CS11-737 Multilingual NLP Automatic Speech Recognition Lei Li

https://lileicc.github.io/course/11737mnlp23fa/

Carnegie Mellon University Language Technologies Institute

Automatic Speech Recognition (ASR)

Find the text y to maximize the conditional probability $\hat{y} = \operatorname*{argmax}_{y} p(y \ x; \theta)$

The same formulation as translation

Measuring the Performance: WER

• Word error rate: edit distance between reference and candidate

WER = -Inserttions + Subs + Deletions totalwordsinreference

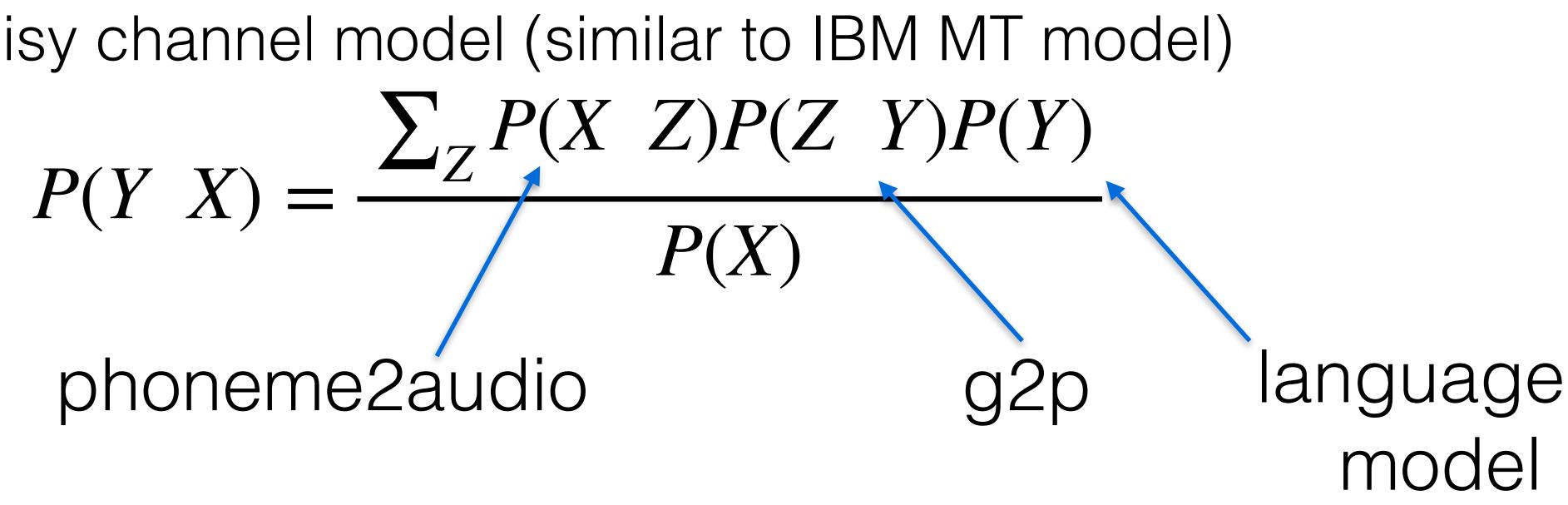
Ref: pittsburgh is a city of bridge

Candidate: pitts berger is city off bridge

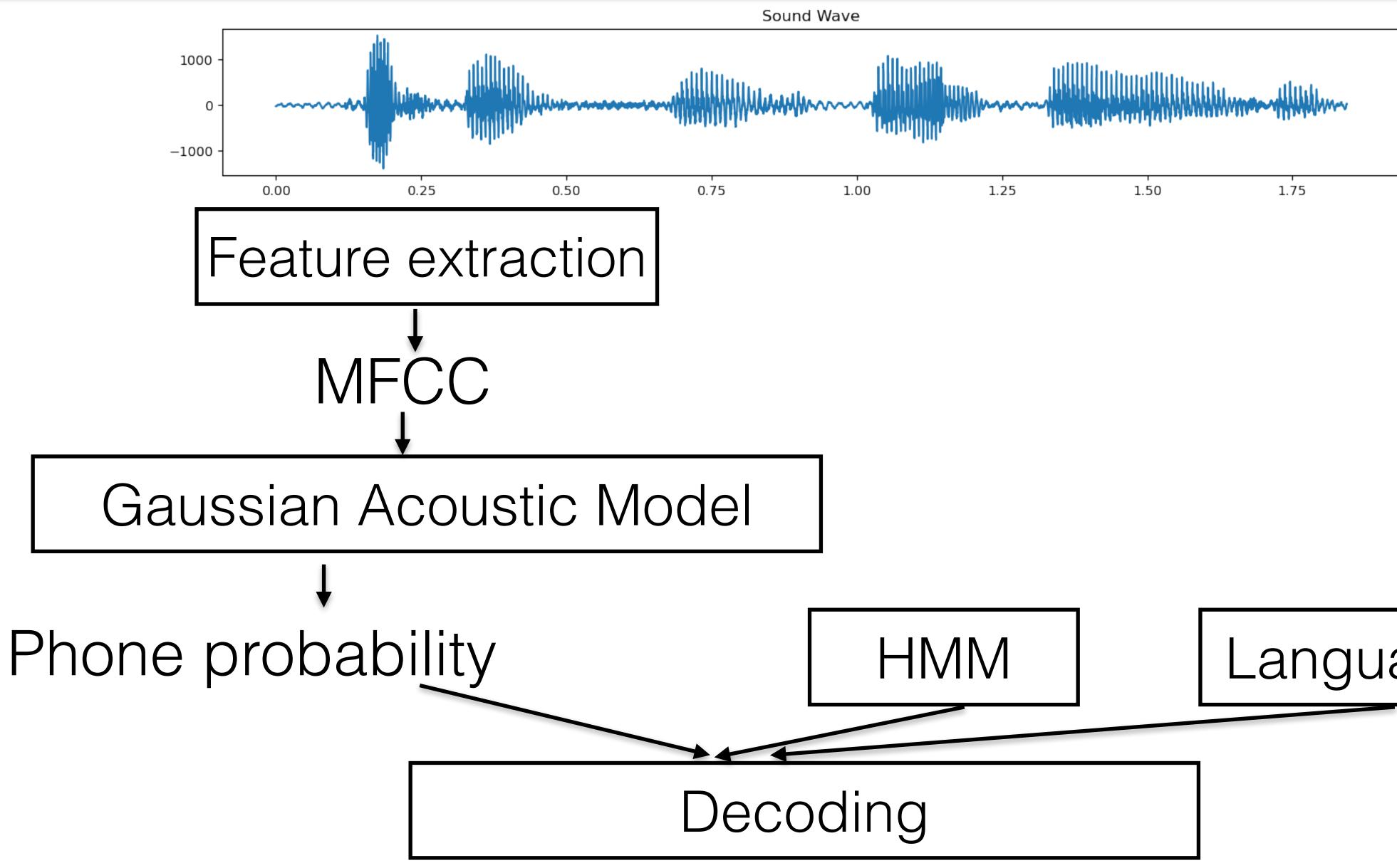
WER = (1+2+1)/6 = 67%

Overview of ASR Approaches

- Statistical ASR: based on noisy channel model (similar to IBM MT model)
 - phoneme2audio
- End-to-end Neural ASR: directly learn mapping from input audio to output text



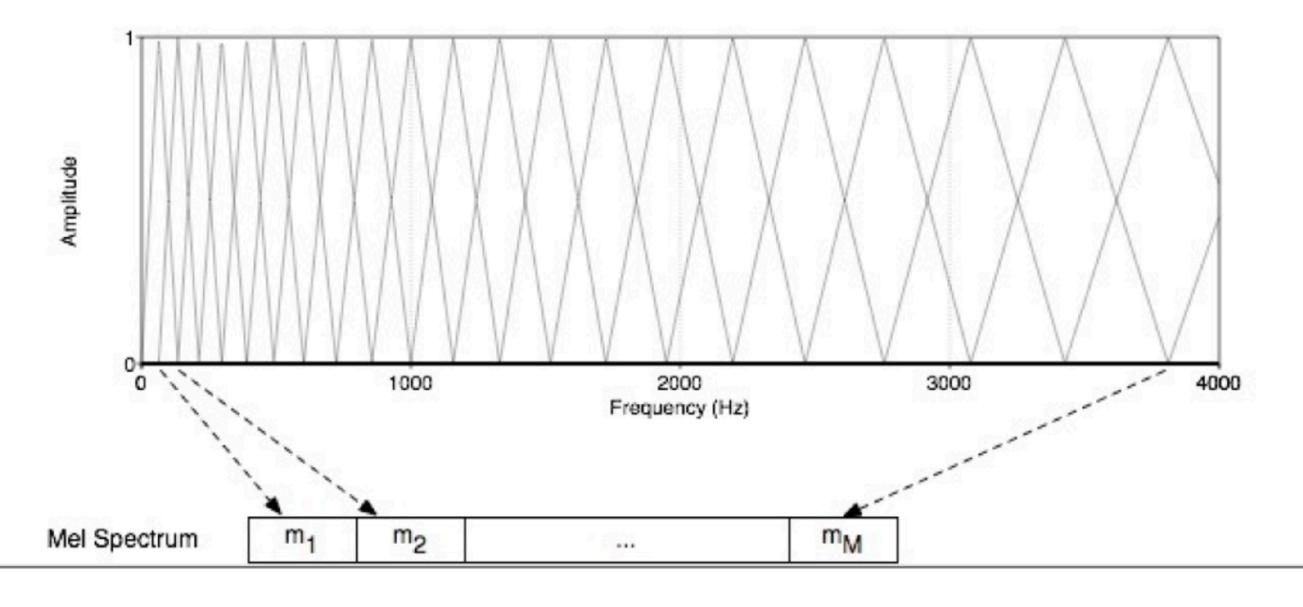
Statistical ASR in one minute



Language Model

Feature Extraction for Speech

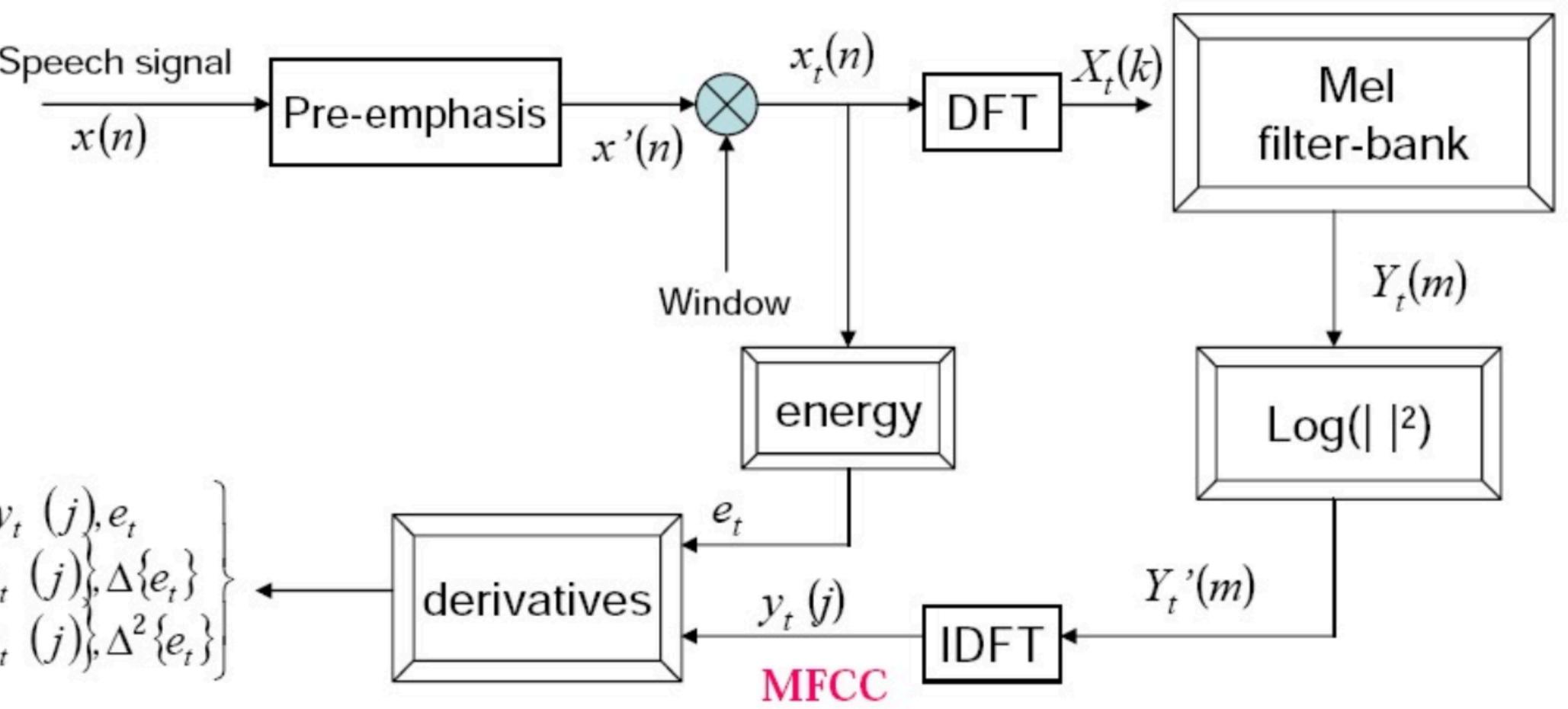
- bands
- Mel Filter Bank: roughly evenly spaced below 1kHz logarithmic scale above 1kHz

