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Automatic Speech Recognition (ASR)

ASR

x y

̂y = argmax
y

p(y |x; θ)
Find the text y to maximize the conditional probability

The same formulation as translation



• Word error rate: edit distance between reference and 
candidate 

 

            Ref: pittsburgh is a city of bridge 

Candidate: pitts berger is city off bridge 

WER = (1+2+1) / 6 = 67%

WER =
Inserttions + Subs + Deletions

totalwordsinreference

Measuring the Performance: WER
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• Statistical ASR: 
○ based on noisy channel model (similar to IBM MT model) 

 

• End-to-end Neural ASR: 
○ directly learn mapping from input audio to output text

P(Y |X) =
∑Z P(X |Z)P(Z |Y)P(Y)

P(X)

Overview of ASR Approaches
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language 
model

g2pphoneme2audio
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Statistical ASR in one minute

Feature extraction

MFCC

Gaussian Acoustic Model

Decoding

Phone probability HMM Language Model



• Human hearing is not equally sensitive to all frequency 
bands 

• Mel Filter Bank: 
○ roughly evenly spaced below 1kHz 
○ logarithmic scale above 1kHz

Feature Extraction for Speech
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• Most widely used feature representation in ASR
Mel-Frequency Cepstral Coefficient (MFCC)
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Higher-order information
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• Window size: 25ms 
Window shift: 10ms 
Pre-emphasis coefficient: 0.97  

•  MFCC: 
○ 12 MFCC (mel frequency cepstral coefficients)  
○ 1 energy feature 
○ 12 delta MFCC features 
○ 12 double-delta MFCC features 
○ 1 delta energy feature 
○ 1 double-delta energy feature  

•  Total 39-dimensional features 

MFCC
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• Train a deep network that directly maps speech signal to 
the target letter/word sequence  

• Easy to build ASR systems for new tasks without expert 
knowledge

End-to-end ASR
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Neural Network

“Pittsburgh is a city of bridge”
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End-to-end ASR Network Architecture (LSTM)

Embedding

LSTM

LSTM

Feature Extraction

CTC
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Alignment Problem
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Alignment Problem
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Alignment Problem
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Possible Frame-Phoneme Alignment
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Possible Frame-Phoneme Alignment
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p(Y |X) = ∑
all valid alignment a forY

p(a |X)
Connectionist Temporal Classification (CTC)
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Connectionist Temporal Classification (CTC)
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MFCC feature 
sequence

Neural network

NN computes 
probabilities of 

token per 
frame



Connectionist Temporal Classification (CTC)
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Neural network

NN computes 
probabilities of 

token per 
frame

compute 
sequence 
probability



Connectionist Temporal Classification (CTC)
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compute 
sequence 
probability

compute possible 
output, 

marginalize over 
alignments



p(Y |X) = ∑
valid alignment a forY

T

∏
t=1

p(at |X)

Connectionist Temporal Classification (CTC)

21

Direct summing over all alignments 
can be expensive, instead we use 
dynamic programming to efficiently 
compute the probability



 

Each node represents a partial sum of score

Z = [_, y1, _, y2, _, y3, _, …, yn, _]
CTC
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• Once computed the probability 

  min ∑
(X,Y)∈𝒟

− log p(Y |X)

CTC training
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• Beam search with CTC
CTC Inference
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CTC Inference
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• Beam search with CTC



• https://distill.pub/2017/ctc/
Demo
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• CTC loss is supported in all major DL library 

• wart-ctc: open source implementation of a fast CTC in 
CUDA and C++ 

•

Software support
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• RNN Transducer 
○ Combining CTC and Language Model 

• Conformer

Advanced End-to-end ASR
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• Directly optimizes target word sequence as correct label 
○ Graphemes (letters) or word parts (10k-50k) used in practice 

• Learned combination of acoustic + language model pieces  

• Conditions on sequence output so far ( ) yt−1

RNN Transducer
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• Autoregressive Generation 

• Predictor inputs are only non-black tokens (y) 

• Do not increment t if non-blank token is output

RNN Transducer
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• Many alignments are consistent with groundtruth 

• CTC style dynamic programming

RNN Transducer Loss
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Google on-device ASR enabled by RNN-T



• RNN Transducer architecture 

• Scaling up training with parallel RNN-T. 

• Decoding: Beam search with a single NN instead of weighted finite state 
transducer decoding machinery 

•  NN parameter quantization. 
 4x model size compression. 4x runtime speed improvement  

• LM contextual biasing. User-specialized LM to upweight common 
requests / inputs  

• Improved text normalization + sub-word output units

Key Techniques for on-device ASR
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• Convolution + 
Transformer 

• RNN-T loss
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Conformer Conformer Encoder



• Conformer Encoder + RNN Transducer
Conformer
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1 layer LSTM

3 layer LSTM 
language model
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Conformer Performance



• Measuring Performance 
○ Word Error Rate: edit distance between reference and candidate 

• Audio Feature Extraction: MFCC 

• End-to-end ASR model 
○ CTC loss to sum all valid alignments 

• RNN Transducer: CTC+Language Model 

• Conformer: Convolution + Transformer + RNN-T

Summary
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Language in 10
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• ASR
Homework 2
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