### CS11-737 Multilingual NLP

# Non-Autoregressive Generation

Lei Li

https://lileicc.github.io/course/11737mnlp23fa/



Carnegie Mellon University

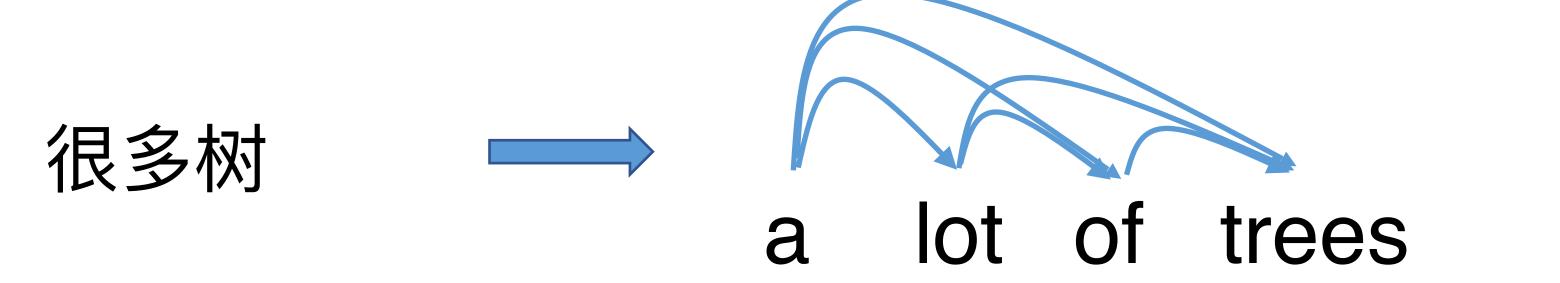
Language Technologies Institute

### Outline

- Autoregressive & Non-autoregressive Generation
- Iterative NAT and Limitation
- Glancing Transformer
- Directed Acyclic Transformer

### Transformer is Autoregressive

Autoregressive models generate sentences sequentially



• The conditional probability is factorized successively

$$p(Y|X;\theta) = \prod_{t=1}^{\infty} p(y_t|y_{< t}, X;\theta)$$

 Human-style translation is slow. Machine does not have to mimic human!

### Wild idea: Parallel Generation?

 Non-autoregressive models generate all the tokens in parallel

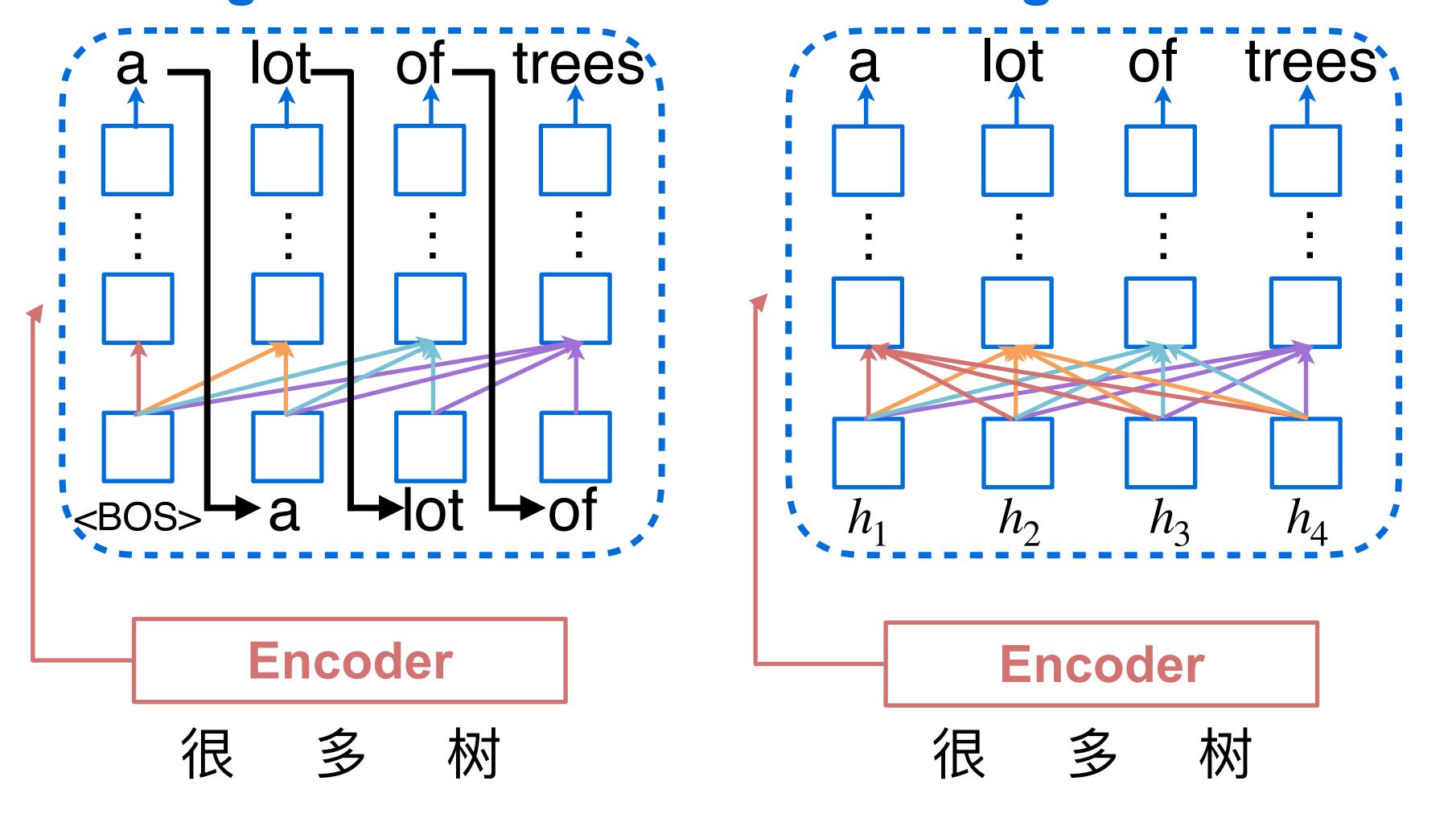
很多树 a lot of trees

• Conditional independence assumption

$$p(Y|X;\theta) = \prod_{t=1}^{T} p(y_t|X;\theta)$$

### Model architecture

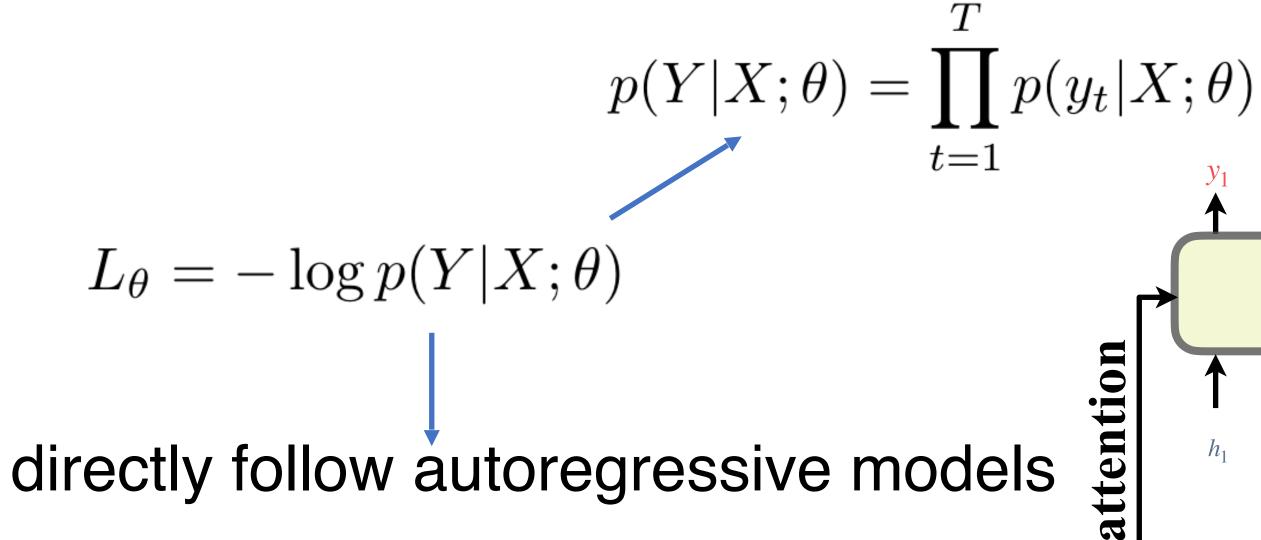
#### Autoregressive decoder Non-autoregressive decoder



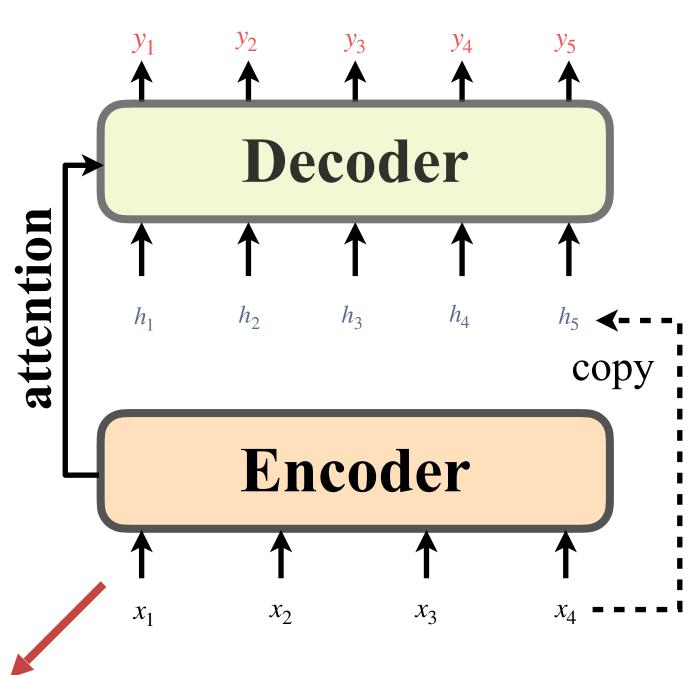
Gu et al, NAT, ICLR 2018

### Training of vanilla NAT

Maximum likelihood estimation (MLE)



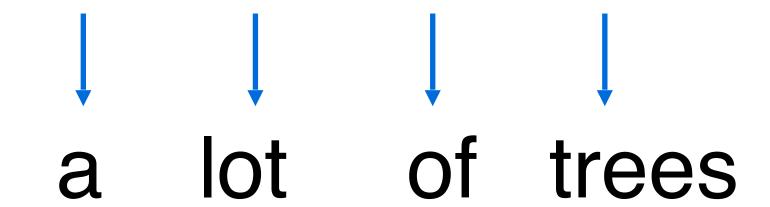
- Target length
  - predict before decoding
  - predefine max length