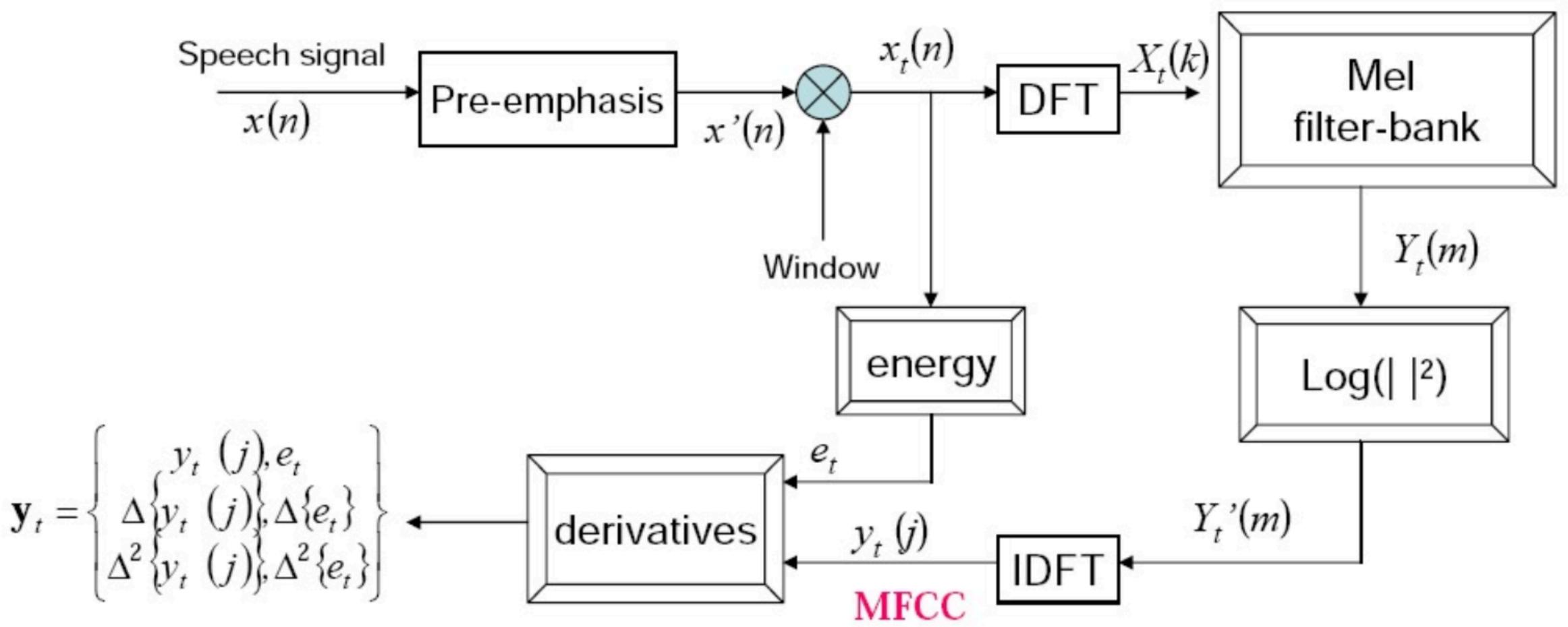


Human hearing is not equally sensitive to all frequency

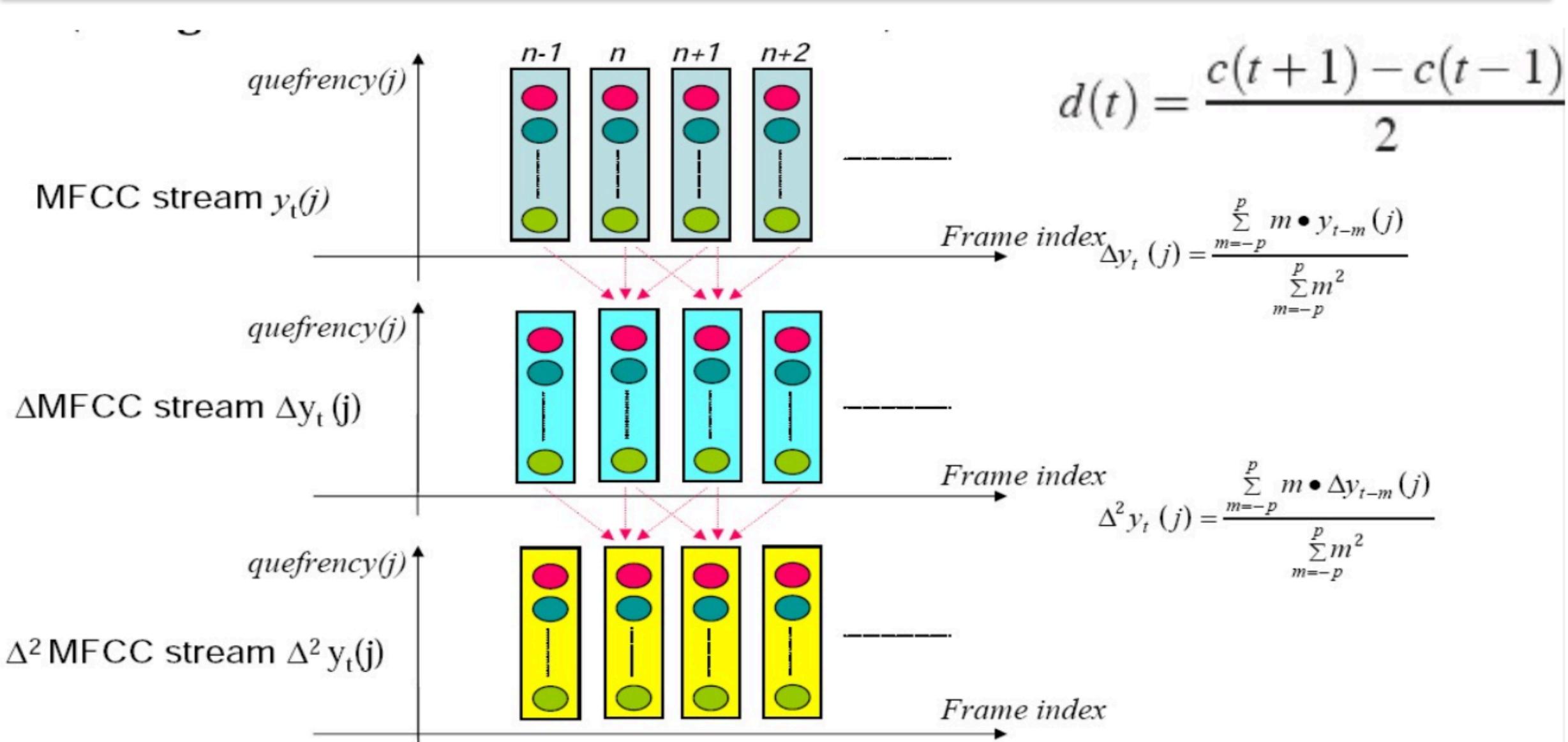
Mel-Frequency Cepstral Coefficient (MFCC)

Most widely used feature representation in ASR





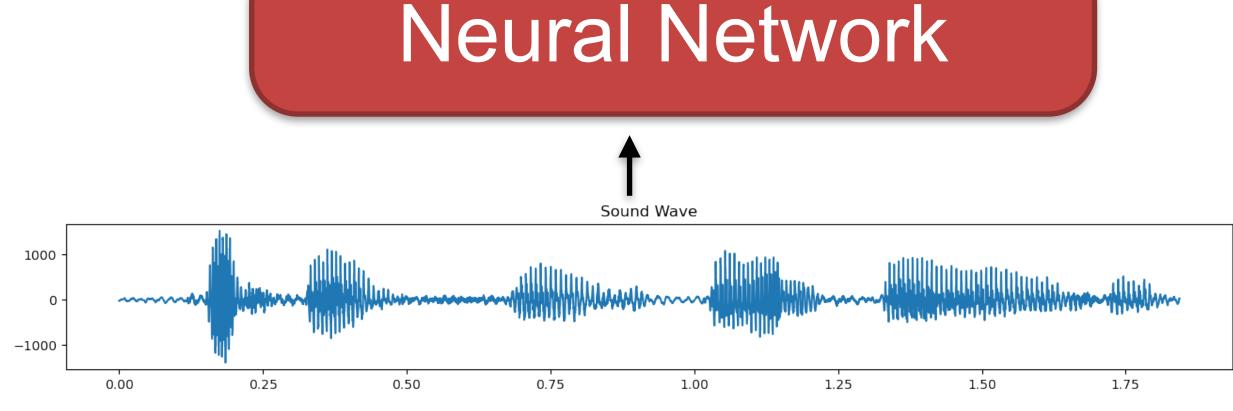
Higher-order information



- Window size: 25ms Window shift: 10ms Pre-emphasis coefficient: 0.97
- MFCC:
 - 12 MFCC (mel frequency cepstral coefficients)
 - 1 energy feature
 - 12 delta MFCC features
 - 12 double-delta MFCC features
 - 1 delta energy feature
 - 1 double-delta energy feature
- Total 39-dimensional features

MFCC

- the target letter/word sequence
- Easy to build ASR systems for new tasks without expert knowledge

