o2

• also known as multilayer
perceptron (MLP)

• Layers are connected
sequentially

• Each layer has full-connection
(each unit is connected to all
units of next layer)

– Linear project followed by
– an element-wise nonlinear

activation function
• There is no connection from

output to input

9

Feedforward Neural Net (FFN)

h1

h2

• also known as multilayer
perceptron (MLP)

Parameters

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

o = Softmax(wL ⋅ hL−1 + bL)

θ = {w1, b1, w2, b2, …}

10

Feedforward Neural Net (FFN)

h1

h2

•

11

Hidden layers

Why do we
need an a
nonlinear

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

h1

h2 is element-wise nonlinear
activation function

σ

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

12

What-if Layer with no activation?

h1 = W1x + b1

h2 = wT
2 h1 + b2

hence h2 = w⊤
2 W1x + b′

Linear …

Why do we
need an a
nonlinear

h1

h2

12

Map input into (0, 1), a soft version of

13

Sigmoid Activation

sigmoid(x) =
1

1 + exp(−x)

σ(x) = {1 if x > 0
0 otherwise

Map inputs into (-1, 1)

14

Tanh Activation

tanh(x) =
1 − exp(−2x)
1 + exp(−2x)

ReLU: rectified linear unit

15

ReLU Activation

ReLU(x) = max(x,0)

smoothed version of RELU

 GELU (x) = xP (X ≤ x) = xΦ (x) = x ⋅
1
2 [1 + erf(x/ 2)]

GELU(x) ≈ 0.5x (1 + tanh (2/π(x + 0.044715x3)))

16

Gaussian Error Linear Units (GELU)

Softmax as the final
output layer.

Parameters

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

o = Softmax(wL ⋅ hL−1 + bL)

θ = {w1, b1, w2, b2, …}

17

Feedforward Network for Classification

h1

h2

• Number of layers
• Number of hidden

dimension for each
layer

18

Hyperparameters for FFN

h1

h2

• Given a training set of input-
output pairs

– and may both be vectors
• To find the model parameters

such that the model produces the
most accurate output for each
training input

– Or a close approximation of it
• Learning the parameter of a

neural network is an instance!
– The network architecture is given

D = {(xn, yn)}N
n=1

xn yn

𝑦

𝑿

19

The Learning Problem

• The expected risk is the average risk (loss)
over the entire (x, y) data space

R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))] = ∫ ℓ(y, f(x; θ))dP(x, y)

20

Risk

• Ideally, we want to minimize the expected
risk
– but, unknown data distribution …

• Instead, given a training set of empirical
data

• Minimize the empirical risk over training data

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

21

The general learning framework:
Empirical Risk Minimization (ERM)

• Ideally, we want to minimize the expected
risk
– but, unknown data distribution …

• Instead, given a training set of empirical
data

• Minimize the empirical risk over training data

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

22

The general learning framework:
Empirical Risk Minimization (ERM)

Note : Its really a measure of error, but using standard
terminology, we will call it a “Loss”

Note 2: The empirical risk is only an empirical approximation
to the true risk , which is our ultimate
optimization objective

Note 3: For a given training set the loss is only a function of

L(θ)
R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))]

θ

• The empirical risk (loss) is determined by the
loss function

• Ideal loss for classification: 0-1 loss

• Cross entropy loss is one common loss for
classification

l(y, f(x)) = {0 if y = arg maxk f(x)k

1 otherwise

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− yn ⋅ log f(xn)

23

Loss function

• Hinge loss
- Binary classification:

When ground-truth y is +1,
prediction <0 lead to larger
penalty
- Multi-class

ℓ(y, ̂y) = max(0,1 − y ̂y)

̂y

ℓ(y, ̂y) = ∑
k≠y

max(0,1 − ̂yy + ̂yk)

24

Other Loss for Classification

• Continuous outcome

• squared loss:

• L1 loss:

•
Huber loss:

ℒ(θ) =
1
N

N

∑
n=1

ℓ(yn, f(xn))

ℓ(y, f) =
1
2

| f − y |2
2

ℓ(y, f) =
1
2

| f − y |

ℓ(y, f) =
1
2 | f − y |2

2 if | f − y |2 ≤ δ

δ(| f − y | − δ
2) otherwise

25

Loss for Regression

Huber

MSE

• General framework to formulate a learning
task is through empirical risk minimization
(ERM)

• Minimizing cross-entropy is a realization of
ERM

26

Recap

• Finding the parameter to minimize the
empirical risk over training data

• This is an instance of function optimization
problem
• Many algorithms exist (following lectures)

θ

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

27

Learning the Model

• Consider a generic function minimization
problem

• Optimality condition:

• Linear regression has closed-form solution
• In general, no closed-form solution for the

equation.

min
x

f(x) where f : ℝd → ℝ

∇f |x = 0, where i-th element of ∇f |x is
∂f
∂xi

28

Optimization

• Consider a generic function minimization
problem, where x is unknown variable

• Iterative update algorithm

• so that

• How to find

min
x

f(x) where f : ℝd → ℝ

xt+1 ← xt + Δ
f(xt+1) ≪ f(xt)

Δ
29

Generic Iterative Algorithm

•

• Theorem: if f is twice-differentiable and has continuous
derivatives around x, for any small-enough , there

is ,

where is the Hessian at z which lies on the line
connecting and

• First-order and second-order Taylor approximation
result in gradient descent and Newton’s method

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |x Δx + ⋯

Δx

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |z Δx

∇2f |z
x x + Δx

30

Taylor approximation

•

• To make

•

• Update rule:

• is a hyper-parameter to control the
learning rate

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt

ΔxT ∇f |xt
 smallest

⇒ Δx in the opposite direction of ∇f |xt
 i.e. Δx = − ∇f |xt

xt+1 = xt − η∇f |xt

η

31

Gradient Descent

learning rate eta.
1.set initial parameter
2.for epoch = 1 to maxEpoch or until
converg:

3. for each data (x, y) in D:
4. compute error err(f(x;) - y)

5. compute gradient

6. total_g += g
7. update = - eta * total_g / N

θ ← θ0

θ

g =
∂err(θ)

∂θ

θ θ
32

Gradient Descent Algorithm

• Surrogate function

f̃(xt) = f(xt) + ΔxT ∇f |xt
+

1
2

∥Δx∥2
2

33

Understand GD

34

GD: Illustration

[credit: gif from 3blue1brown]

• Depends
• Convex and smooth function: yes!
• Non-convex? local optimal

35

Does gradient descent guarantee
finding the optimal solution?

• First-order optimality condition: gradient=0
• Gradient descent is an iterative algorithm

to update the parameter towards the
opposite direction of gradient

36

Recap

• Gradient calculation using Back-
propagation

• More on optimization
• Generalization problem
• Regularization tricks

37

Next Up