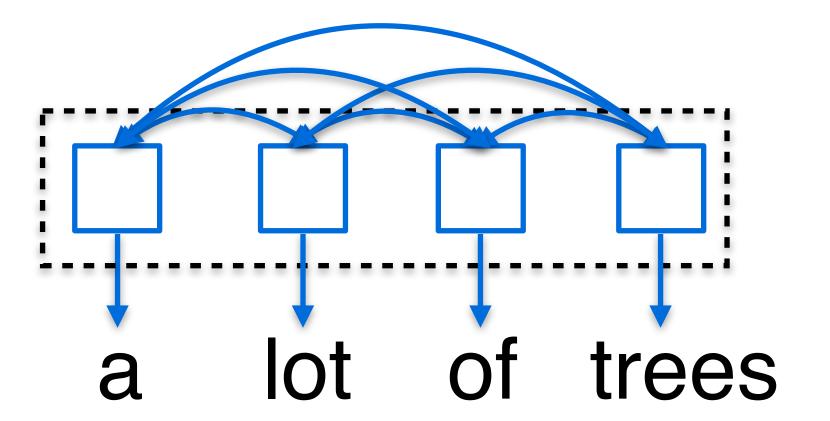
Lack explicit target word interdependency learning

### Why Non-autoregressive?

1. Faster decoding in non-autoregressive translation (NAT)

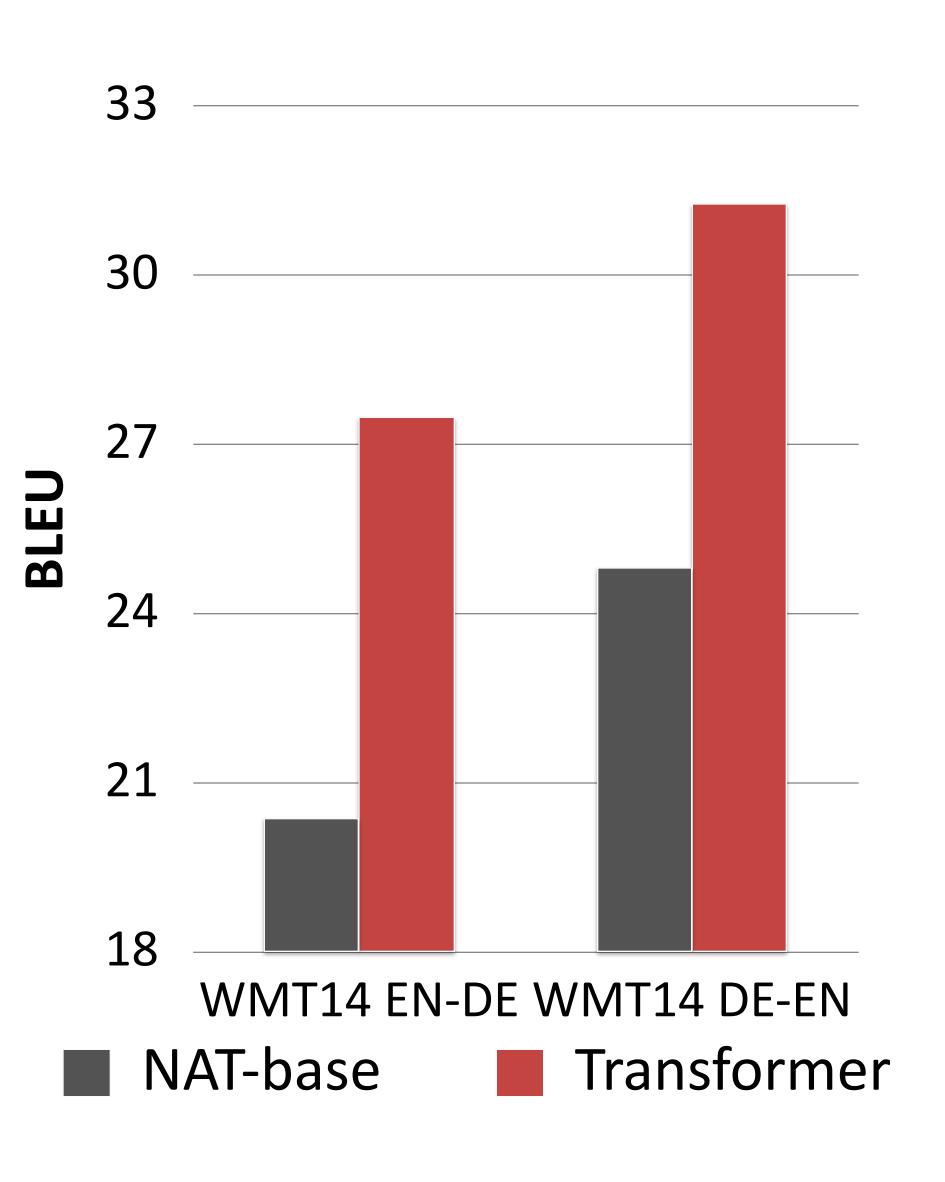


2. Capturing bidirectional context for generation

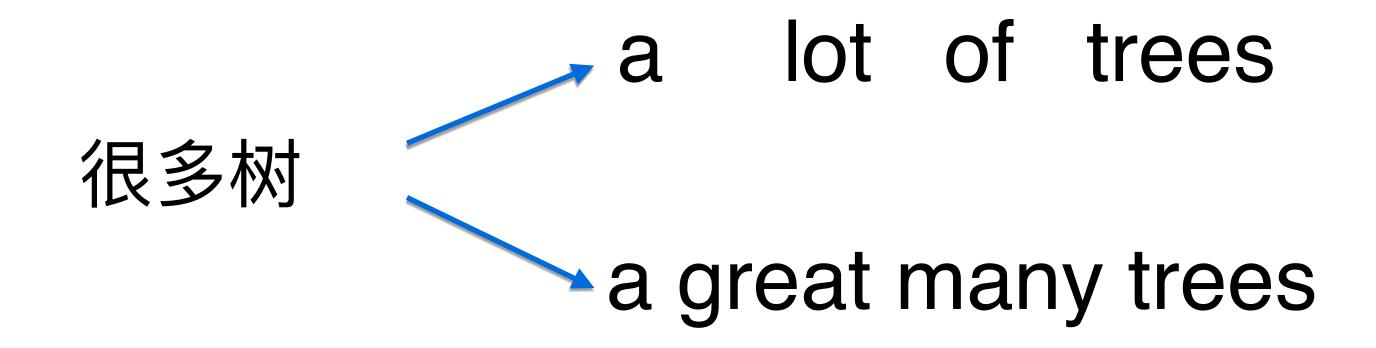


### Challenge: Inferior Quality of NAT

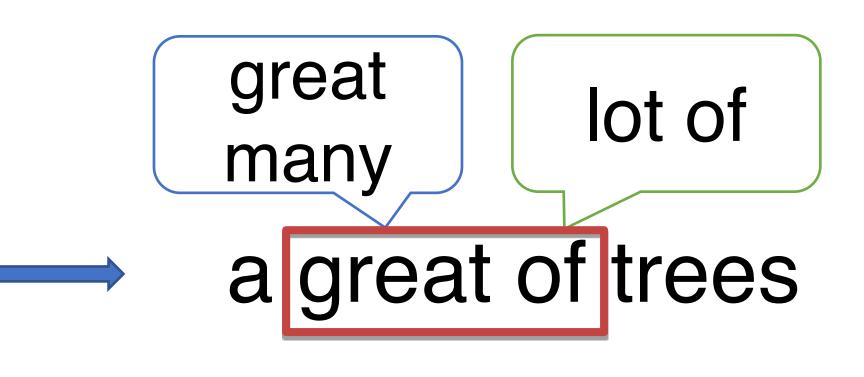
很多树



One input -> multiple target



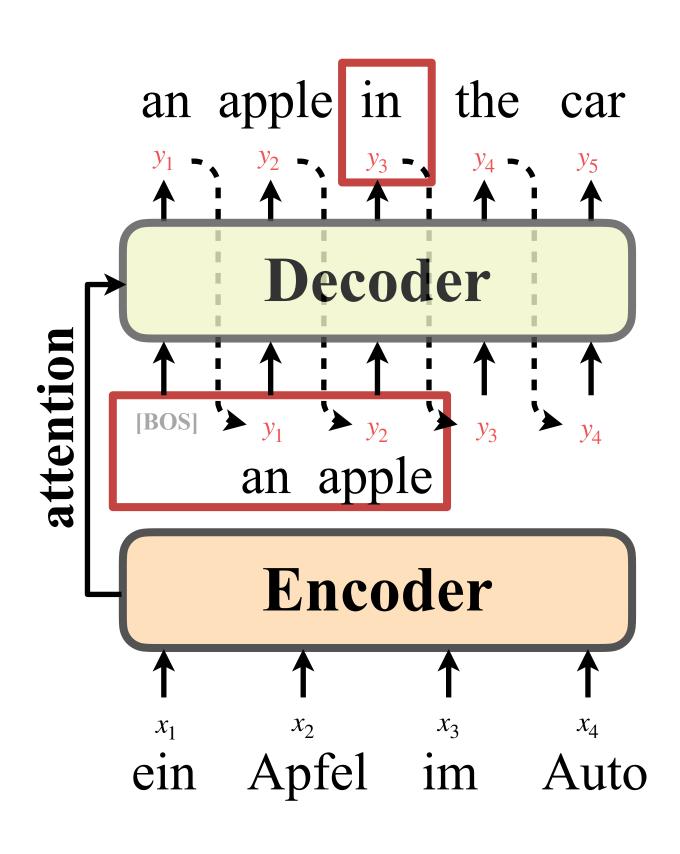
Inconsistency problem in parallel generation



### Key Intuition: Word interdependency

- Learning word interdependency in the target sentence is crucial for generating fluent sentences
- Non-autoregressive models lack a effective way of dependency learning