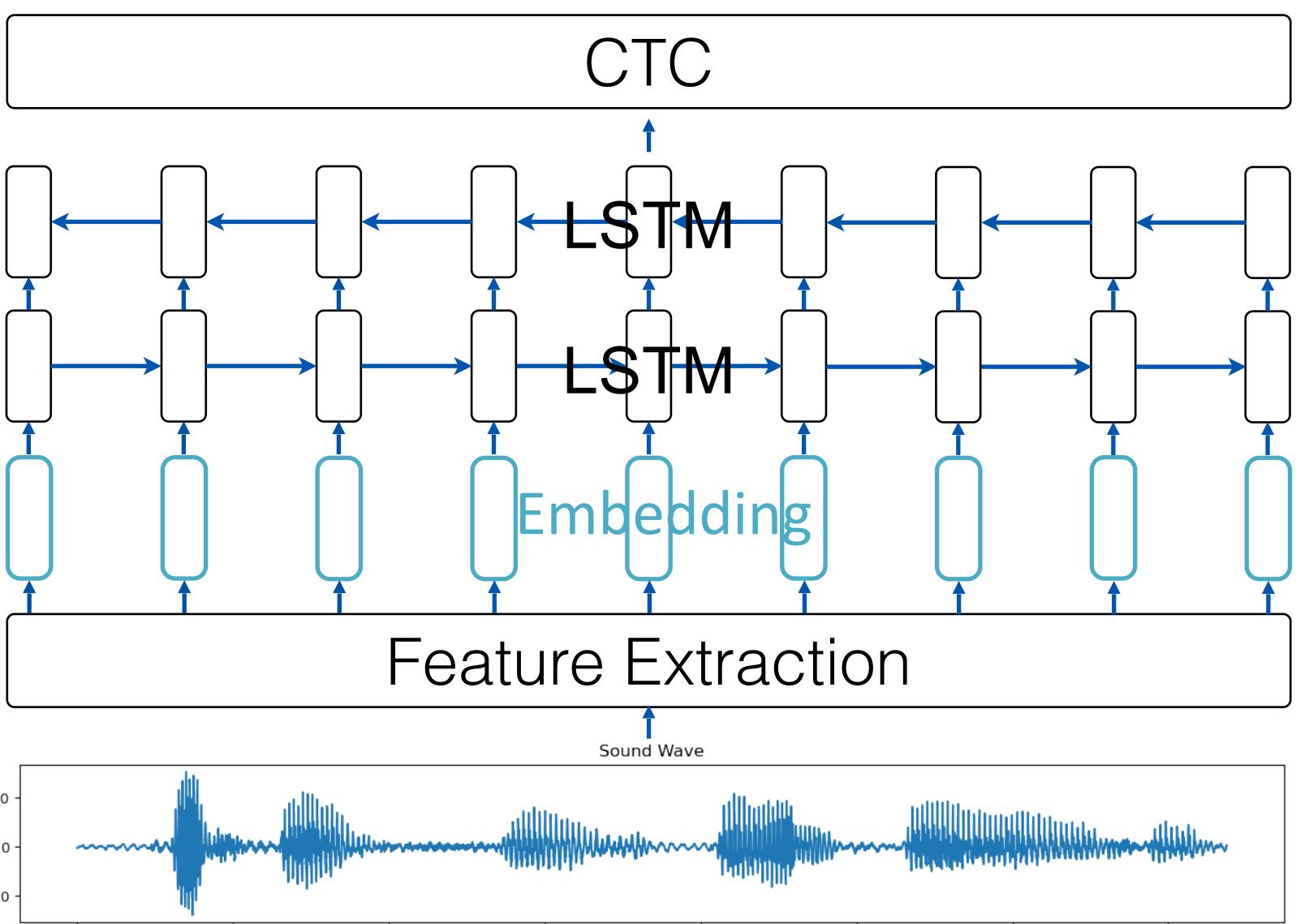


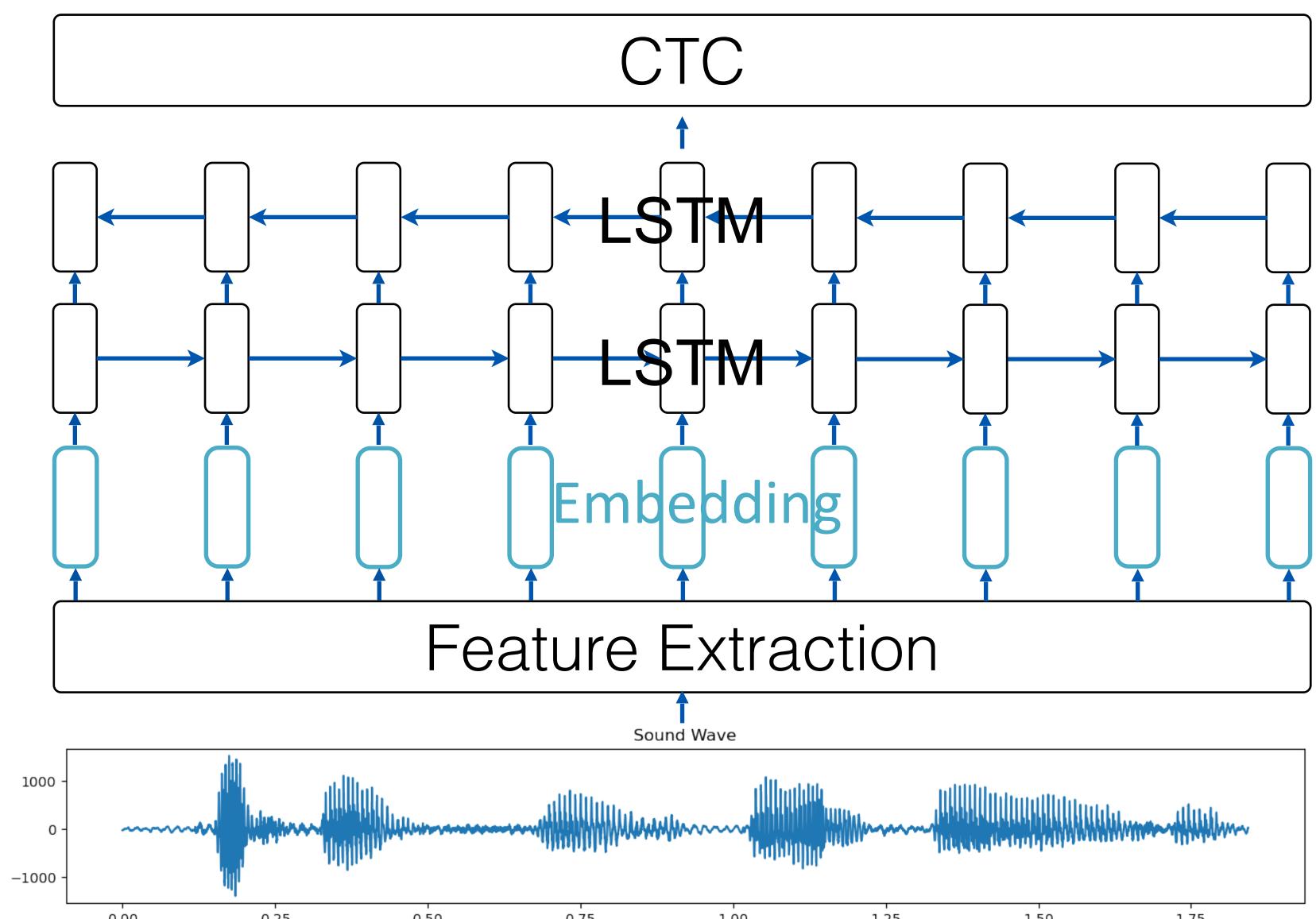
End-to-end ASR

Train a deep network that directly maps speech signal to

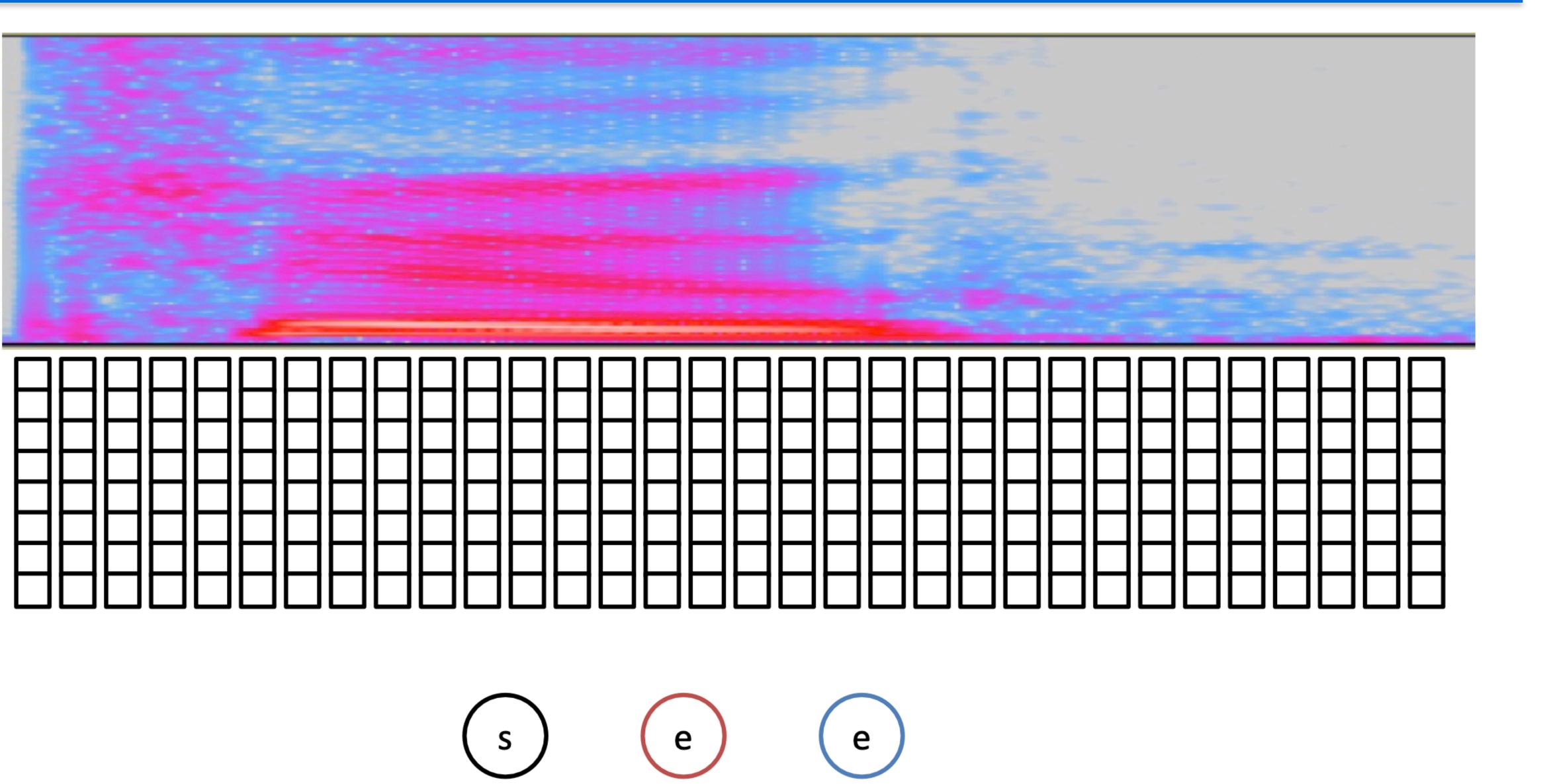
"Pittsburgh is a city of bridge"

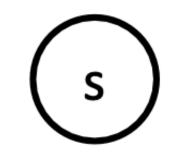
End-to-end ASR Network Architecture (LSTM)



