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• Logistic Regression for classification 
– single linear layer with Softmax output 

• How to train LR 
• Inference for LR 
• How to evaluate LR model (validation/

testing) 
• Kullback-Leibler Divergence
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Recap
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Logistic Regression

h1

x1 x3x2 …

h2

o1 o2

Softmax
h = W ⋅ x

softmax(h)i =
exp(hi)

∑j exp(hj)

p(y |h) = softmax(h)y

output: prob. of class y

Softmax

Linear
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Logistic Regression for Binary 
Classification

h

x1 x3x2 …

o

Sigmoidh = w ⋅ x

p(y |h) = σ(h) =
eh

eh + 1

output: prob. of class y

Sigmoid

Linear
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Cross-Entropy Loss for Classification

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− log f(xn)yn
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Spam Email Classification
Subject: Hello
Sender: Aisha Al-Gaddafi <aishaalgaddafi112@gmail.com>

Tue, Jan 10, 9:35 AM (12 days ago)
to bcc:

I am sorry to encroach into your privacy in this manner, There is absolutely going to be 
a great doubt and distrust in your heart in respect of this email, coupled with the fact 
that so many individuals have taken possession of the Internet to facilitate their 
nefarious deeds, thereby making it extremely difficult for genuine and legitimate 
business class persons to get attention and recognition. 

I am seeking your assistance for the transfer of Twenty Seven Million Five Hundred 
Thousand United State Dollars ($27.500.000.00 ) to your account for private 
investment purpose. 

I look forward to your response. 
Mrs. Aisha Al-Gaddafi. 
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Feature

dollor $ money account … sender

1 1 0 1

h = w ⋅ x

p(y |h) = σ(h) =
eh

eh + 1

x

y: 0 or 1 (spam)



• Single layer has 
limited capability 
– cannot learn XOR 

• The decision 
boundary is linear  
– cannot learn a 

nonlinear decision 
boundary 

– why?
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Limitation of Logistic Regression

o1

x1 x3x2 …

o2



• also known as multilayer 
perceptron (MLP)  

• Layers are connected 
sequentially 

• Each layer has full-connection 
(each unit is connected to all 
units of next layer) 

– Linear project followed by 
– an element-wise nonlinear 

activation function 
• There is no connection from 

output to input
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Feedforward Neural Net (FFN)

h1

h2



• also known as multilayer 
perceptron (MLP)  

 

 
 
 

Parameters 

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

o = Softmax(wL ⋅ hL−1 + bL)

θ = {w1, b1, w2, b2, …}
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Feedforward Neural Net (FFN)

h1

h2



•   
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Hidden layers

Why do we 
need an a 
nonlinear 

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

h1

h2 is element-wise nonlinear 
activation function

σ

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl



12

What-if Layer with no activation?

h1 = W1x + b1

h2 = wT
2 h1 + b2

hence h2 = w⊤
2 W1x + b′ 

Linear …

Why do we 
need an a 
nonlinear 

h1

h2

12



Map input into (0, 1), a soft version of 
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Sigmoid Activation

sigmoid(x) =
1

1 + exp(−x)

σ(x) = {1 if x > 0
0 otherwise



Map inputs into (-1, 1)
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Tanh Activation

tanh(x) =
1 − exp(−2x)
1 + exp(−2x)



ReLU: rectified linear unit 
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ReLU Activation

ReLU(x) = max(x,0)



smoothed version of RELU 

 GELU (x) = xP (X ≤ x) = xΦ (x) = x ⋅
1
2 [1 + erf(x/ 2)]

GELU(x) ≈ 0.5x (1 + tanh ( 2/π(x + 0.044715x3)))
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Gaussian Error Linear Units (GELU)



Softmax as the final 
output layer. 

 
 
 
 

Parameters 

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

o = Softmax(wL ⋅ hL−1 + bL)

θ = {w1, b1, w2, b2, …}
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Feedforward Network for Classification

h1

h2



• Number of layers  
• Number of hidden 

dimension for each 
layer
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Hyperparameters for FFN

h1

h2



• Given a training set of input-
output pairs  

–  and  may both be vectors 
• To find the model parameters 

such that the model produces the 
most accurate output for each 
training input 

– Or a close approximation of it 
• Learning the parameter of a 

neural network is an instance! 
– The network architecture is given

D = {(xn, yn)}N
n=1

xn yn

𝑦

𝑿
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The Learning Problem



• The expected risk is the average risk (loss) 
over the entire (x, y) data space 

R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))] = ∫ ℓ(y, f(x; θ))dP(x, y)
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Risk



• Ideally, we want to minimize the expected 
risk 
– but, unknown data distribution …  