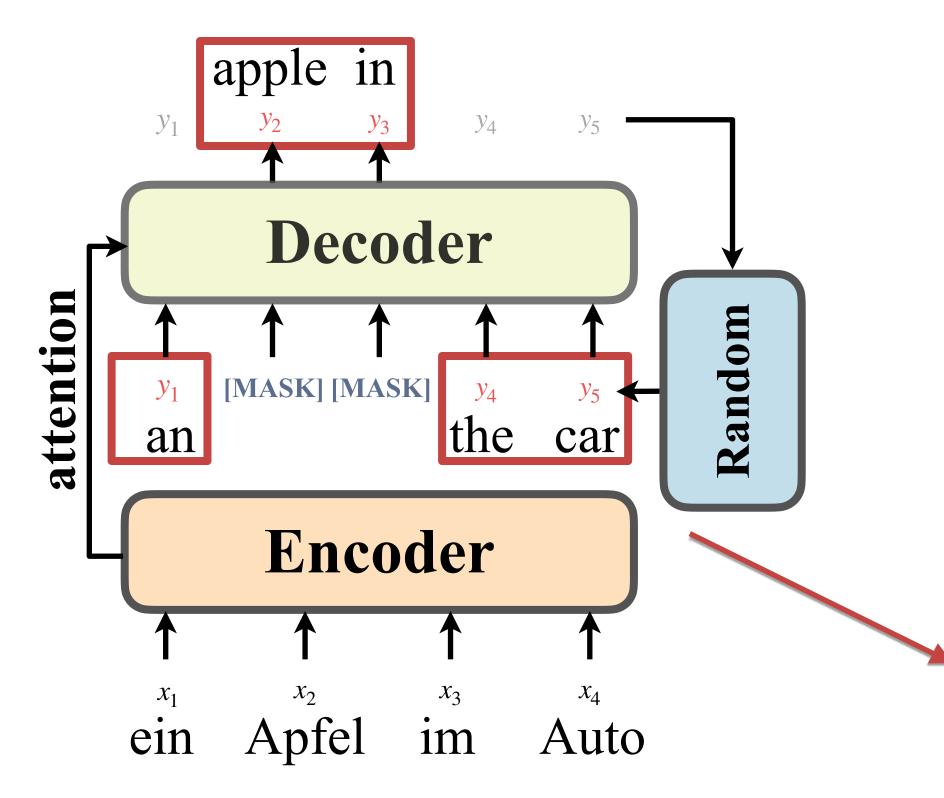
### Learning Word Interdependency



#### Autoregressive models

 predict the next tokens conditioned on the input target tokens (left-to-right)

### Iterative NAT



Iterative-NAT

 predict the randomly masked tokens based on unmasked tokens

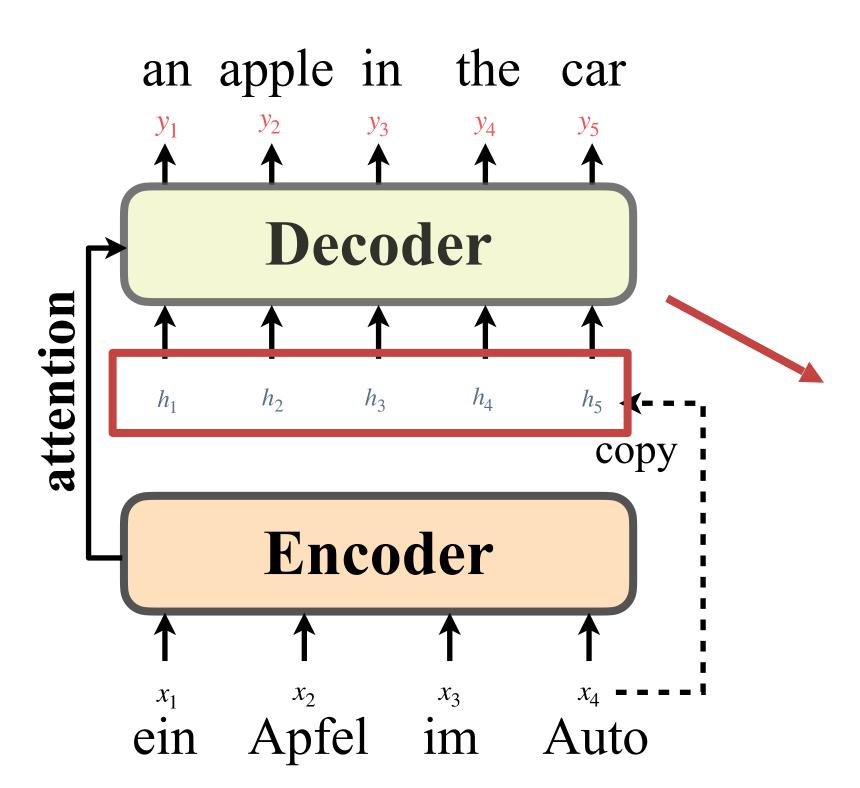
rely on multiple decoding iterations, therefore does not gain speedup!

Lee et al. Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement. EMNLP 2018. Ghazvininejad et al. Mask-Predict: Parallel Decoding of Conditional Masked Language Models. EMNLP 2019.

### Dependency learning for NAT

- How to learn word interdependency for single-pass parallel generation?
- Contradiction
  - Word interdependency learning requires target word inputs
  - Single-pass parallel generation cannot obtain target words before prediction
- Glancing Language Model (GLM)
  - A gradual training method to achieve both

### New Idea for Dependency learning



$$L_{\theta} = -\log p(Y|X;\theta)$$

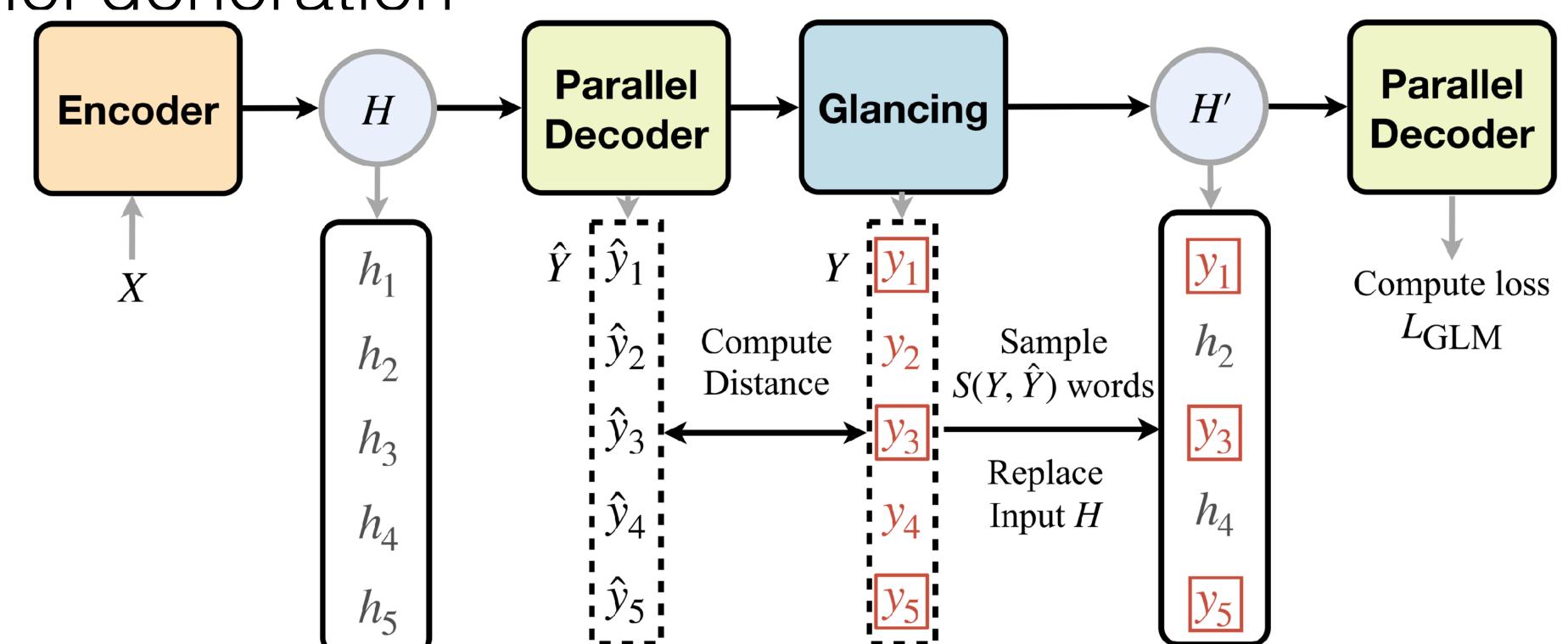
Lack explicit target word interdependency learning

- Glancing Language Model (GLM)
  - A gradual training method
  - Learning word interdependency for single-pass parallel generation

### Glancing Language Model (GLM)

- An adaptive sampling strategy for gradual learning
  - o From fragments to the whole sequence

 Learning target word interdependency for single-pass parallel generation



### Glancing Language Model

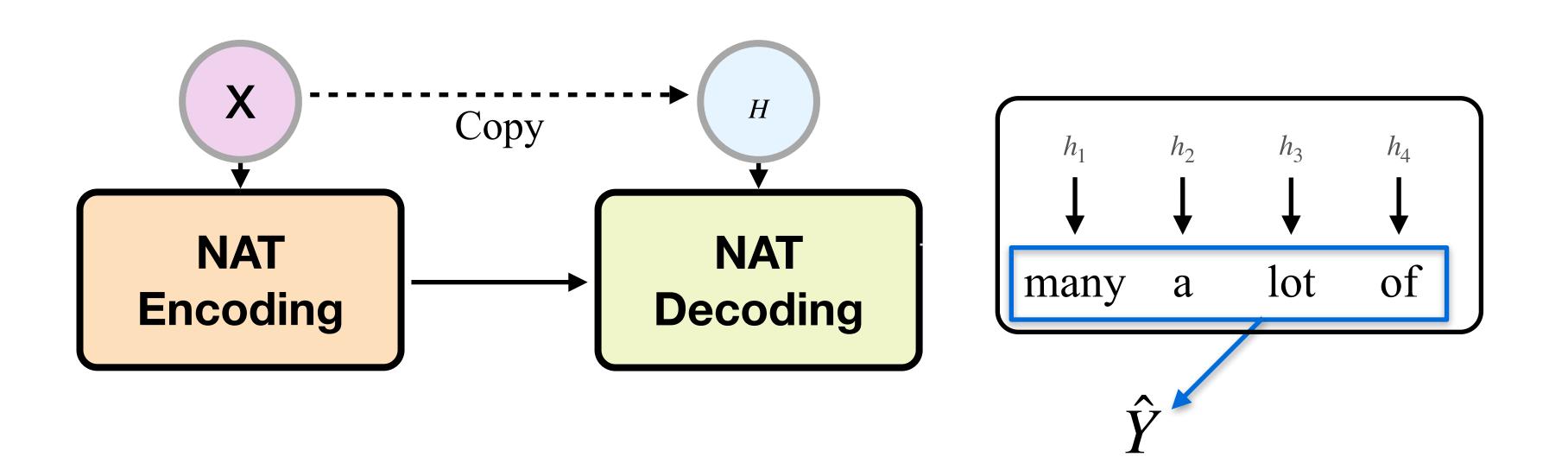


only one-pass decoding in inference

- Perform two decoding during training
- 1. Glancing Sampling (the first decoding):
  - Based on the prediction, replace part of the decoder inputs with sampled target words
- 2. Optimization (the second decoding):
  - Learn to predict the remaining words with the replaced decoder inputs