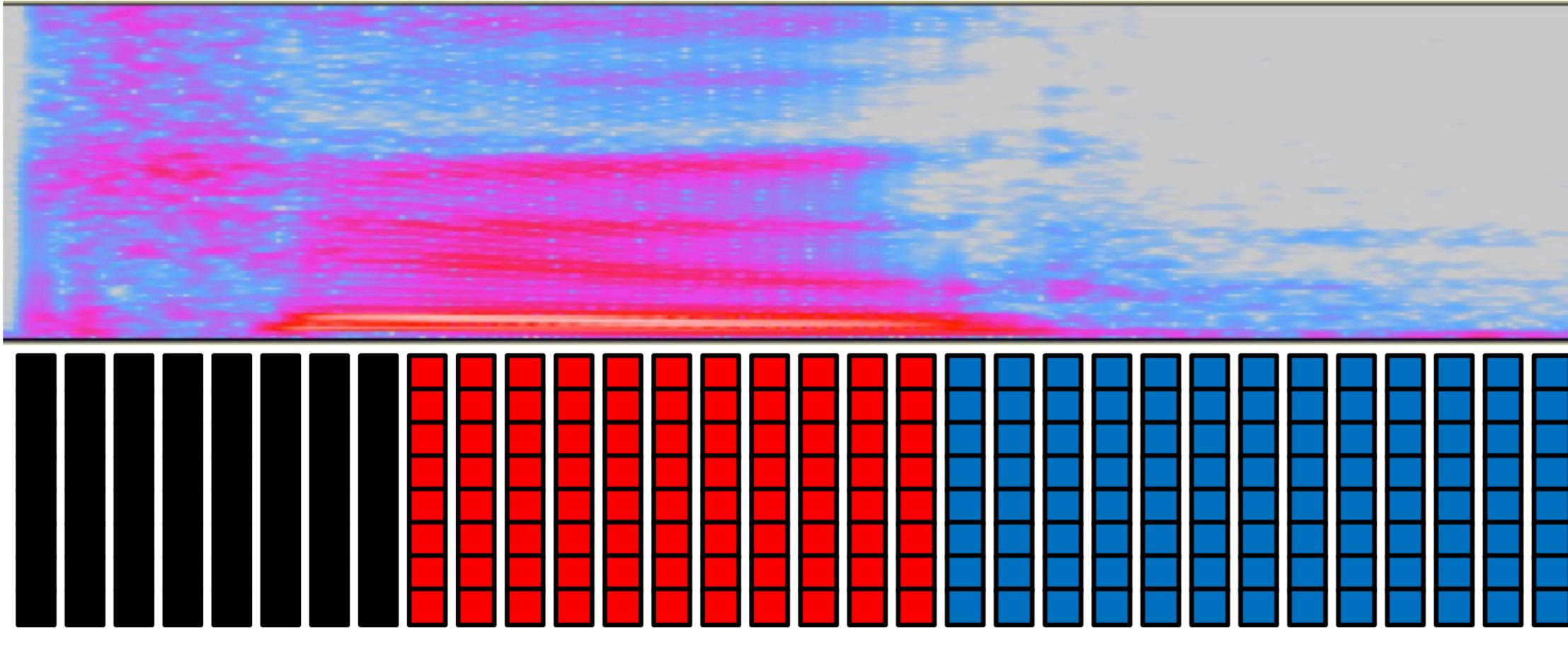


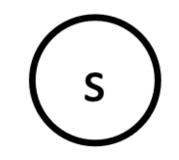
Alignment Problem





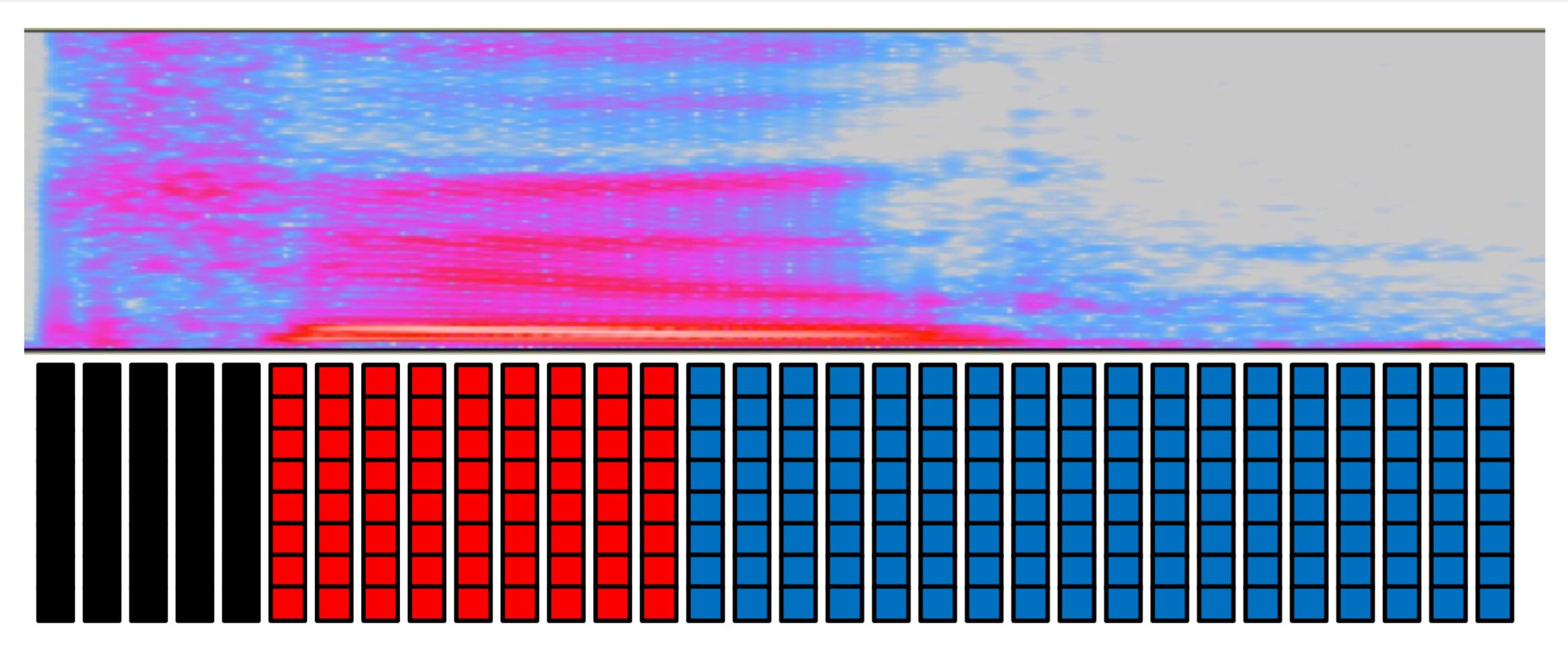
Alignment Problem

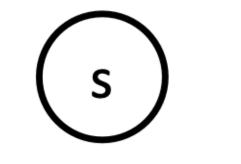




(s) e e

Alignment Problem





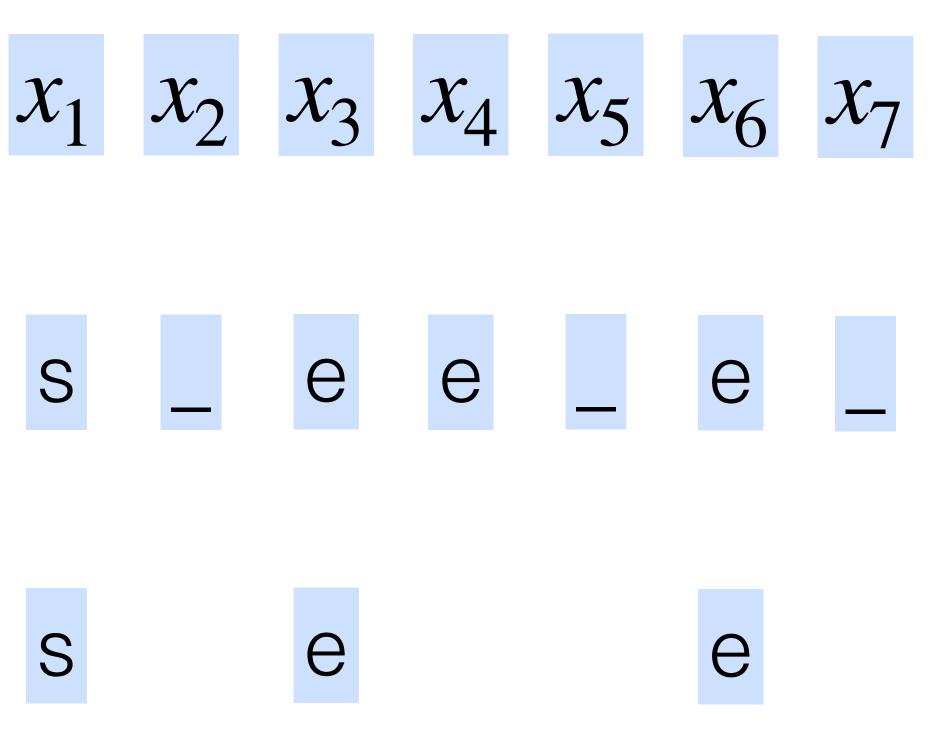
(s) e e

Input (NN feature vector for each frame) per frame prediction S (include blank)

output

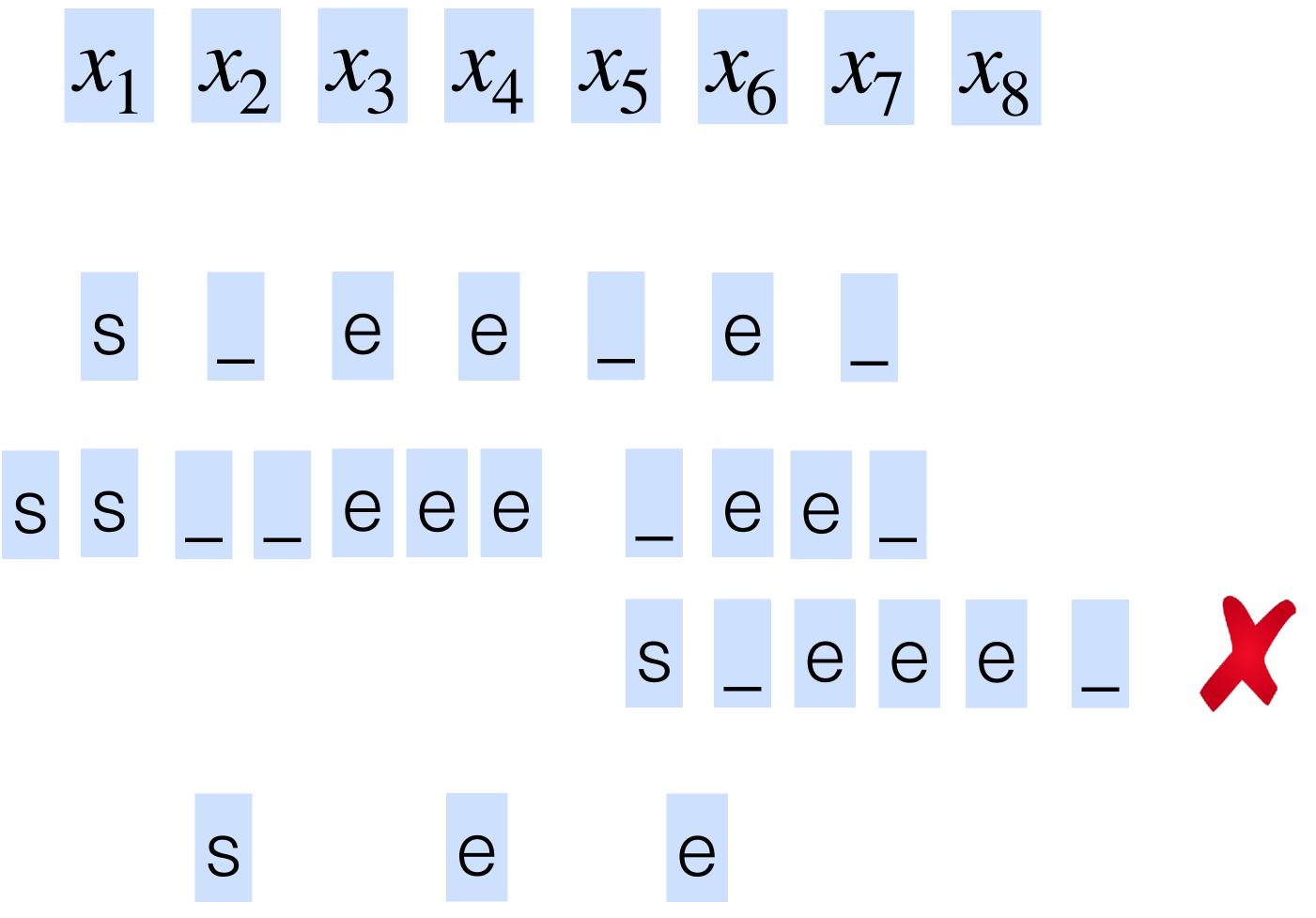
S

Possible Frame-Phoneme Alignment



Possible Frame-Phoneme Alignment

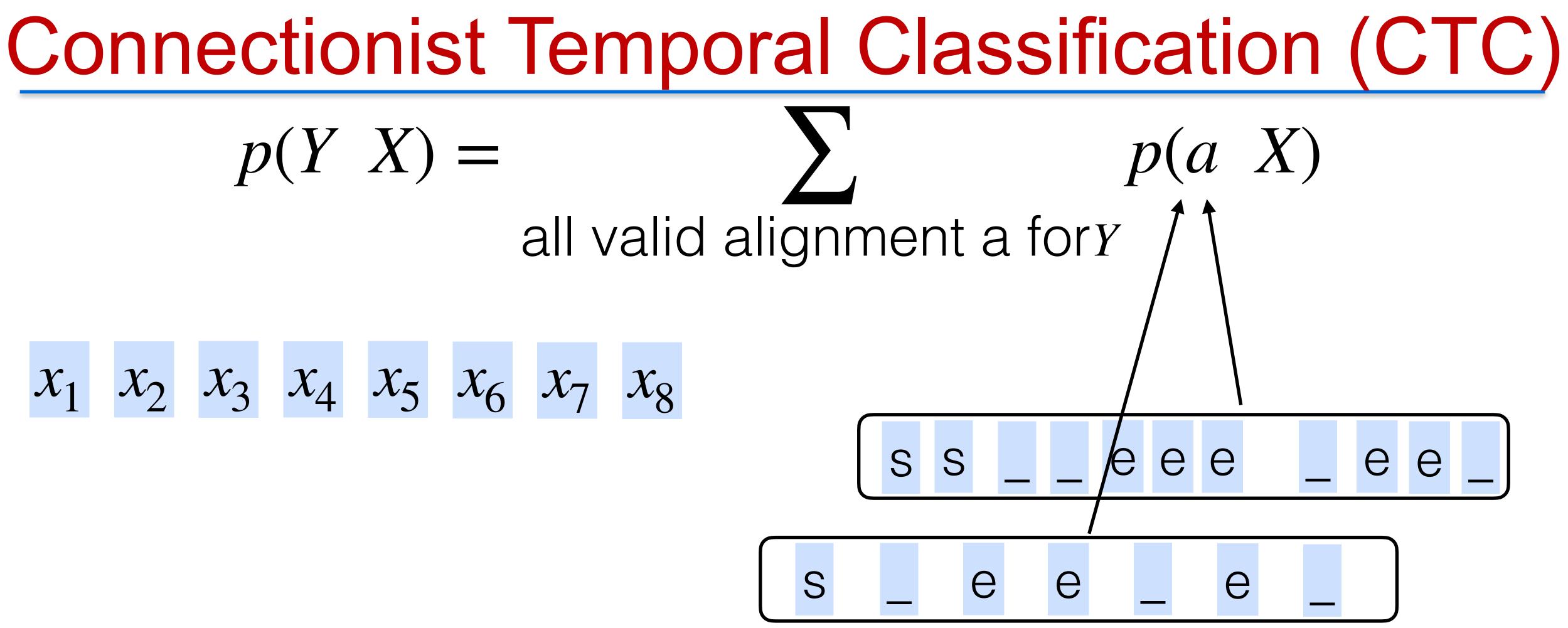
input (NN feature vector for each frame) per frame prediction (include blank)



output

p(Y | X) =

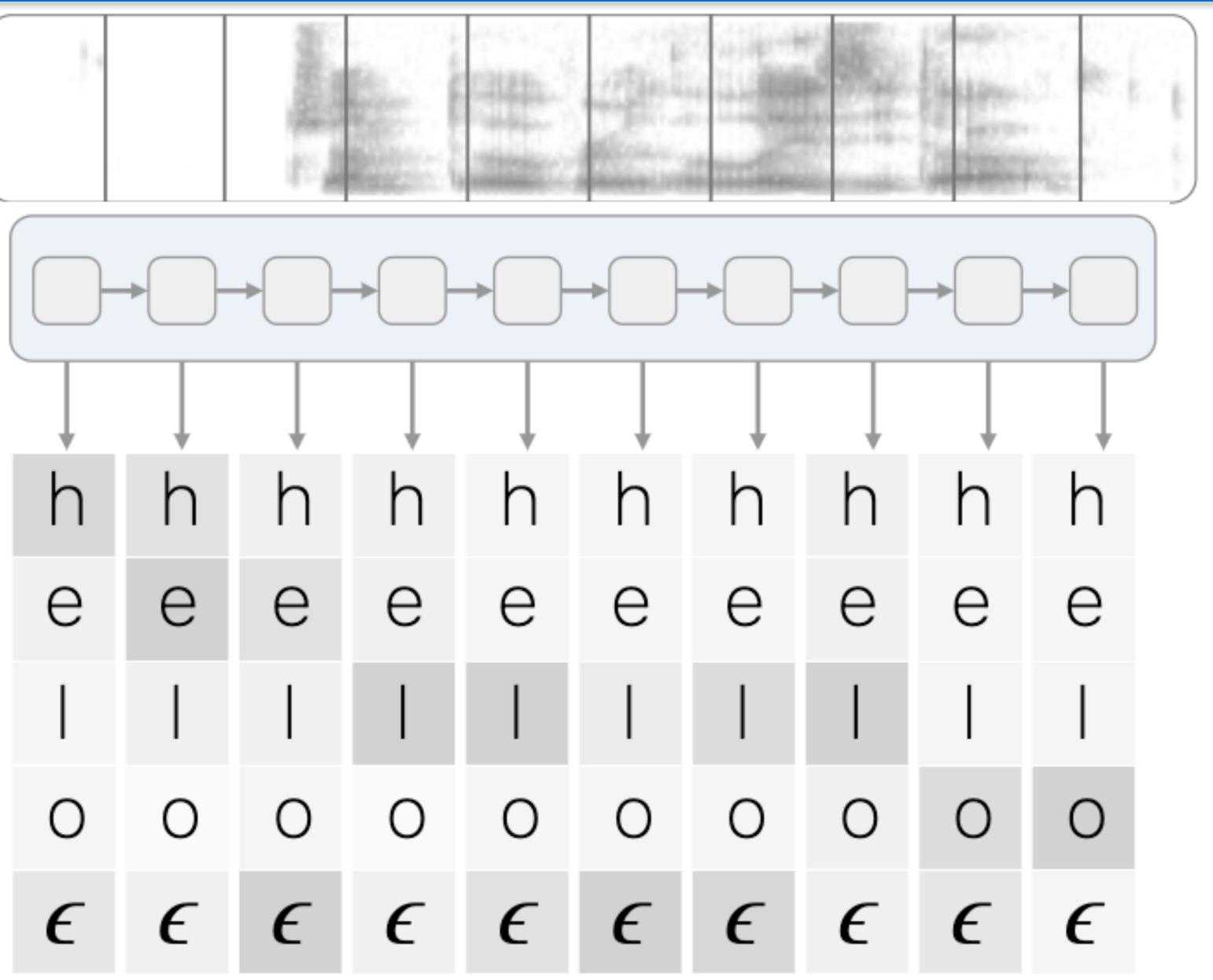
 $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8$