• Instead, given a training set of empirical 
data  

• Minimize the empirical risk over training data 

   

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

21

The general learning framework: 
Empirical Risk Minimization (ERM)



• Ideally, we want to minimize the expected 
risk 
– but, unknown data distribution …  

• Instead, given a training set of empirical 
data  

• Minimize the empirical risk over training data 

   

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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The general learning framework: 
Empirical Risk Minimization (ERM)

Note :  Its really a measure of error, but using standard 
terminology, we will call it a “Loss” 

Note 2: The empirical risk  is only an empirical approximation  
to the true risk , which is our ultimate 
optimization objective 

Note 3: For a given training set the loss is only a function of 

L(θ)
R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))]

θ



• The empirical risk (loss) is determined by the 
loss function 

• Ideal loss for classification: 0-1 loss  

 

• Cross entropy loss is one common loss for 
classification 

l(y, f(x)) = {0  if y = arg maxk f(x)k

1 otherwise

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− yn ⋅ log f(xn)
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Loss function



• Hinge loss 
- Binary classification:

When ground-truth y is +1, 
prediction <0 lead to larger 
penalty
- Multi-class 

ℓ(y, ̂y) = max(0,1 − y ̂y)

̂y

ℓ(y, ̂y) = ∑
k≠y

max(0,1 − ̂yy + ̂yk)
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Other Loss for Classification



• Continuous outcome 

 

• squared loss:  

• L1 loss:  

•
Huber loss: 

ℒ(θ) =
1
N

N

∑
n=1

ℓ(yn, f(xn))

ℓ(y, f ) =
1
2

| f − y |2
2

ℓ(y, f ) =
1
2

| f − y |

ℓ(y, f ) =
1
2 | f − y |2

2  if | f − y |2 ≤ δ

δ( | f − y | − δ
2 )  otherwise 
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Loss for Regression

Huber

MSE



• General framework to formulate a learning 
task is through empirical risk minimization 
(ERM) 

• Minimizing cross-entropy is a realization of 
ERM
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Recap



• Finding the parameter  to minimize the 
empirical risk over training data 

 

    

• This is an instance of function optimization 
problem 
• Many algorithms exist (following lectures)

θ

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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Learning the Model



• Consider a generic function minimization 
problem 

 

• Optimality condition: 

 

• Linear regression has closed-form solution 
• In general, no closed-form solution for the 

equation.

min
x

f(x) where f : ℝd → ℝ

∇f |x = 0, where i-th element of ∇f |x  is 
∂f
∂xi
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Optimization



• Consider a generic function minimization 
problem, where x is unknown variable 

 

• Iterative update algorithm  
 

• so that  

• How to find 

min
x

f(x) where f : ℝd → ℝ

xt+1 ← xt + Δ
f(xt+1) ≪ f(xt)

Δ
29

Generic Iterative Algorithm



•  

• Theorem: if f is twice-differentiable and has continuous 
derivatives around x, for any small-enough , there 

is , 

where is the Hessian at z which lies on the line 
connecting  and  

• First-order and second-order Taylor approximation 
result in gradient descent and Newton’s method

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |x Δx + ⋯

Δx

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |z Δx

∇2f |z
x x + Δx
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Taylor approximation



•  

• To make  

•  

• Update rule:  

•  is a hyper-parameter to control the 
learning rate

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt

ΔxT ∇f |xt
 smallest 

⇒ Δx in the opposite direction of ∇f |xt
 i.e. Δx = − ∇f |xt

xt+1 = xt − η∇f |xt

η
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Gradient Descent



learning rate eta. 
1.set initial parameter  
2.for epoch = 1 to maxEpoch or until 
converg: 

3.  for each data (x, y) in D: 
4.    compute error err(f(x; ) - y) 

5.    compute gradient  

6.    total_g += g 
7.  update  =  - eta * total_g / N

θ ← θ0

θ

g =
∂err(θ)

∂θ

θ θ
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Gradient Descent Algorithm



• Surrogate function

f̃(xt) = f(xt) + ΔxT ∇f |xt
+

1
2

∥Δx∥2
2
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Understand GD
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GD: Illustration

[credit: gif from 3blue1brown]



• Depends 
• Convex and smooth function: yes! 
• Non-convex? local optimal
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Does gradient descent guarantee 
finding the optimal solution?



• First-order optimality condition: gradient=0 
• Gradient descent is an iterative algorithm 

to update the parameter towards the 
opposite direction of gradient
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Recap



• Gradient calculation using Back-
propagation  

• More on optimization 
• Generalization problem 
• Regularization tricks
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Next Up