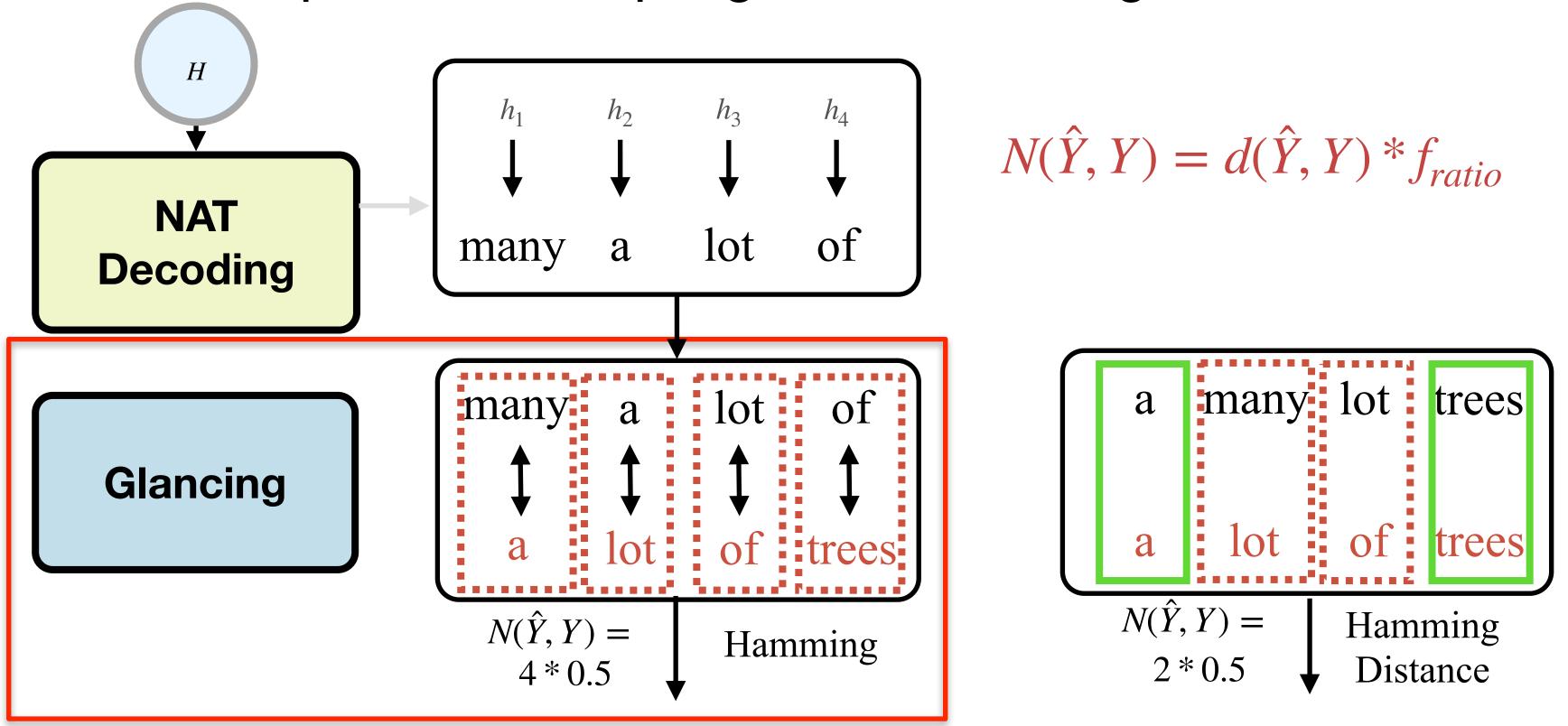
### Glancing Sampling (1): NAT Decoding

- For input x, generate the whole sequence  $\hat{y}$  in parallel
- Training sample (X,Y)
  - X: 很多树
  - Y: a lot of trees

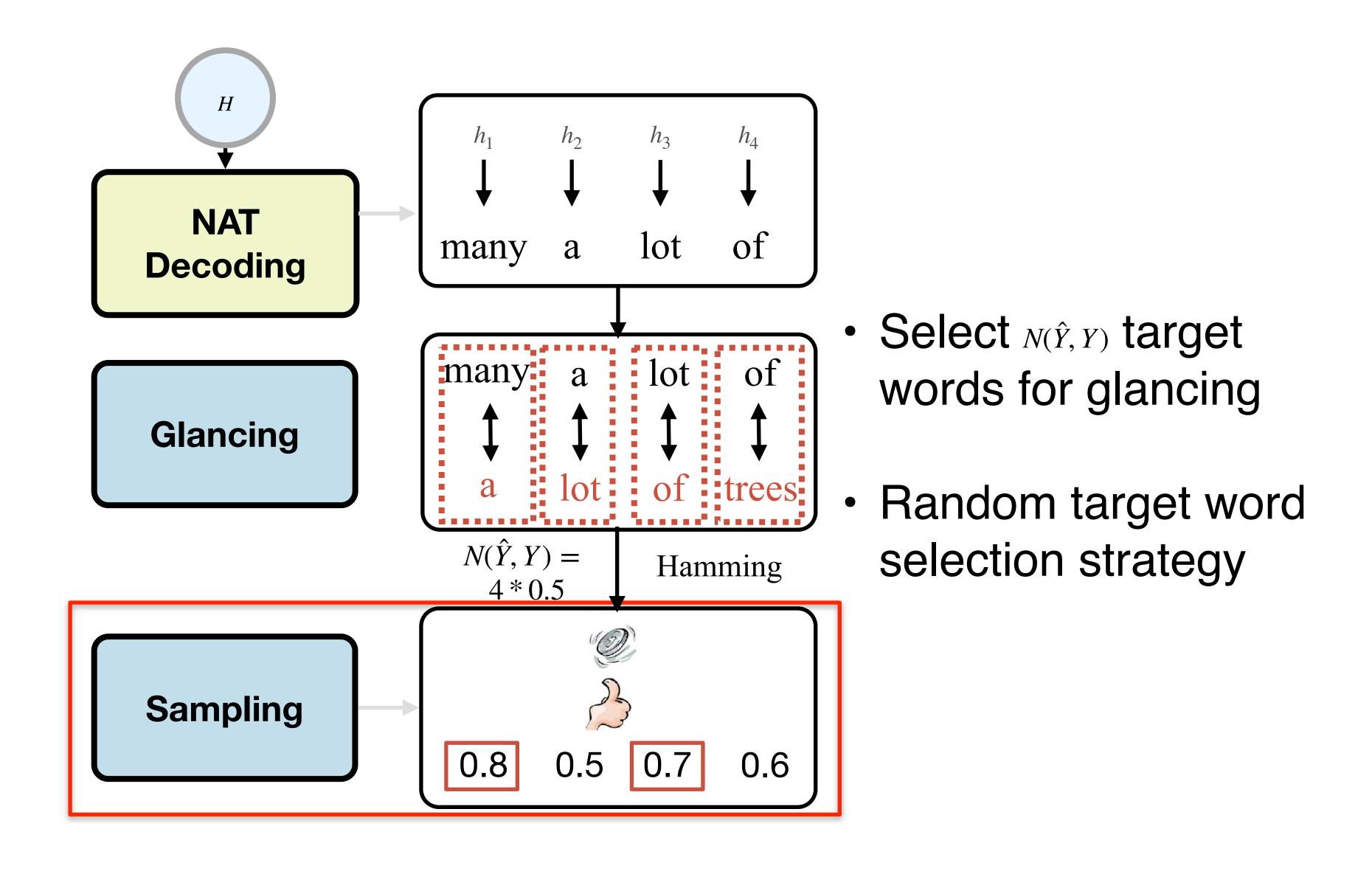


### Glancing Sampling (2): Glancing

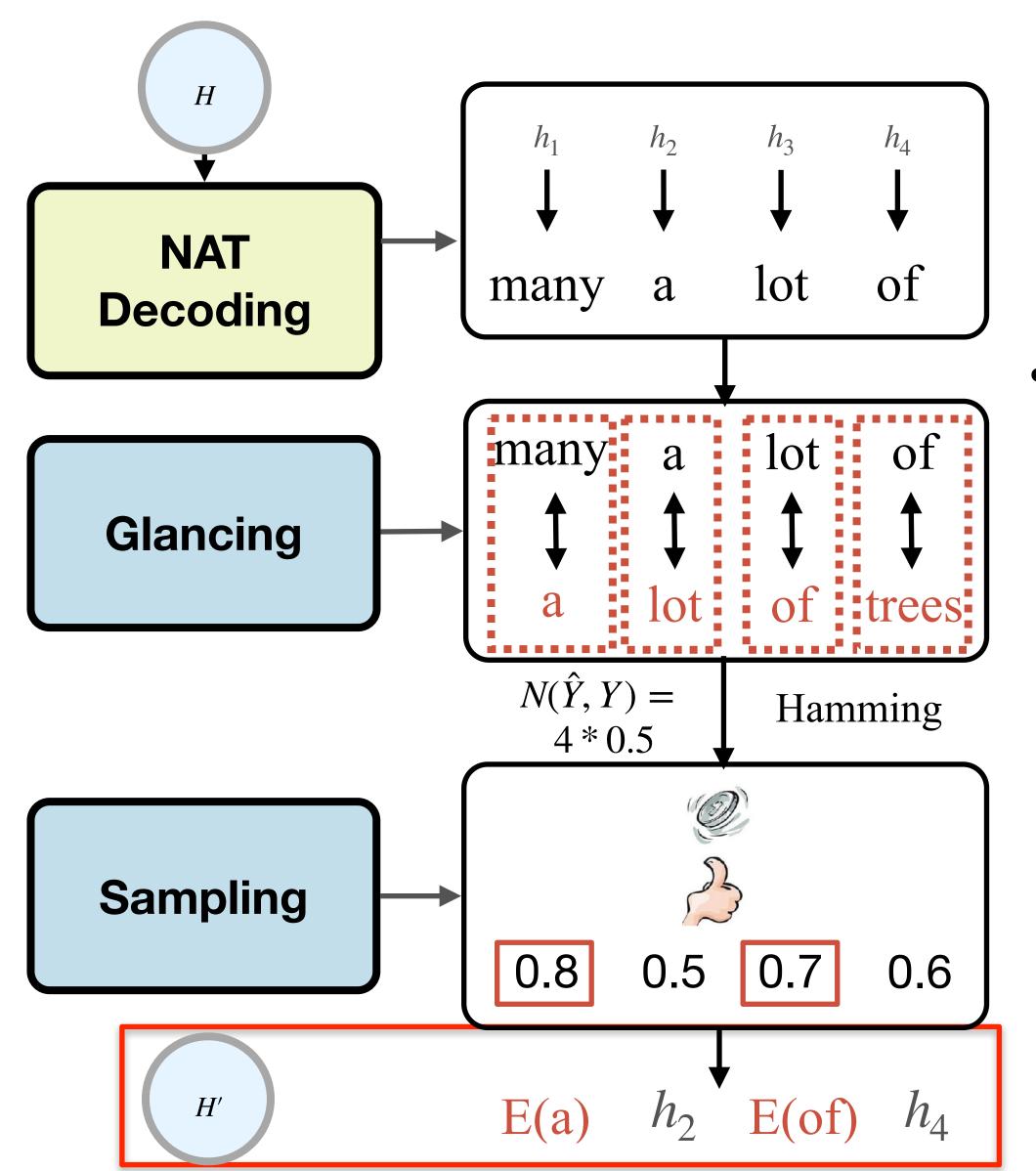
- 1. Measure the distance between the prediction and the reference
- 2. Compute the sampling number of target words