MFCC feature sequence

Neural network

NN computes probabilities of token per frame



h

е

0

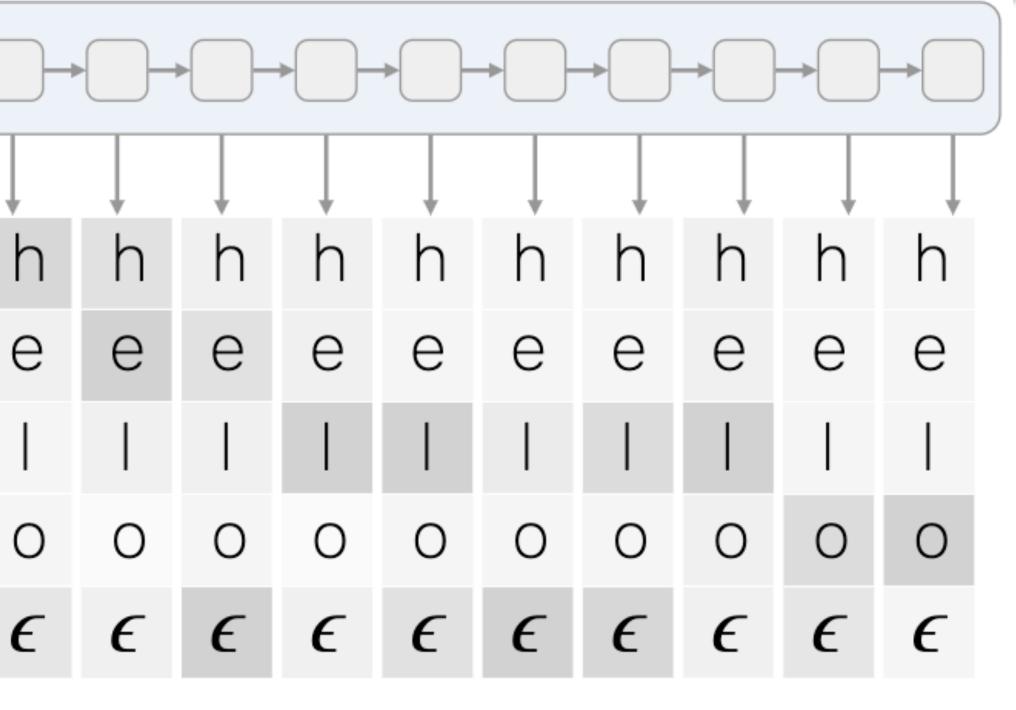
h

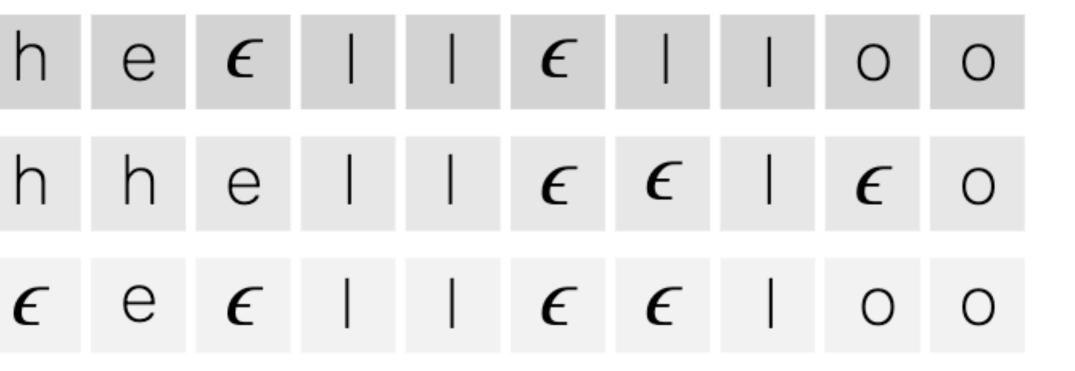
n

Neural network

NN computes probabilities of token per frame

> compute sequence probability

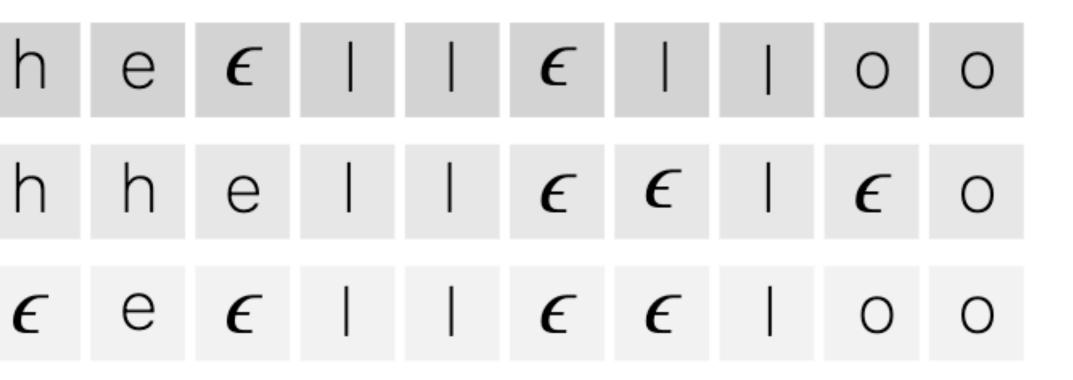


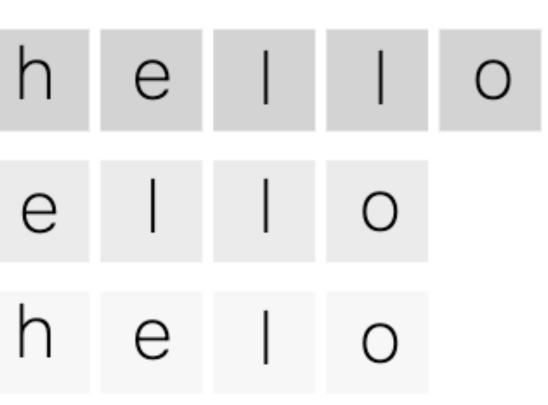


compute sequence probability

compute possible output, marginalize over alignments

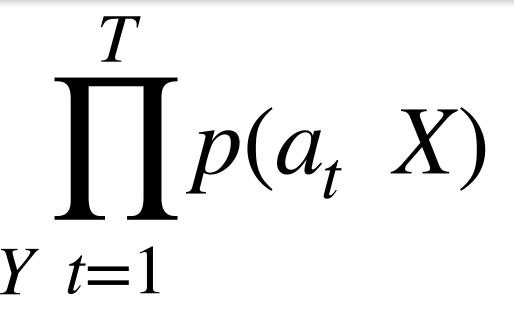
h е

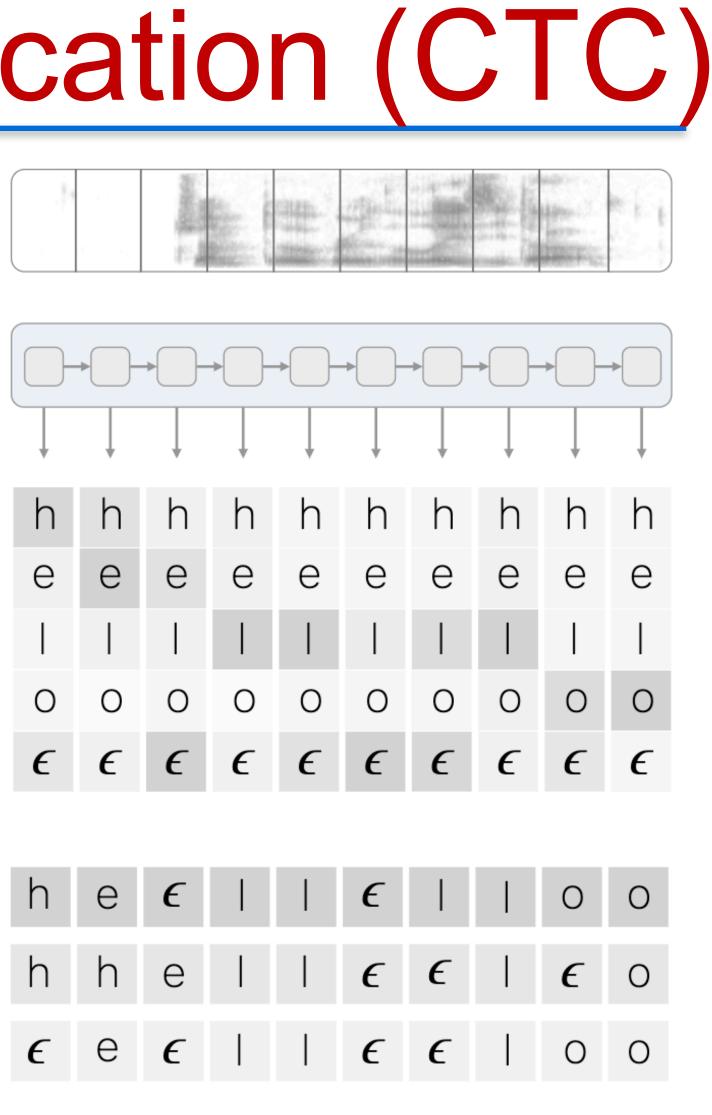




 $p(Y \ X) = \sum_{\text{valid alignment a for } Y \ t=1}$

Direct summing over all alignments can be expensive, instead we use dynamic programming to efficiently compute the probability





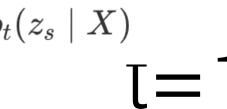
h e I I o
e I I o
h e I o

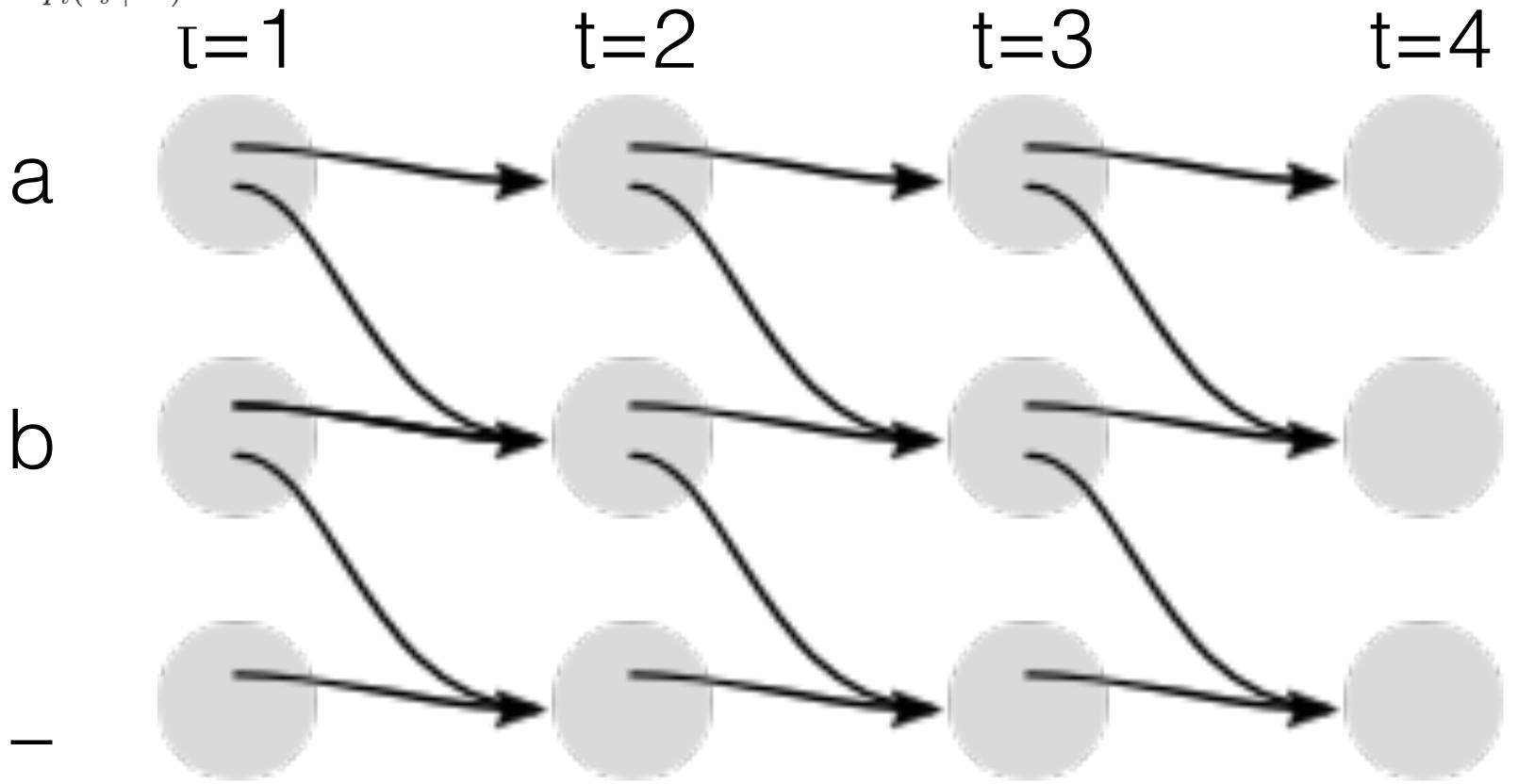
CTC

$Z = [, y_1, ..., y_2, ..., y_3, ..., y_n, ...]$

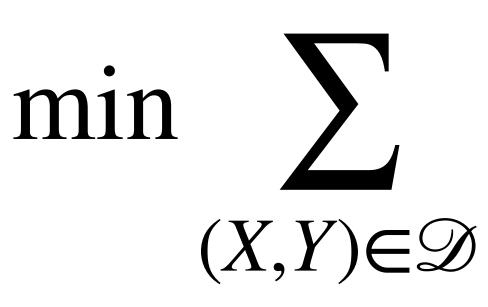
Each node represents a partial sum of score

