
CS11-737 Multilingual NLP

Automatic Speech
Recognition

Lei Li
https://lileicc.github.io/course/11737mnlp23fa/

1

2

Automatic Speech Recognition (ASR)

ASR

x y

̂y = argmax
y

p(y |x; θ)
Find the text y to maximize the conditional probability

The same formulation as translation

• Word error rate: edit distance between reference and
candidate

 Ref: pittsburgh is a city of bridge

Candidate: pitts berger is city off bridge

WER = (1+2+1) / 6 = 67%

WER =
Inserttions + Subs + Deletions

totalwordsinreference

Measuring the Performance: WER

3

• Statistical ASR:
○ based on noisy channel model (similar to IBM MT model)

• End-to-end Neural ASR:
○ directly learn mapping from input audio to output text

P(Y |X) =
∑Z P(X |Z)P(Z |Y)P(Y)

P(X)

Overview of ASR Approaches

4

language
model

g2pphoneme2audio

5

Statistical ASR in one minute

Feature extraction

MFCC

Gaussian Acoustic Model

Decoding

Phone probability HMM Language Model

• Human hearing is not equally sensitive to all frequency
bands

• Mel Filter Bank:
○ roughly evenly spaced below 1kHz
○ logarithmic scale above 1kHz

Feature Extraction for Speech

6

• Most widely used feature representation in ASR
Mel-Frequency Cepstral Coefficient (MFCC)

7

Higher-order information

8

• Window size: 25ms
Window shift: 10ms
Pre-emphasis coefficient: 0.97

• MFCC:
○ 12 MFCC (mel frequency cepstral coefficients)
○ 1 energy feature
○ 12 delta MFCC features
○ 12 double-delta MFCC features
○ 1 delta energy feature
○ 1 double-delta energy feature

• Total 39-dimensional features

MFCC

9

• Train a deep network that directly maps speech signal to
the target letter/word sequence

• Easy to build ASR systems for new tasks without expert
knowledge

End-to-end ASR

10

Neural Network

“Pittsburgh is a city of bridge”

11

End-to-end ASR Network Architecture (LSTM)

Embedding

LSTM

LSTM

Feature Extraction

CTC

12

Alignment Problem

13

Alignment Problem

14

Alignment Problem

15

Possible Frame-Phoneme Alignment

x1 x2 x3 x4 x5

input
(NN feature vector

for each frame)

s _ e e _

x6

e

x7

_
per frame prediction

(include blank)

s e eoutput

16

Possible Frame-Phoneme Alignment

x1 x2 x3 x4 x5

input
(NN feature vector

for each frame)

s _ e e _

x6

e

x7

_per frame prediction
(include blank)

s e eoutput

x8

s _ e e _ e _s _ e e

s _ e e e _

p(Y |X) = ∑
all valid alignment a forY

p(a |X)
Connectionist Temporal Classification (CTC)

17

x1 x2 x3 x4 x5

s _ e e _

x6

e

x7

_

x8
s _ e e _ e _s _ e e

Connectionist Temporal Classification (CTC)

18

MFCC feature
sequence

Neural network

NN computes
probabilities of

token per
frame

Connectionist Temporal Classification (CTC)

19

Neural network

NN computes
probabilities of

token per
frame

compute
sequence
probability

Connectionist Temporal Classification (CTC)

20

compute
sequence
probability

compute possible
output,

marginalize over
alignments

p(Y |X) = ∑
valid alignment a forY

T

∏
t=1

p(at |X)

Connectionist Temporal Classification (CTC)

21

Direct summing over all alignments
can be expensive, instead we use
dynamic programming to efficiently
compute the probability

Each node represents a partial sum of score

Z = [_, y1, _, y2, _, y3, _, …, yn, _]
CTC

22

t=1 t=2 t=3 t=4
a

b

_

• Once computed the probability

 min ∑
(X,Y)∈𝒟

− log p(Y |X)

CTC training

23

• Beam search with CTC
CTC Inference

24

CTC Inference

25

• Beam search with CTC

• https://distill.pub/2017/ctc/
Demo

26

• CTC loss is supported in all major DL library

• wart-ctc: open source implementation of a fast CTC in
CUDA and C++

•

Software support

27

• RNN Transducer
○ Combining CTC and Language Model

• Conformer

Advanced End-to-end ASR

28

• Directly optimizes target word sequence as correct label
○ Graphemes (letters) or word parts (10k-50k) used in practice

• Learned combination of acoustic + language model pieces

• Conditions on sequence output so far () yt−1

RNN Transducer

29

• Autoregressive Generation

• Predictor inputs are only non-black tokens (y)

• Do not increment t if non-blank token is output

RNN Transducer

30

• Many alignments are consistent with groundtruth

• CTC style dynamic programming

RNN Transducer Loss

31

32

Google on-device ASR enabled by RNN-T

• RNN Transducer architecture

• Scaling up training with parallel RNN-T.

• Decoding: Beam search with a single NN instead of weighted finite state
transducer decoding machinery

• NN parameter quantization.
 4x model size compression. 4x runtime speed improvement

• LM contextual biasing. User-specialized LM to upweight common
requests / inputs

• Improved text normalization + sub-word output units

Key Techniques for on-device ASR

33

• Convolution +
Transformer

• RNN-T loss

34

Conformer Conformer Encoder

• Conformer Encoder + RNN Transducer
Conformer

35

1 layer LSTM

3 layer LSTM
language model

36

Conformer Performance

• Measuring Performance
○ Word Error Rate: edit distance between reference and candidate

• Audio Feature Extraction: MFCC

• End-to-end ASR model
○ CTC loss to sum all valid alignments

• RNN Transducer: CTC+Language Model

• Conformer: Convolution + Transformer + RNN-T

Summary

37

Language in 10

38

• ASR
Homework 2

39