### Glancing Sampling (3): Sampling



### Glancing Sampling (4): Replacing for prediction

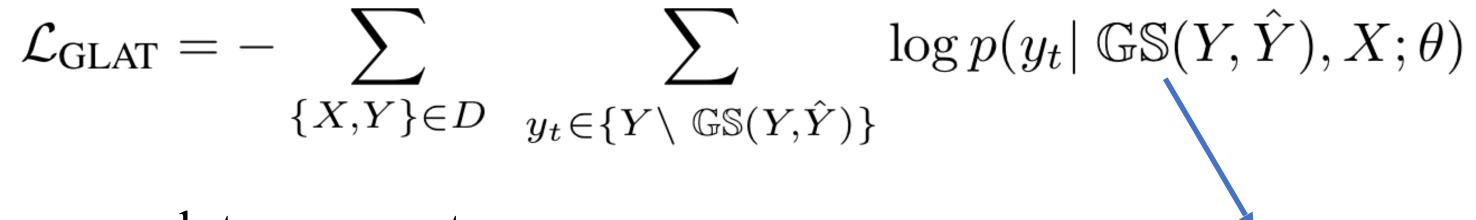


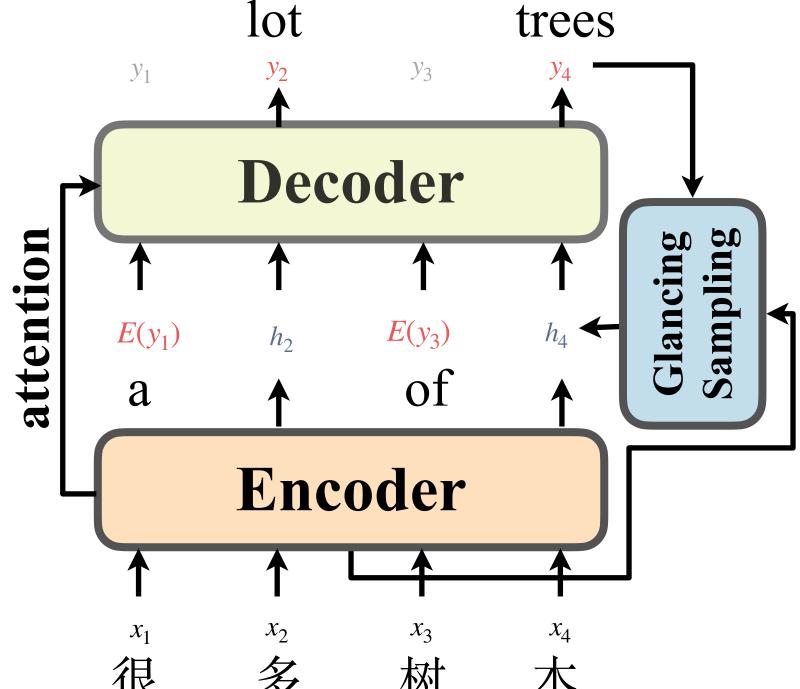
 Replace the original decoder inputs with the embedding of sampled target words

### Methodology: Optimization

#### The second decoding:

learn to predict the remaining words with the replaced decoder inputs

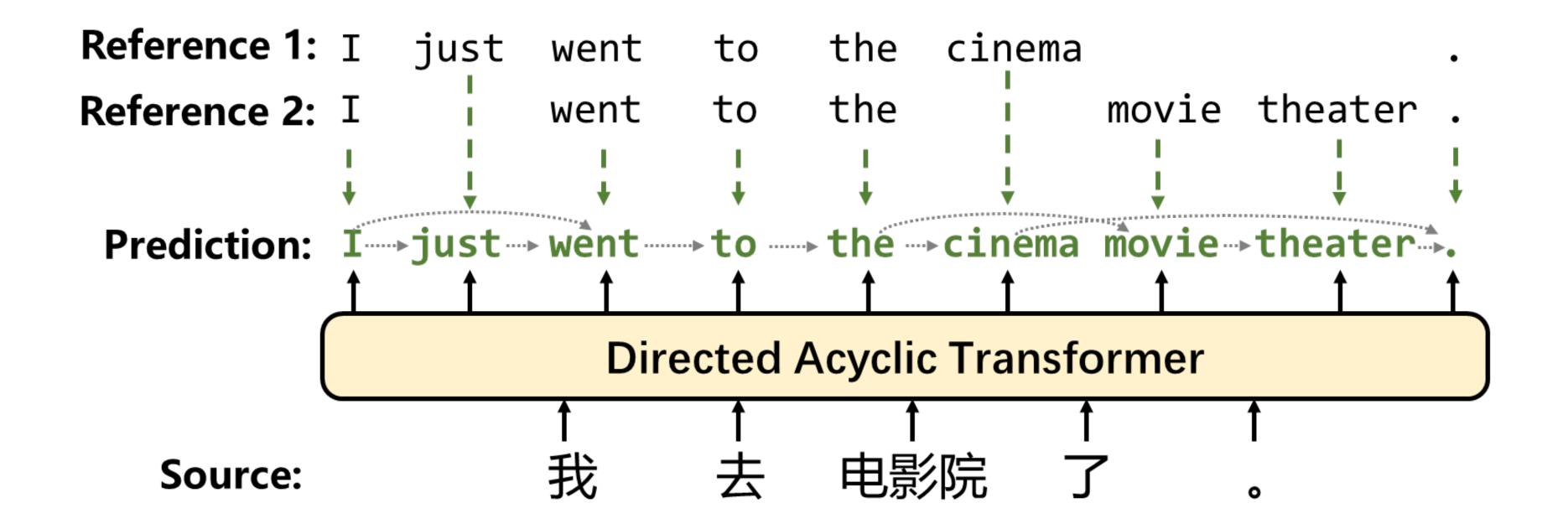




During training, the sampling number of target words decreases gradually.

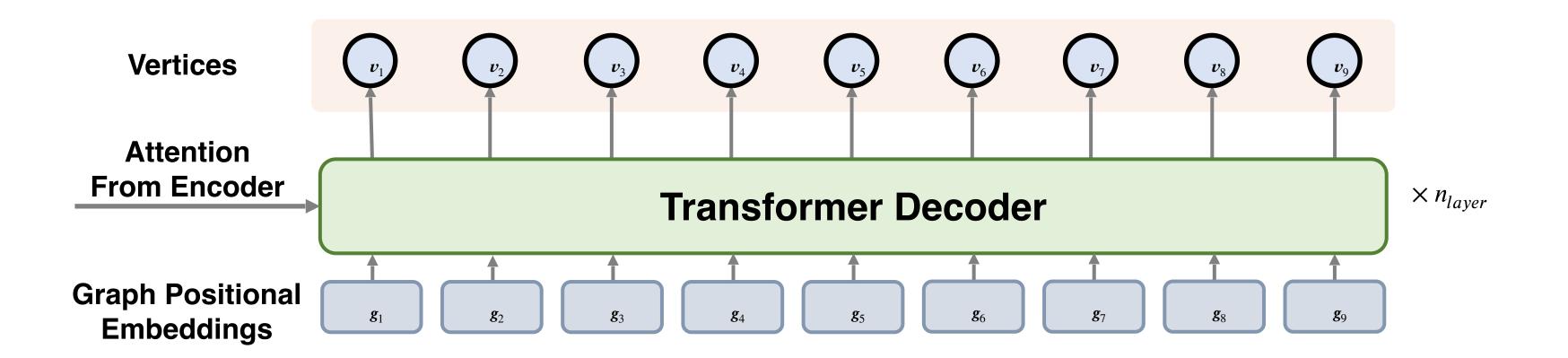
Learn to generate longer fragments

• Using directed acyclic graph (DAG)