 $lpha_{s,t} = (lpha_{s-1,t-1}+lpha_{s,t-1}) \quad \cdot \quad p_t(z_s \mid X)$





Once computed the probability

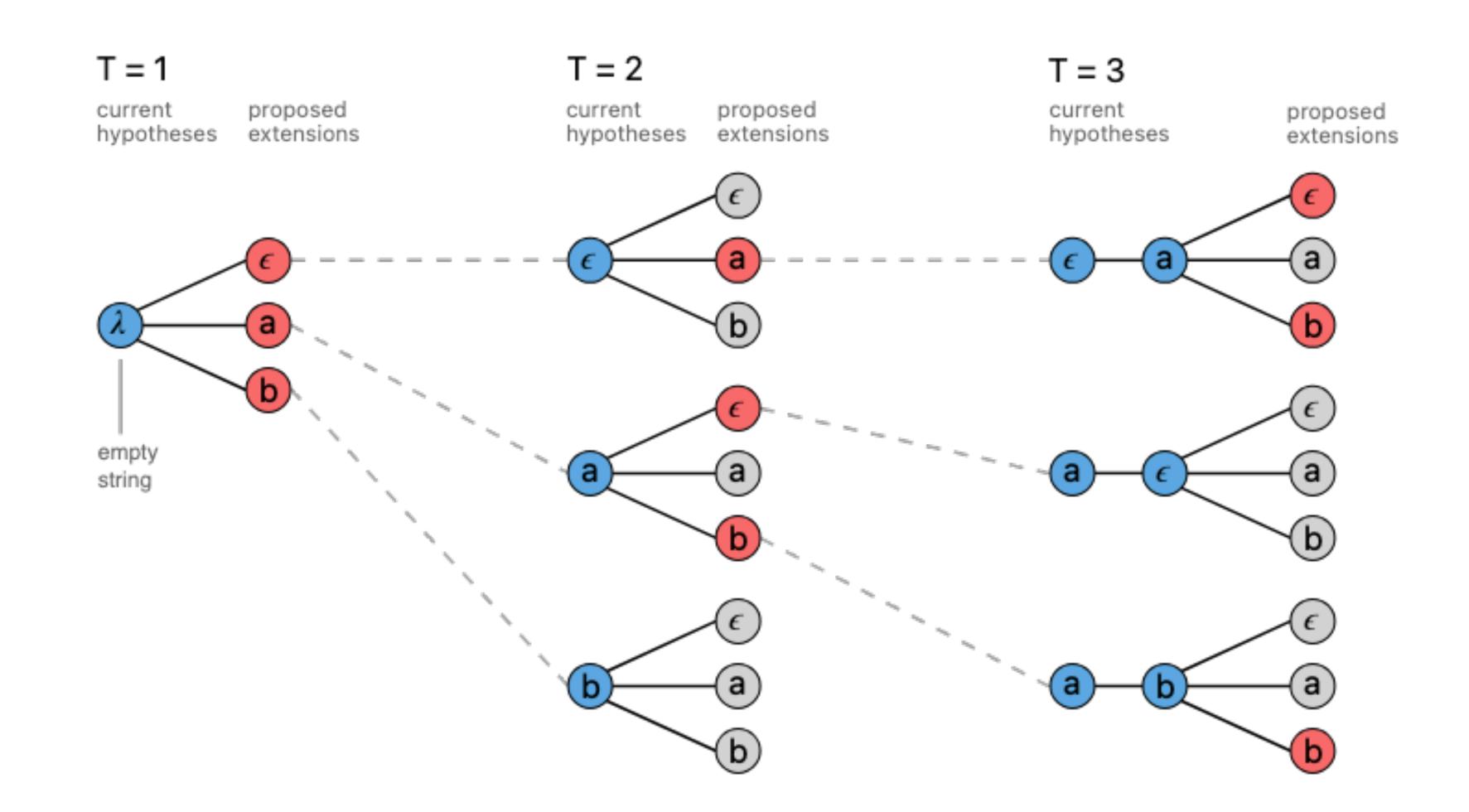


CTC training

min $\sum -\log p(Y | X)$

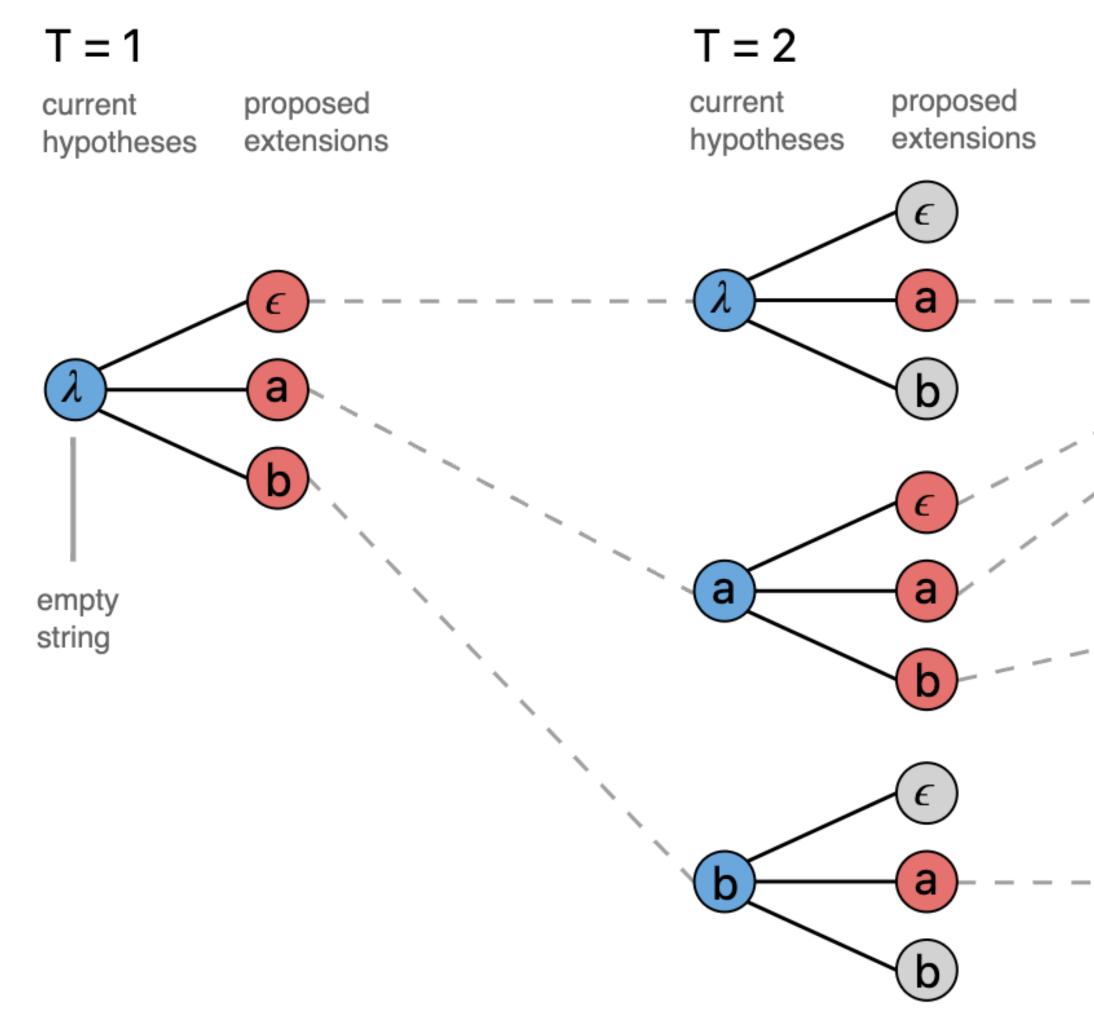
CTC Inference

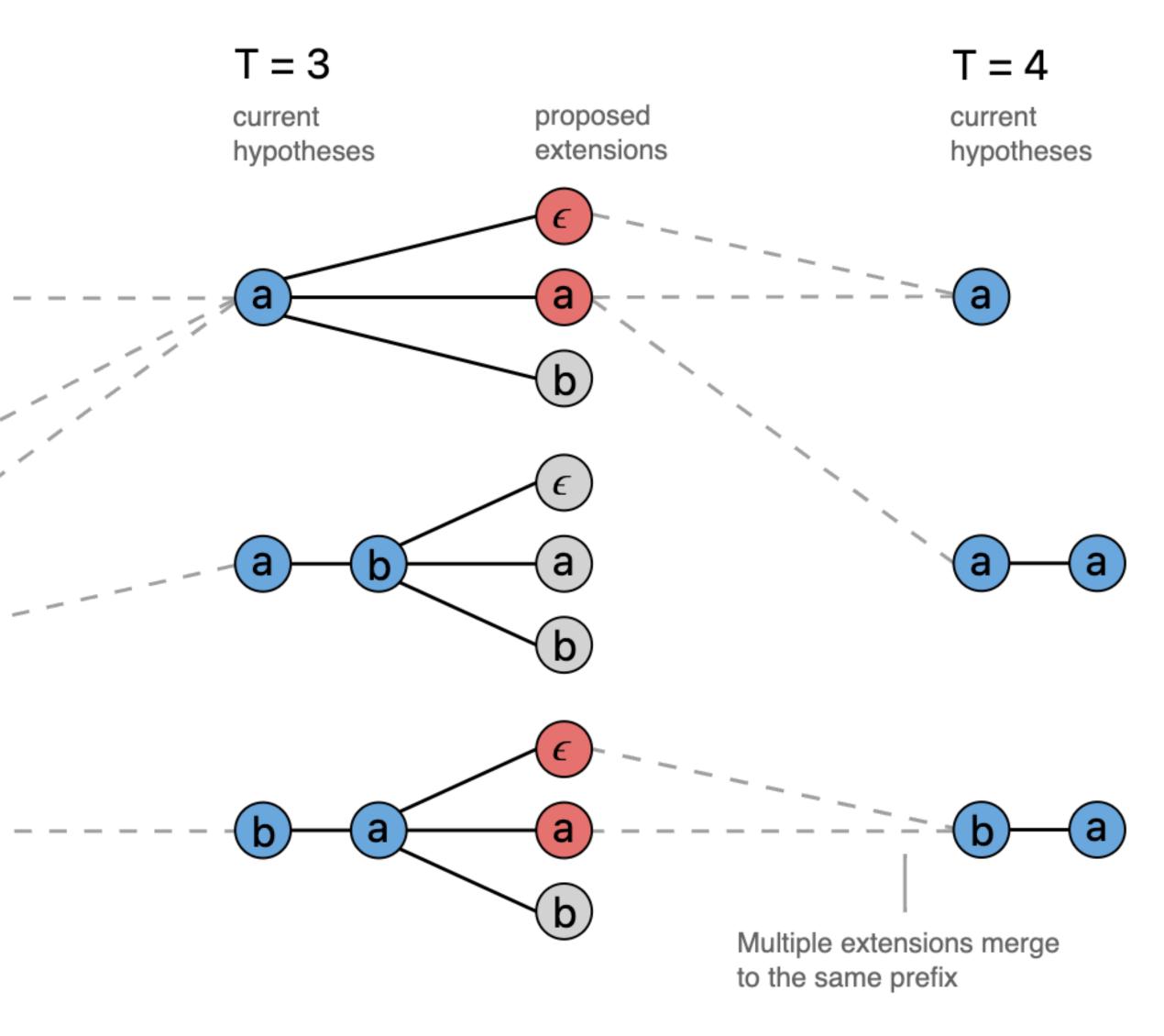
Beam search with CTC



CTC Inference

• Beam search with CTC





https://distill.pub/2017/ctc/

Software support

- CTC loss is supported in all major DL library
- wart-ctc: open source implementation of a fast CTC in CUDA and C++

Advanced End-to-end ASR

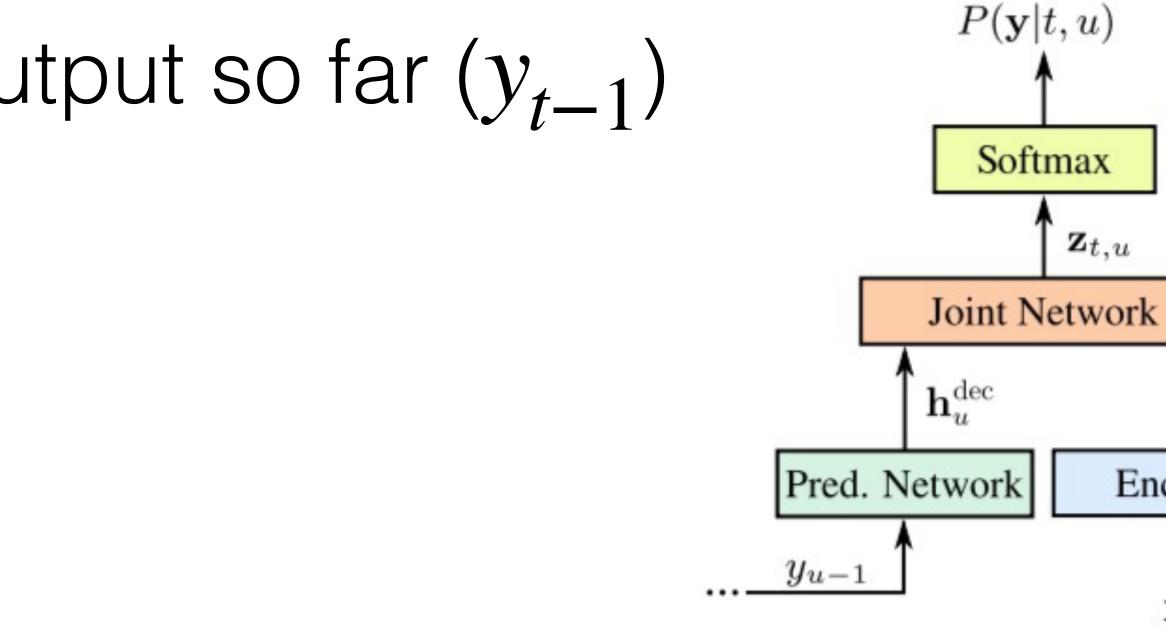
- RNN Transducer Combining CTC and Language Model
- Conformer