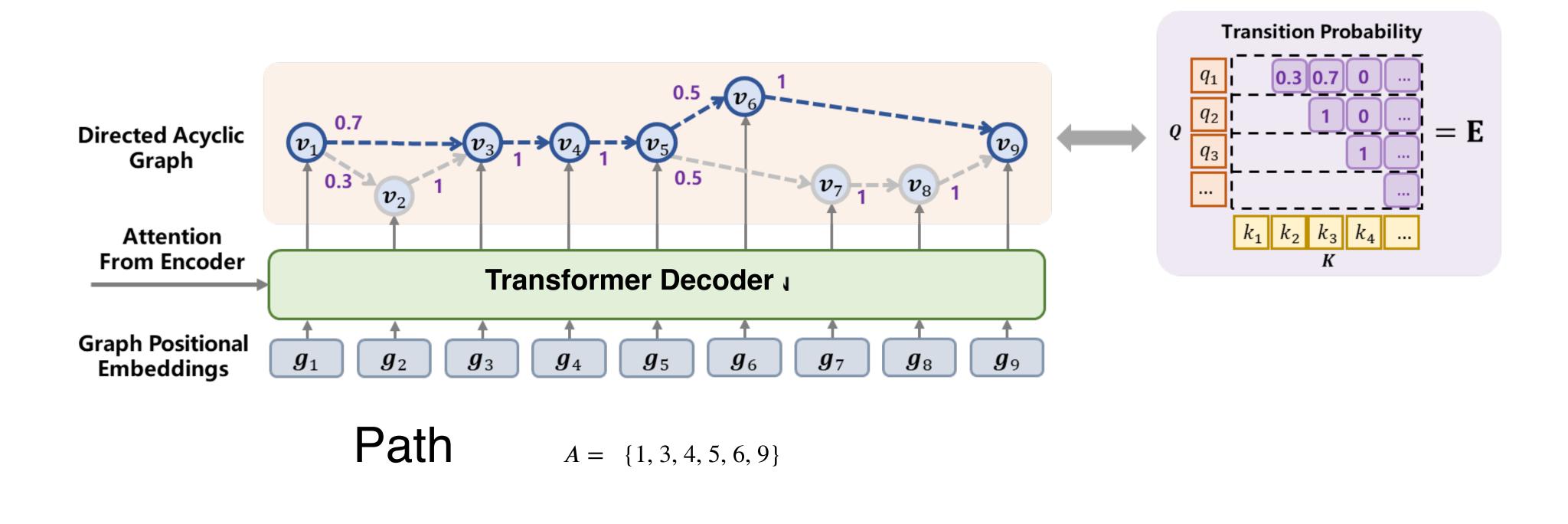


Predicting a DAG containing multiple outputs in parallel

• Step 1: Obtaining the vertex states  $V = [v_1, ..., v_L]^T$ 

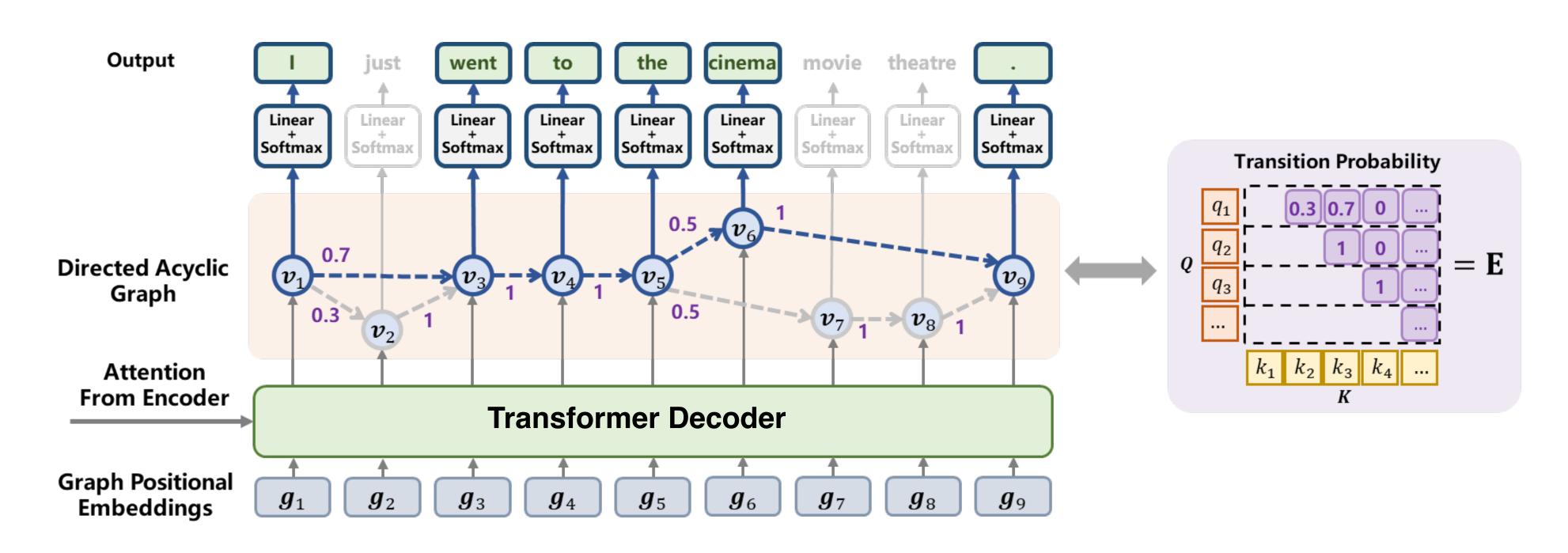


Step 2: Predict the transition matrix E and sample a path A



$$P_{\theta}(A|X) = \prod_{i=1}^{M-1} P_{\theta}(a_{i+1}|a_i, X) = \prod_{i=1}^{M-1} \mathbf{E}_{a_i, a_{i+1}},$$

• Step 3: Predict the tokens on the selected path



Path  $A = \{1, 3, 4, 5, 6, 9\}$ 

Reference Y = I went to the cinema

$$P_{\theta}(Y|A,X) = \prod_{i=1}^{M} P_{\theta}(y_i|a_i,X) = \prod_{i=1}^{M} \operatorname{softmax}(\mathbf{W}_{P}\mathbf{v}_{a_i})$$

Probability Modelling

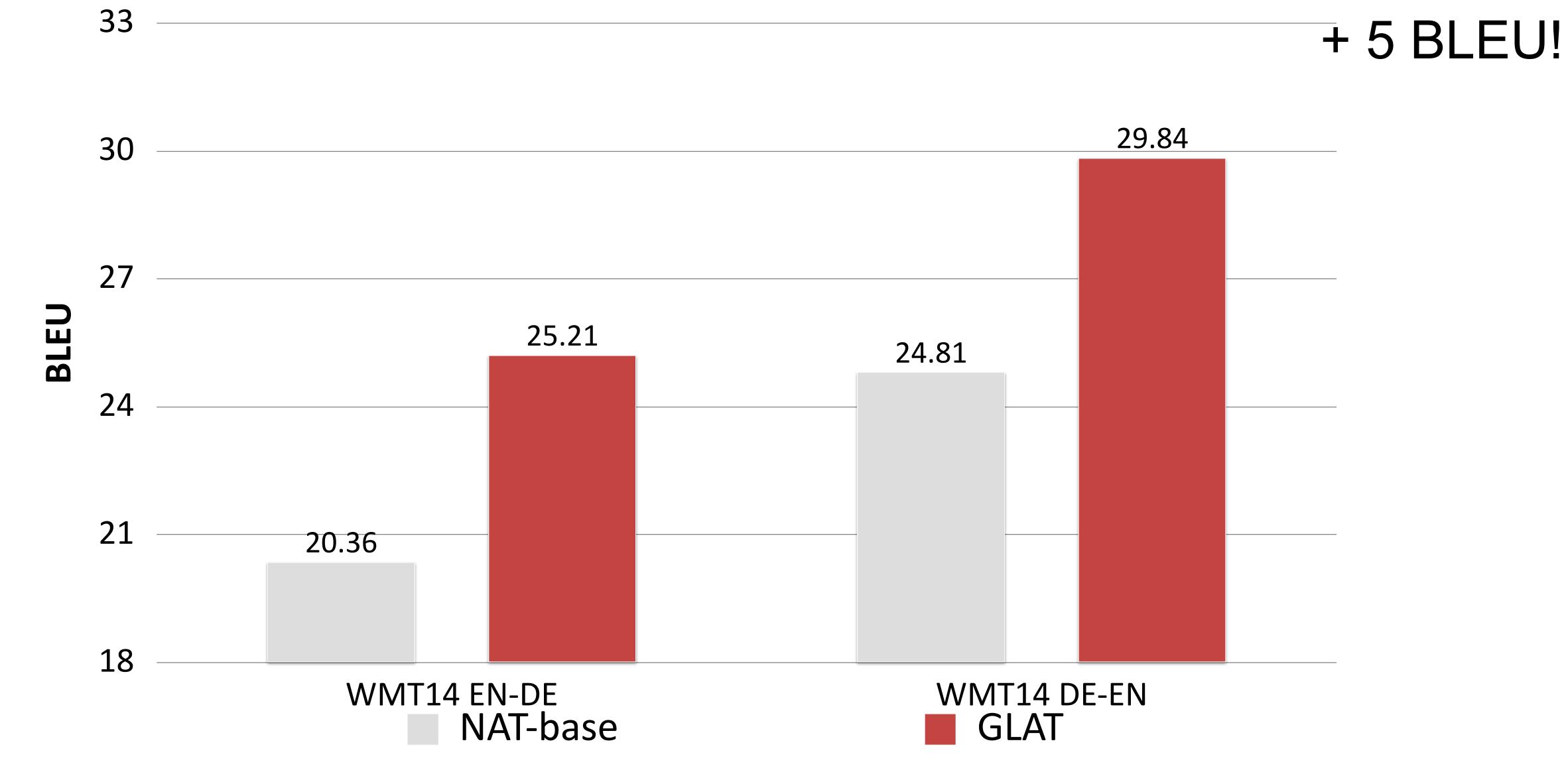
$$P_{\theta}(Y|X) = \sum_{A \in \Gamma} P_{\theta}(Y,A|X) = \sum_{A \in \Gamma} P_{\theta}(A|X) P_{\theta}(Y|A,X),$$
 All possible paths

$$P_{\theta}(A|X) = \prod_{i=1}^{M-1} P_{\theta}(a_{i+1}|a_i, X) = \prod_{i=1}^{M-1} \mathbf{E}_{a_i, a_{i+1}},$$

$$P_{\theta}(Y|A, X) = \prod_{i=1}^{M} P_{\theta}(y_i|a_i, X) = \prod_{i=1}^{M} \operatorname{softmax}(\mathbf{W}_{P}\mathbf{v}_{a_i})$$