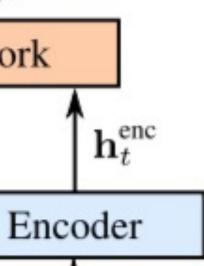
RNN Transducer

- Graphemes (letters) or word parts (10k-50k) used in practice
- Conditions on sequence output so far (y_{t-1})

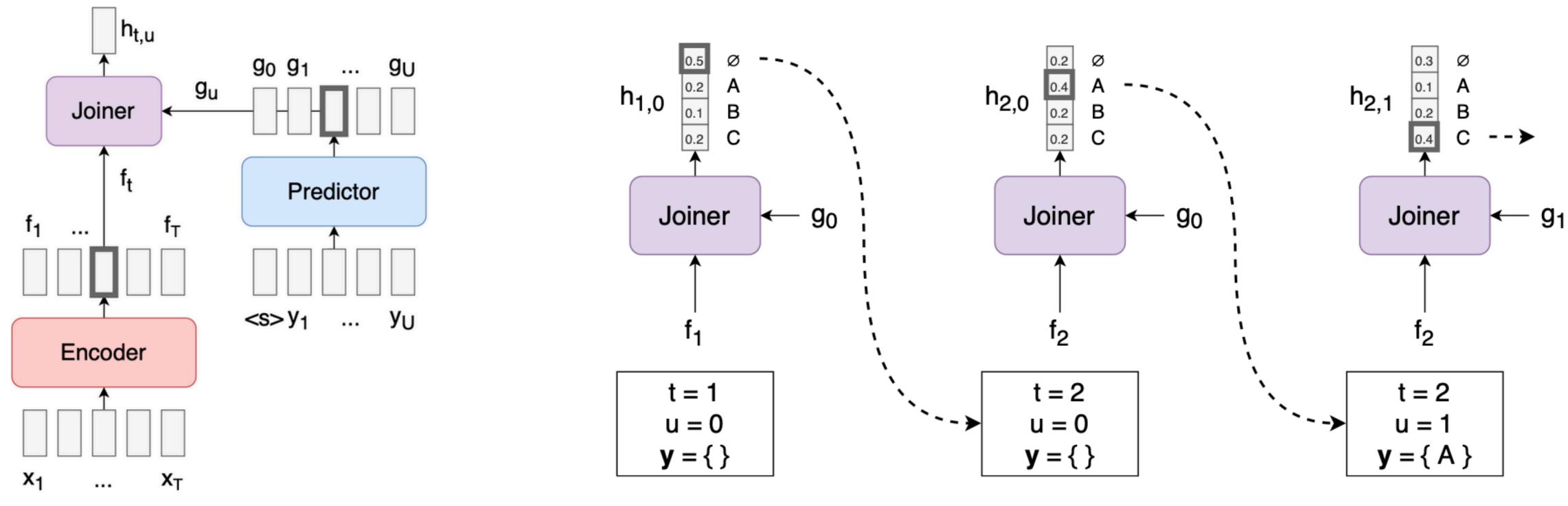
Directly optimizes target word sequence as correct label

Learned combination of acoustic + language model pieces



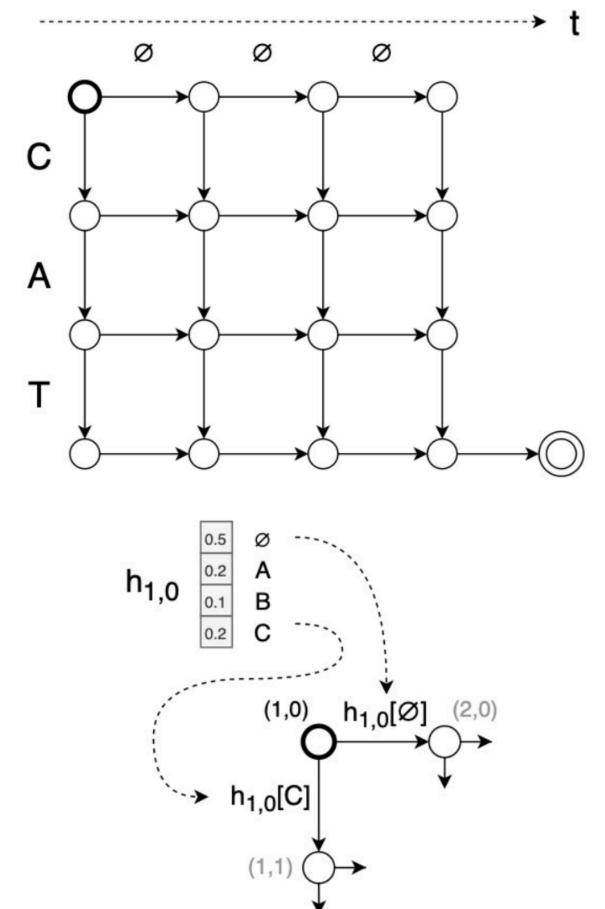


- Autoregressive Generation
- Predictor inputs are only non-black tokens (y)
- Do not increment t if non-blank token is output

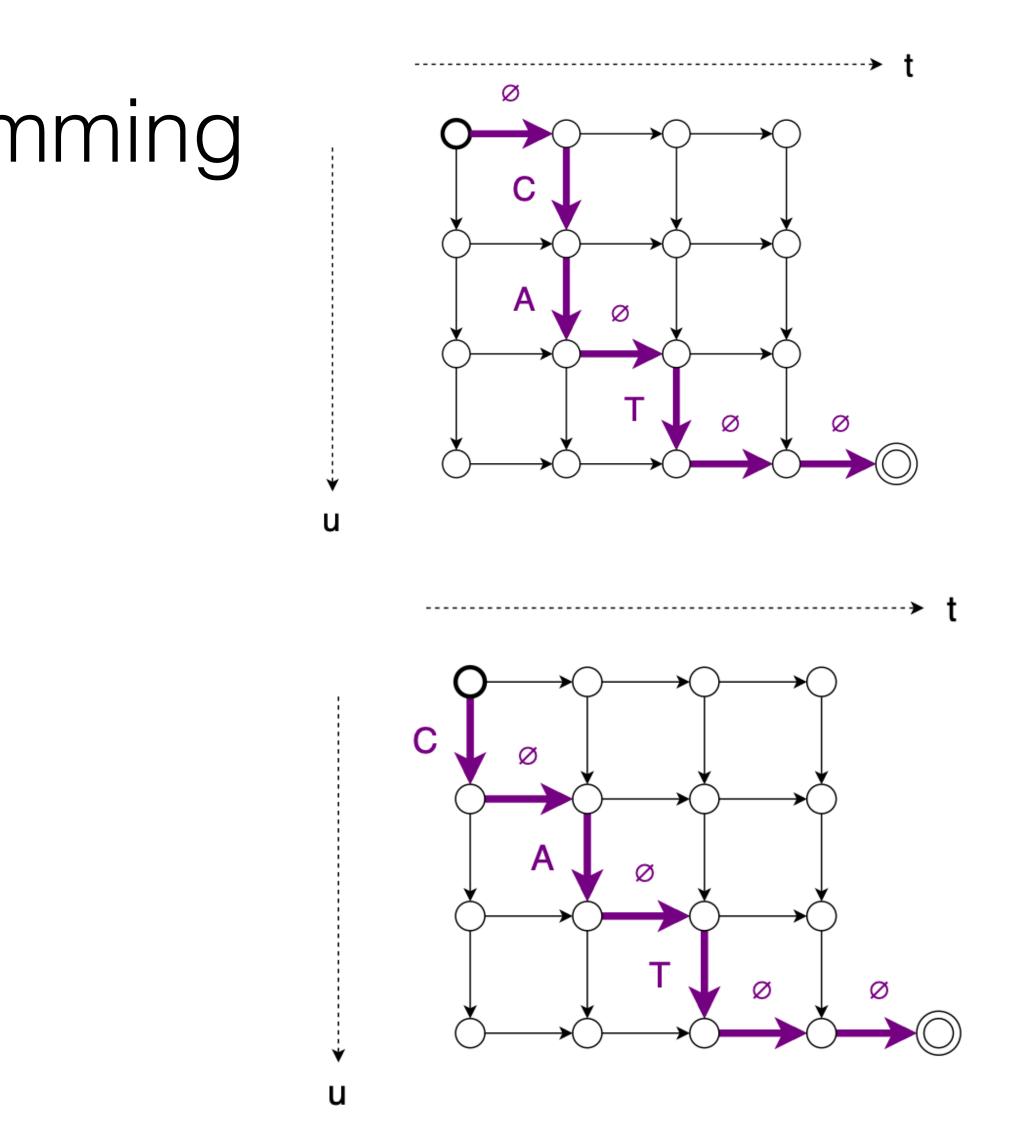


RNN Transducer Loss

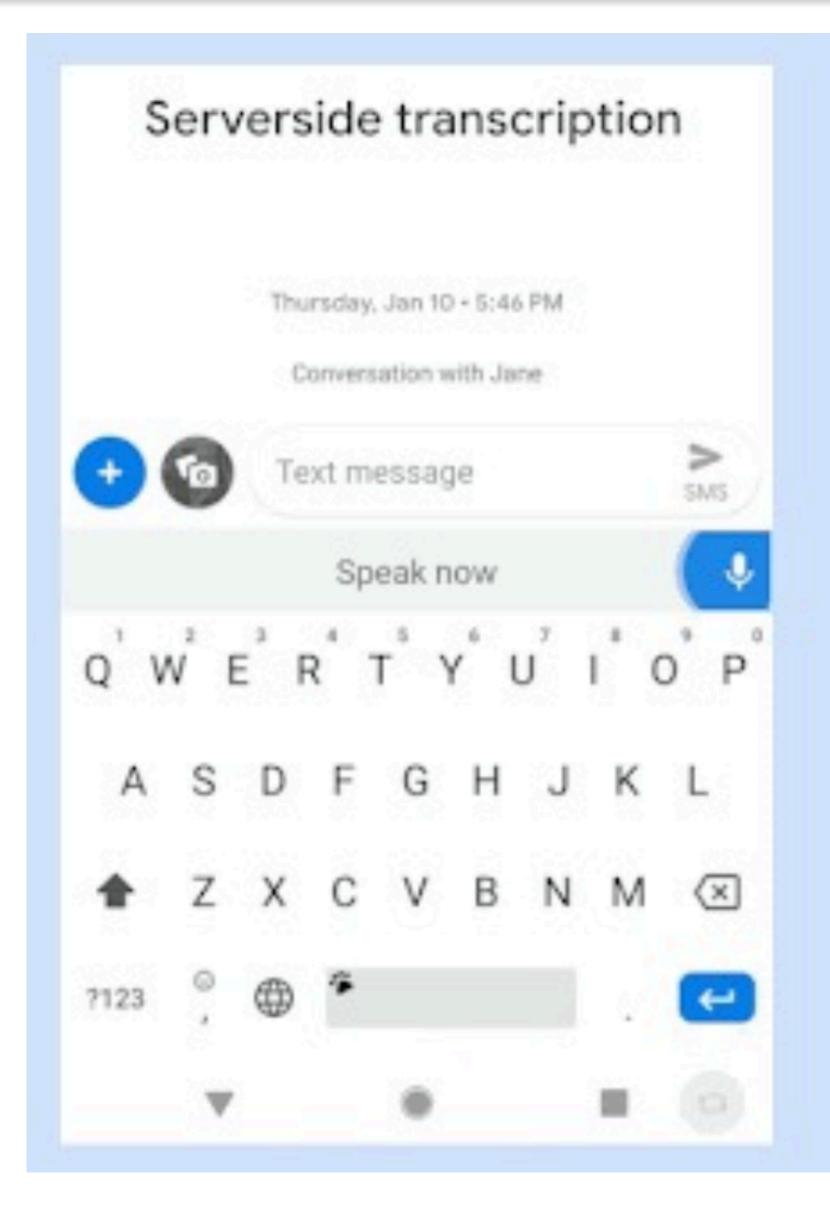
- Many alignments are consistent with groundtruth
- CTC style dynamic programming

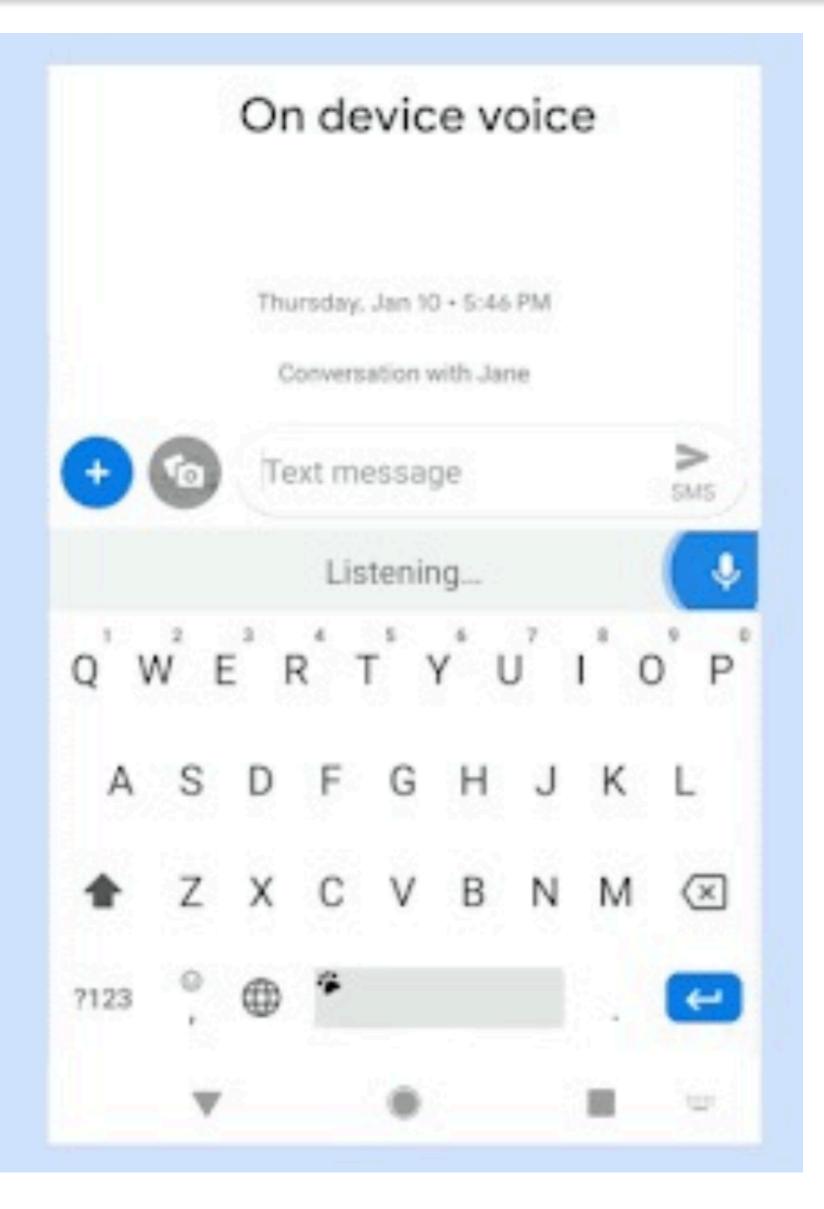


u



Google on-device ASR enabled by RNN-T





Key Techniques for on-device ASR

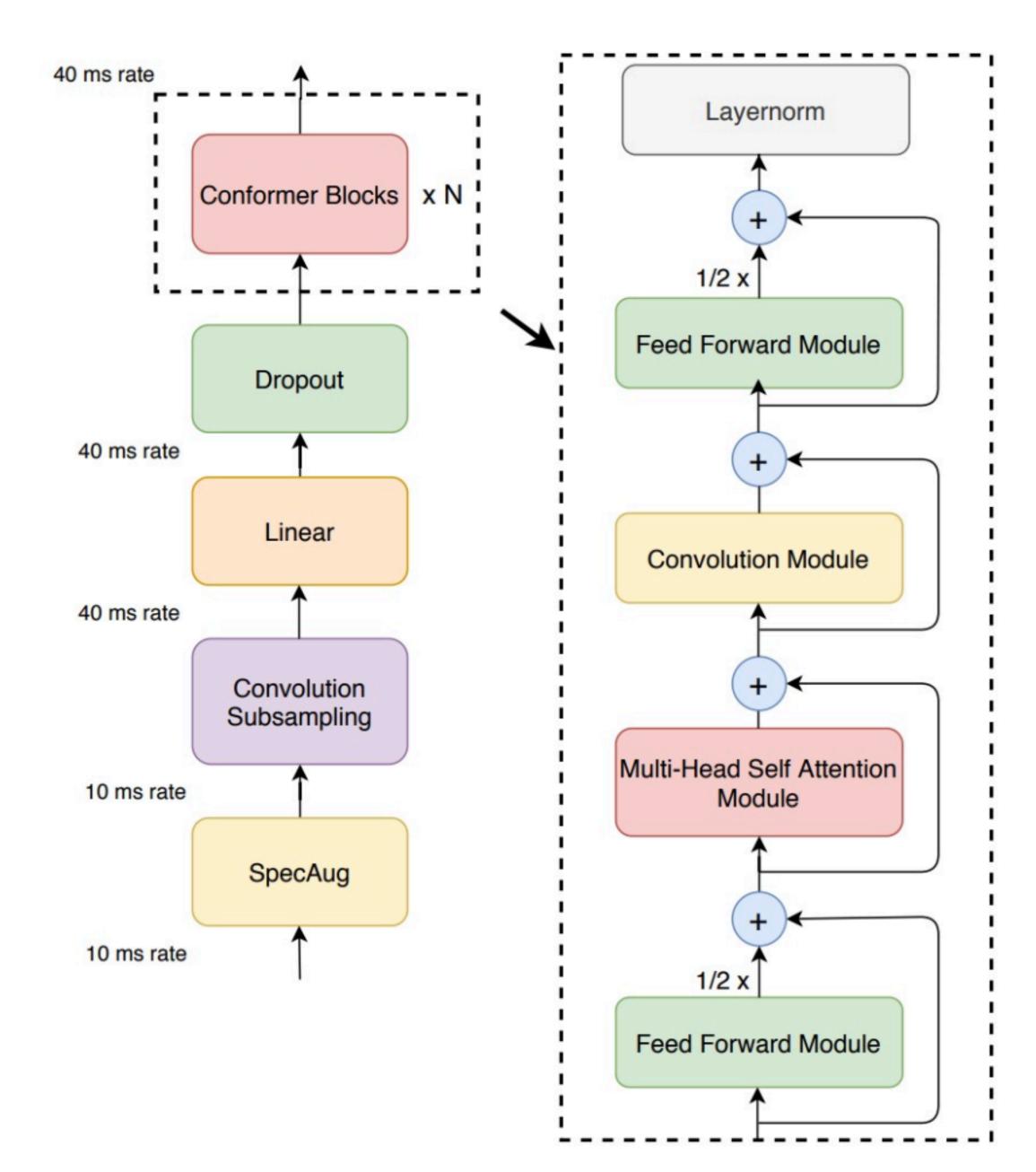
- RNN Transducer architecture
- Scaling up training with parallel RNN-T.
- transducer decoding machinery
- NN parameter quantization. 4x model size compression. 4x runtime speed improvement
- LM contextual biasing. User-specialized LM to upweight common requests / inputs
- Improved text normalization + sub-word output units

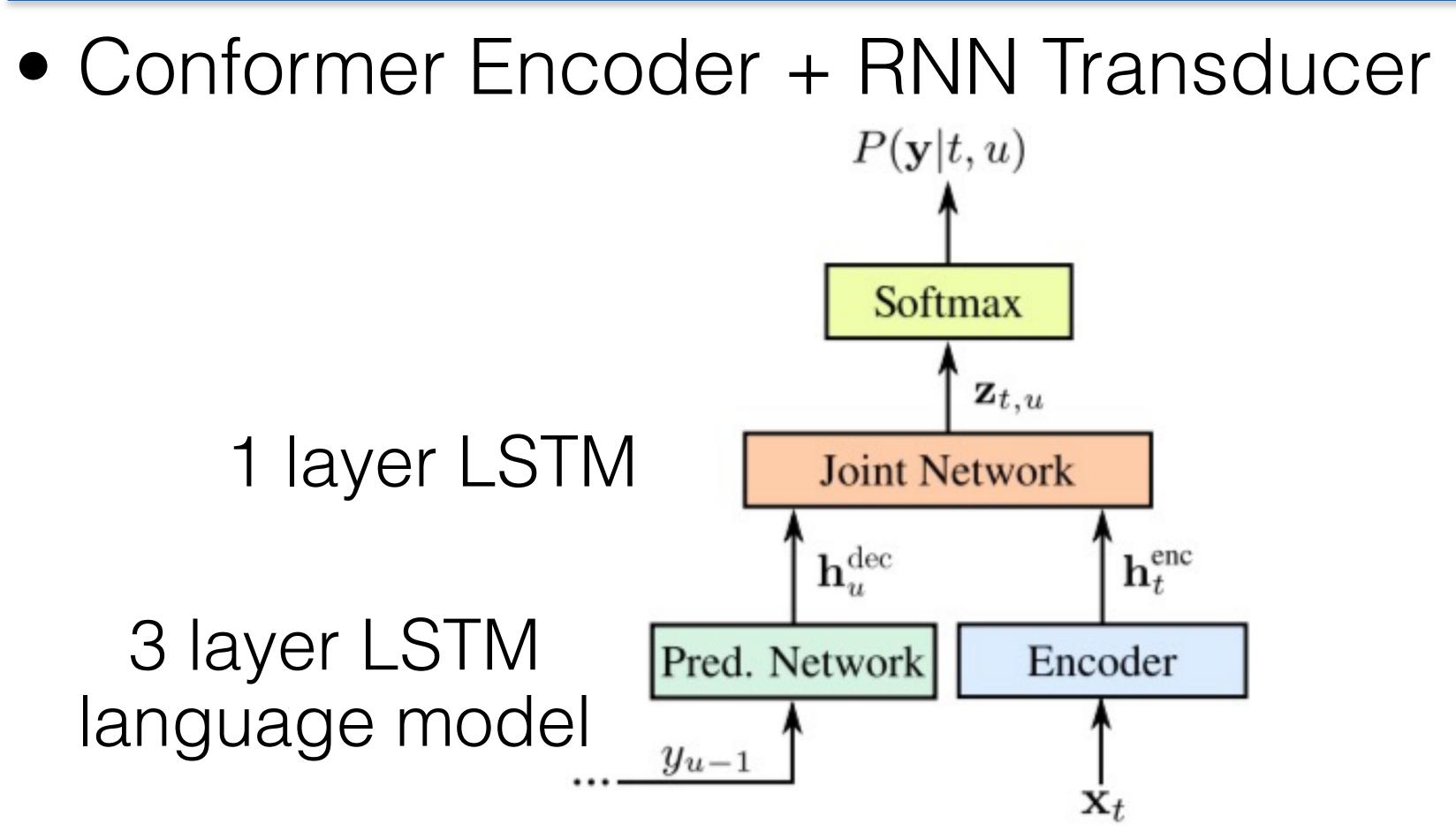
• Decoding: Beam search with a single NN instead of weighted finite state

Conformer

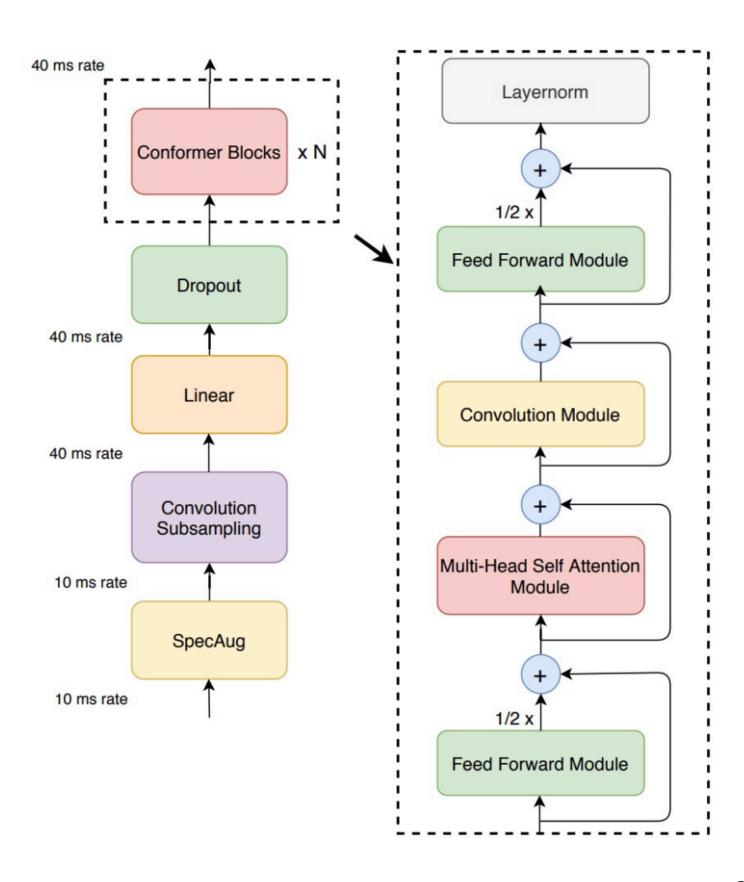
- Convolution +
 Transformer
- RNN-T loss

Conformer Encoder





Conformer



Conformer Performance

Method	#Params (M)	WER Without LM		WER With LM	
		testclean	testother	testclean	testother
Hybrid					
Transformer [33]	-	-	-	2.26	4.85
CTC					
QuartzNet [9]	19	3.90	11.28	2.69	7.25
LAS					
Transformer [34]	270	2.89	6.98	2.33	5.17
Transformer [19]	-	2.2	5.6	2.6	5.7
LSTM	360	2.6	6.0	2.2	5.2
Transducer					
Transformer [7]	139	2.4	5.6	2.0	4.6
ContextNet(S) [10]	10.8	2.9	7.0	2.3	5.5
ContextNet(M) [10]	31.4	2.4	5.4	2.0	4.5
ContextNet(L) [10]	112.7	2.1	4.6	1.9	4.1
Conformer (Ours)					
Conformer(S)	10.3	2.7	6.3	2.1	5.0
Conformer(M)	30.7	2.3	5.0	2.0	4.3
Conformer(L)	118.8	2.1	4.3	1.9	3.9

- Measuring Performance Word Error Rate: edit distance between reference and candidate
- Audio Feature Extraction: MFCC
- End-to-end ASR model • CTC loss to sum all valid alignments
- RNN Transducer: CTC+Language Model
- Conformer: Convolution + Transformer + RNN-T

Language in 10

• ASR