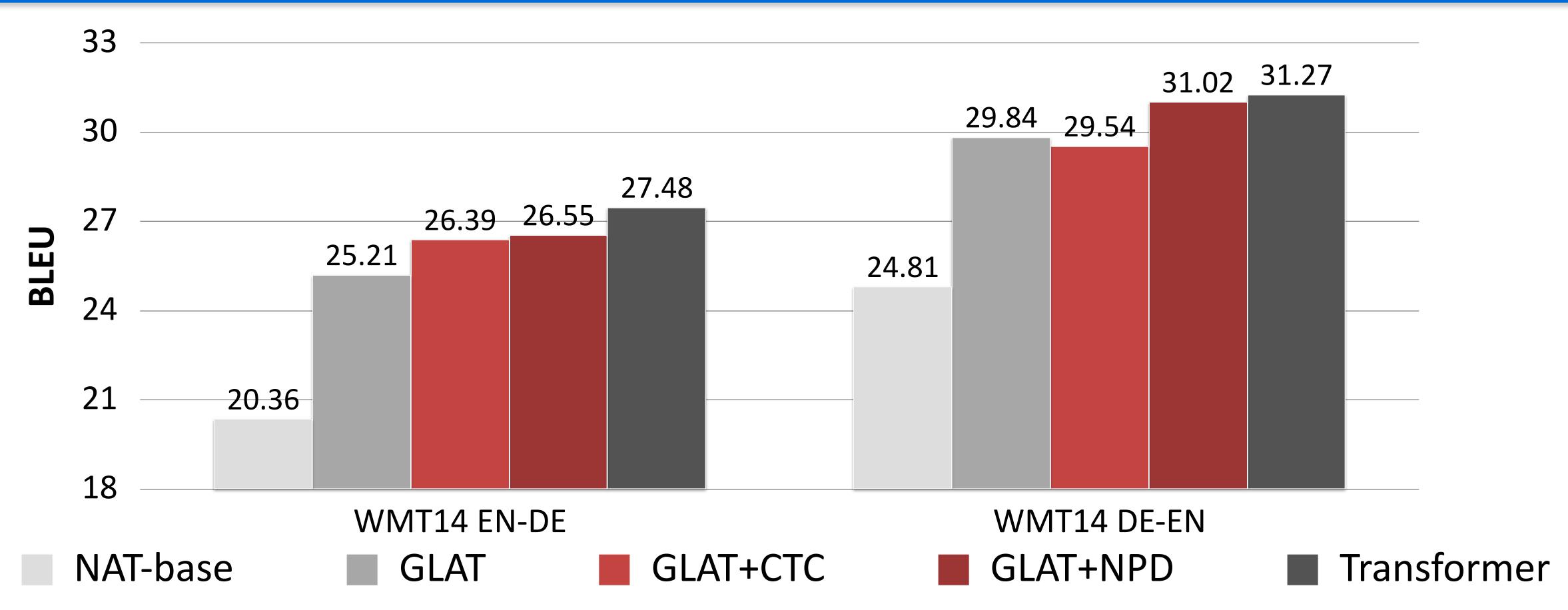
## Experiments

### GLAT boosts Translation Quality significantly!



Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.

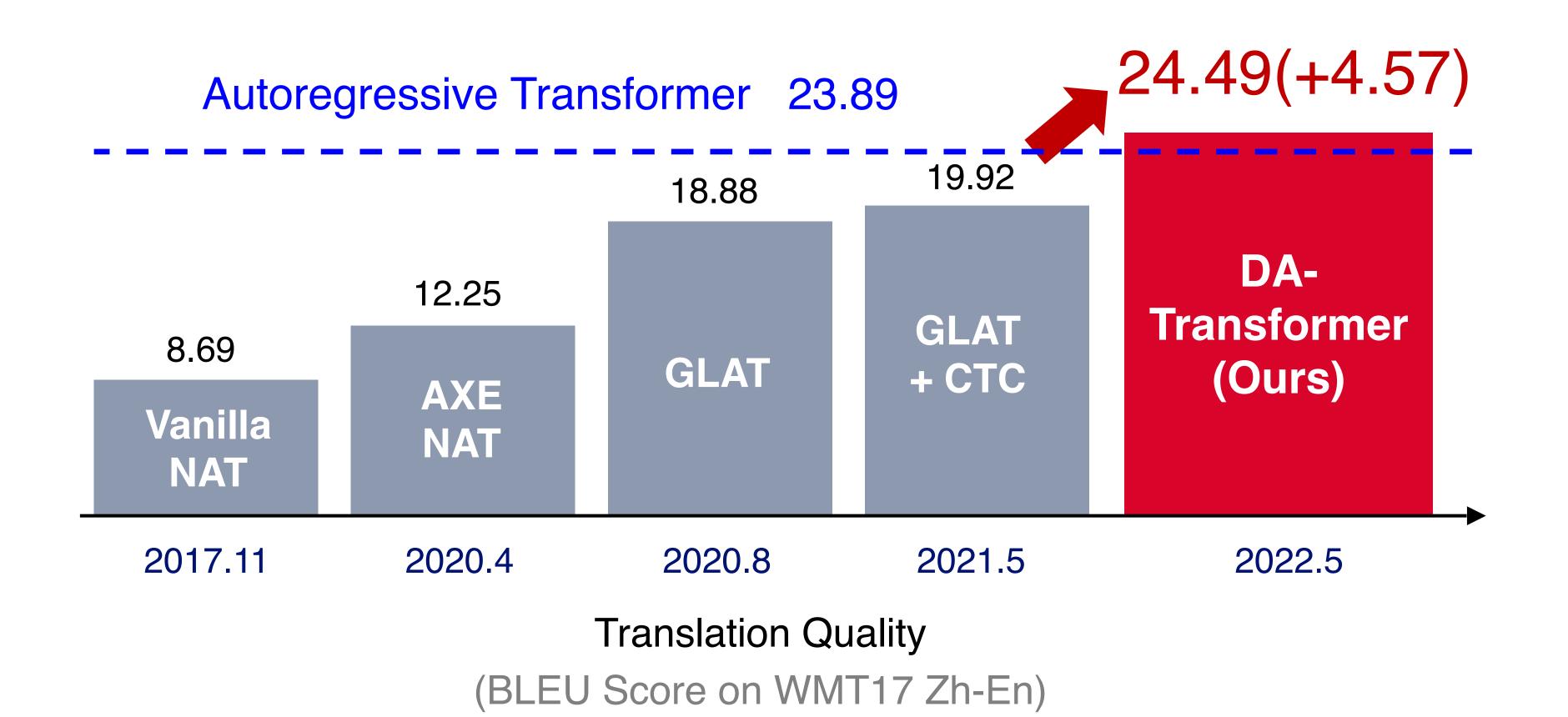
### GLAT approaches Transformer quality!



 GLAT achieves high quality translation while keeping high inference speed-up (8x~15x)

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.

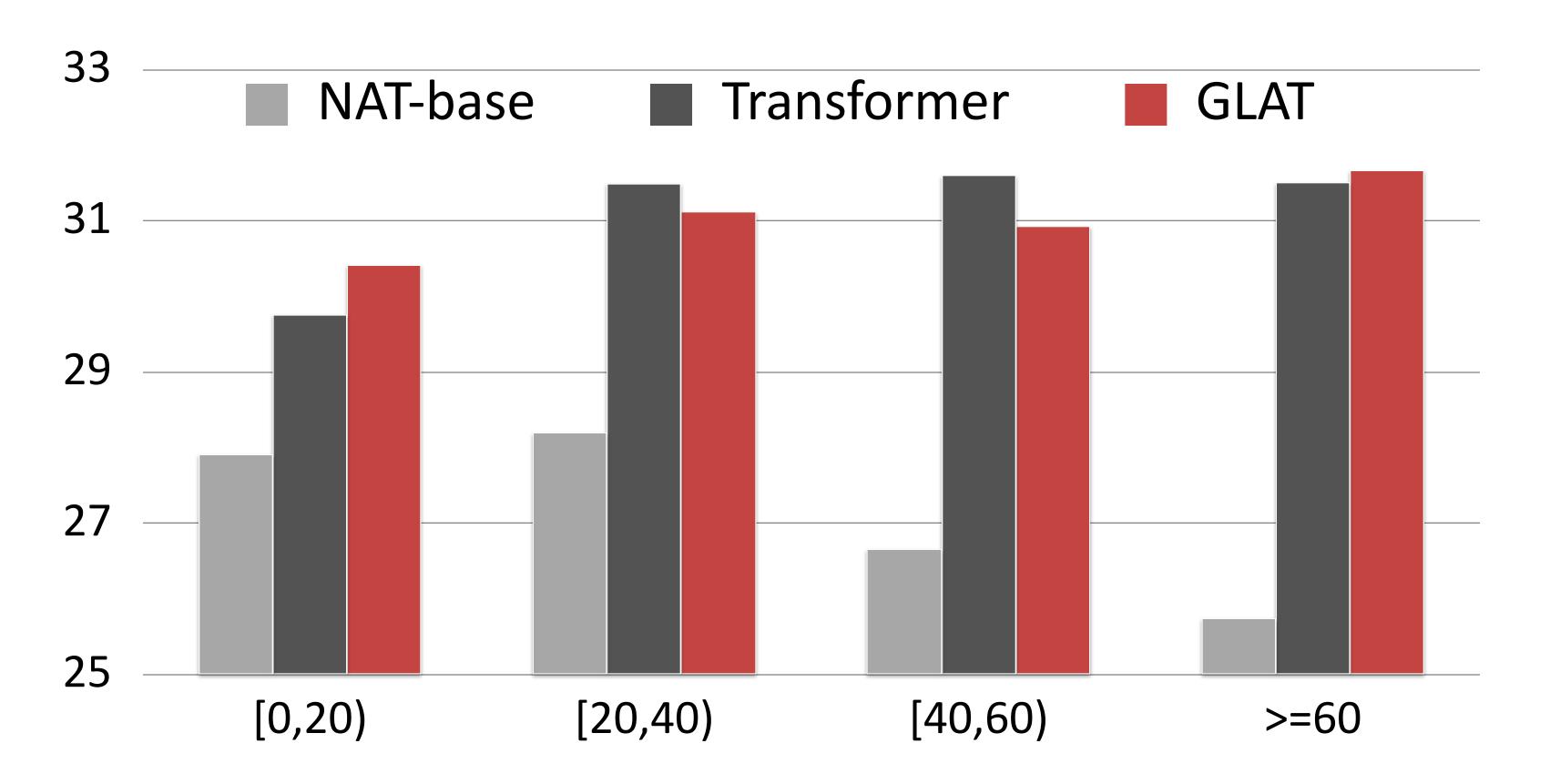
### DA-Transformer gets Better Performance without KD!



Fei Huang, Hao Zhou, Yang Liu, Hang Li, Minlie Huang. Directed Acyclic Transformer for Non-Autoregressive Machine Translation. ICML 2022.

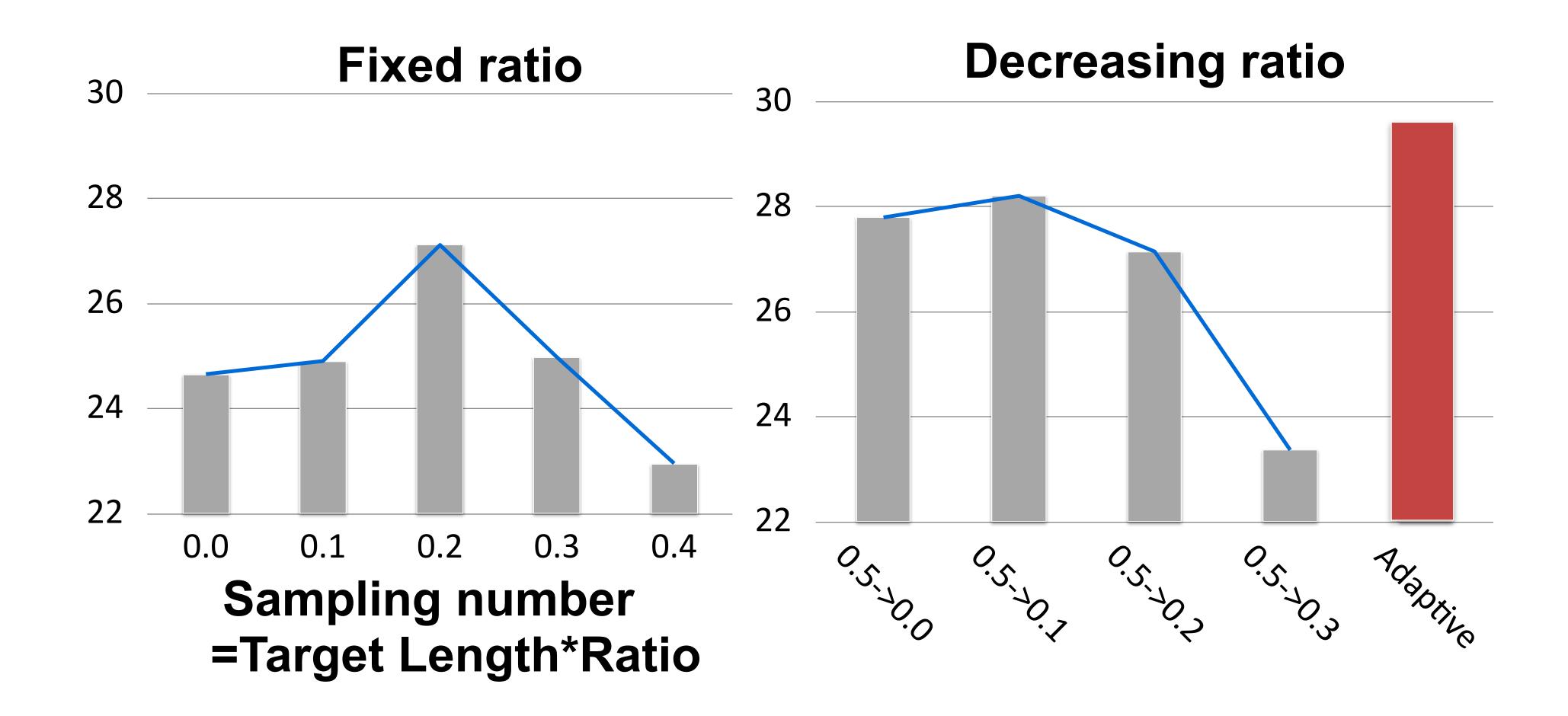
### Performance for different lengths

- The performance of NAT-base drops sharply as the input length becomes longer
- GLAT performs a little better than Transformer on WMT14 DE-EN when the input length is shorter than 20



### Adaptive sampling number is effective

• The adaptive glancing sampling strategy significantly improves performance



### GLAT in Real Competition

GLAT achieve the Top BLEU score in WMT21 En-De and De-En!

newstest2021.de-en test set (de-en).

| #  | <b>\$</b> | Name                       | BLEU |
|----|-----------|----------------------------|------|
| 1  |           | Anonymous submission #1276 | 35.0 |
| 2  |           | Anonymous submission #1284 | 35.0 |
| 3  |           | Anonymous submission #1304 | 34.9 |
| 4  |           | Anonymous submission #1117 | 34.9 |
| 5  |           | Anonymous submission #1258 | 34.9 |
| 6  |           | Anonymous submission #1124 | 34.9 |
| 7  |           | Anonymous submission #543  | 34.8 |
| 8  |           | Anonymous submission #963  | 34.8 |
| 9  |           | Anonymous submission #861  | 34.7 |
| 10 |           | Anonymous submission #738  | 34.7 |

BLEU and ChrF are sacreBLEU scores. Systems in **bold face** are your submission validation errors denoted by -1.0 score.

| #  | <b>♦ Name</b>              | ≎ BLE    |
|----|----------------------------|----------|
|    |                            | <u> </u> |
| 1  | Anonymous submission #1265 | 31.3     |
| 2  | Anonymous submission #1303 | 31.3     |
| 3  | Anonymous submission #1291 | 31.3     |
| 4  | Anonymous submission #804  | 31.3     |
| 5  | Anonymous submission #368  | 31.3     |
| 6  | Anonymous submission #1168 | 31.3     |
| 7  | Anonymous submission #1251 | 31.2     |
| 8  | Anonymous submission #986  | 31.2     |
| 9  | Anonymous submission #1310 | 31.2     |
| 10 | Anonymous submission #1243 | 31.2     |

BLEU and ChrF are sacreBLEU scores. Systems in **bold face** are your submissio validation errors denoted by -1.0 score.

Qian et al. The Volctrans GLAT System: Non-autoregressive Translation Meets WMT21. 2021.

### GLAT achieves Top-5 in WMT21 Human Evaluation

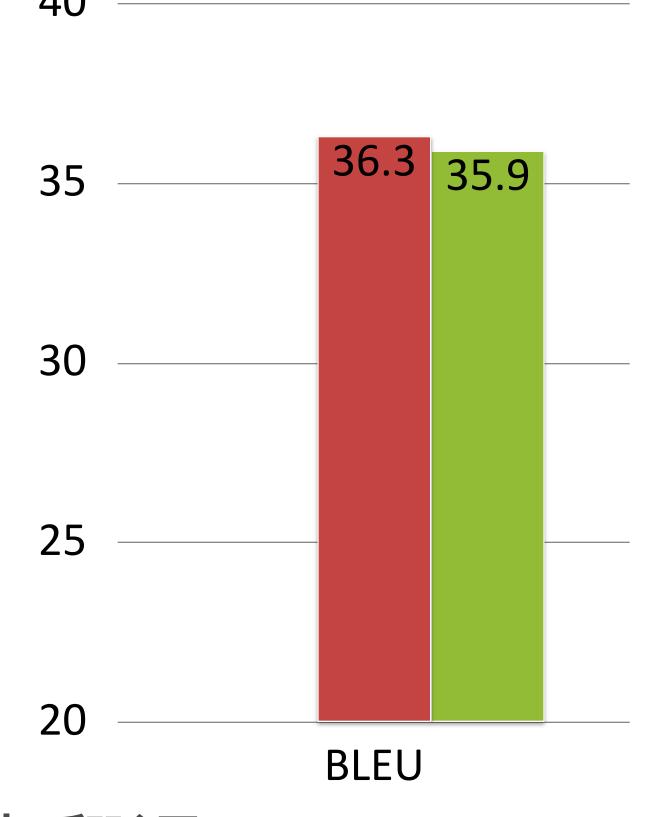
#### **German**→**English**

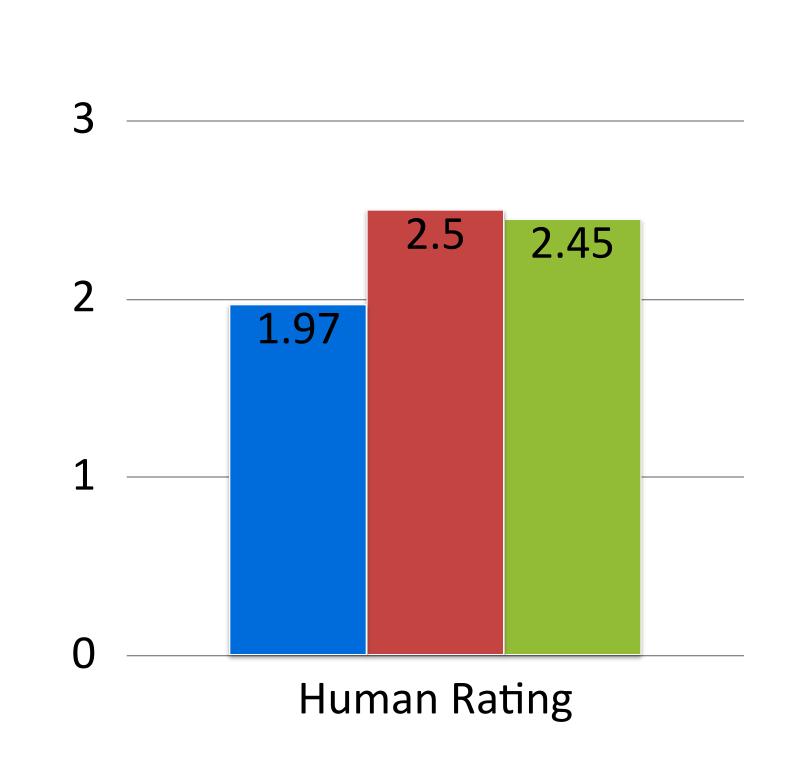
|       |      |        | 0                  |
|-------|------|--------|--------------------|
| Rank  | Ave. | Ave. z | System             |
| 1–5   | 71.9 | 0.126  | Borderline         |
| 1–6   | 73.5 | 0.124  | Online-A           |
| 1–4   | 78.6 | 0.122  | Online-W           |
| 4     | 79.5 | 0.113  | UF                 |
| 3–8   | 73.2 | 0.106  | VolcTrans-AT       |
| 4–9   | 77.5 | 0.100  | Facebook-AI        |
| 5–12  | 75.8 | 0.068  | ICL                |
| 4–12  | 73.4 | 0.048  | Online-G           |
| 8–17  | 69.7 | 0.016  | Online-B           |
| 7–17  | 71.3 | 0.016  | Online-Y           |
| 7–17  | 71.6 | 0.010  | VolcTrans-GLAT     |
| 5–16  | 69.6 | 0.007  | P3AI               |
| 9–19  | 70.6 | -0.008 | SMU                |
| 9–17  | 73.1 | -0.008 | UEdin              |
| 9–17  | 69.1 | -0.010 | <b>NVIDIA-NeMo</b> |
| 10–19 | 69.9 | -0.035 | Manifold           |
| 15–20 | 67.0 | -0.043 | Watermelon         |
| 7–17  | 71.8 | -0.061 | happypoet          |
| 16–20 | 66.8 | -0.081 | HUMAN-C            |
| 18–20 | 66.0 | -0.120 | HW-TSC             |
|       |      | Findir | ngs of WMT21.      |
|       |      |        | <del>-</del>       |

### GLAT is the first production NAT system!

 Already deployed online in VolcTrans and serving English-Japanese









### Summary

- Word interdependency learning is important
- GLAT can achieve comparable generation quality with autoregressive models
- A generation paradigm with great potential

### Language Presentation

### Course Evaluation and Feedback

