CS11-737 Multilingual NLP Speech

Carnegie Mellon University Language Technologies Institute

Lei Li

https://lileicc.github.io/course/11737mnlp23fa/

What is speech

- Sound produced by human for communication
- versus noise, or other non-human sound

- Sound by air pressure
- Recorded by microphone
 - mono: recorded by a single microphone
- Waveform: a time series of recorded air pressure

Speech Data

Speech Processing Tasks

- Speech Recognition
 speech to text transcript
- Speech synthesis
 text to speech
- Language identification
- Speech separation

- Speech attribute classification
- Voice cloning
- Speech translation

Automatic Speech Recognition (ASR)

Sphinx, Janus, ESPnet, etc. Developed and maintained By CMU!

Widely used in many applications!

Why is ASR hard?

- noise
- speed
- different words with same proununciation
- accent
- distance to mic
- dialect
- multi-person interaction
- Spoken vs written, filler words

Speech Separation

Speech Synthesis (Text to Speech, TTS)

Inverse problem of ASR

Festival, ESPnet Developed and maintained By CMU!

TTS with Voice Cloning

They moved thereafter cautiously about the hut groping before and about them to find something to show that Warrenton had fulfilled his mission.

Her husband was very concerned that it might be fatal.

VAIIbaseline

Speech Translation (ST) source language speech(audio) -> target lang text

source language speech -> target lang speech

Speech Recognition at Cocktail Party

- Many systems have more than one mic
 - Alexa: 7
 - o Human: 2
- at cocktail party
- speaking what when where how"

Human can easily separate and understand conversations

Big challenge: speech understanding to capture "who is

11

Speech + Language Processing

Spoken dialog system

Type of Speech Data

- Read speech: record reading of text (reference given)
- Non-read speech (spontaneous): have to transcribe the audio, expensive

	Style	Hours	Environment	Transcriber
Wall Street Journal (WSJ)	Read speech	~80	Clean/Close talk	Just confirm
Switchboard	Spontaneous	~300	Clean/Close talk	Have to transcribe
Librispeech	Read speech	~1,000	Clean/Close talk	Just confirm
CHIME-3	Read Speech	~20	Noisy/Distant talk	Just confirm
CHIME-6	Spontaneous	~50	Noisy/Distant talk	Have to transcribe
Common Voice	Read speech, 114 languages	3,300		

Common Voice e.mozilla.org/

https://commonvoice.mozilla.org/

.

.

What's inside the Common Voice dataset?

Each entry in the dataset consists of a unique MP3 and corresponding text file. Many of the **28,751** recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help train the accuracy of speech recognition engines.

The dataset currently consists of **19,160** validated hours in **114** languages, but we're always adding more voices and languages. Take a look at our Languages page to request a language or start contributing.

14

Spontaneous Speech

- Transcribed actual recording
- Huge cost to transcribe o 1 minutes of the switchboard audio sample takes 30 minutes need postprocessing (anonymization, filler handing, etc)

Single Speaker versus Conversation

- Single speaker
- close-talking microphone
- ASR error rate < 5%

- Conversation analysis
- distant microphone
- Error rate $\sim 40\%$

CHiME-6 Challenge: https://chimechallenge.github.io/chime6/overview.html

17

CHiME-6 Recording Setup

- Data has been captured with 32 audio channels and 6 video channels
- Participants' microphones • Binaural in-ear microphones recorded onto stereo digital
- recorders
 - Primarily for transcription but also uniquely interesting data • Channels: 4 x 2
- Distant microphones
 - Six separate Microsoft Kinect devices
 - Two Kinects per living area (kitchen, dining, sitting)
 - Arranged so that video captures most of the living space
 - Channel: 6 x 4 audio and 6 video

LDC: <u>www.ldc.upenn.edu</u>

- Voxforge, openslr, commonvoice, zenodo often less restricted license
- Audio books, public recordings with captions Youtube, Podcast, TED talk, Parliament recordings, bible
 - care the license
 - CMU Wilderness has 700(!) languages (20 hours each)

How much data is needed?

- Commercial ASR product: thousands of hours
- ASR research: ~ 100 hours
- Low-resource ASR: < 100 hours o pre-training/finetuning

From Speech to Text

Phoneme

Transcript text

21

Phoneme

• Phone:

- unit of sound in speech, regardless meaning
- International Phonetic Alphabet (IPA)
- not applicable to all languages
- Phoneme:
 - a set of sounds that can distinguish one word from another
 - \circ /sin/vs./sin/
 - /pæt/ vs. /bæt/ vs. /bɛt/ vs. /bʌt/
 - O /θIk/ vs. /sIk/

Pronunciation Dictionary

- CMU dictionary: <u>http://www</u> <u>cmudict</u>
- 134k words in American English
- Out-of-vocabulary (especially new words)
 Grapheme2Phoneme: LOGIOS
 grapheme is the smallest unit of a writing system for a language

CMU dictionary: <u>http://www.speech.cs.cmu.edu/cgi-bin/</u>

Pronunciation for Chinese

Pinyin IPA

Transcript text

匹茲堡是桥梁之都 Pittsburgh is bridge of city

Pronunciation Difference across Languages

- Chinese phoneme represented by "x-", "q-", and "j-" in pinyin do not exist in English.
 - 谢(thanks) xiè

 - 巨(huge)
- Sound in English but not much difference for (some part) of Chinese people: e.g. /l/ and /n/ fault => faunt
- **/**3ia/ 七(seven) qī **/tɕ^hi⁵⁵/** jù /**t**₆y⁵¹/

Multilingual phone dictionary https://en.wiktionary.org/

What are sounds in your language not in English?

Multilingual Speech Recognition (phone-based)

- Speech to phone: language independent (acoustic model)
- Phone to phoneme, phoneme to word: language dependent (lexicon model)
- Build speech to phone based on universal acoustic model
- Linguistic knowledge to make a lexicon model (e.g. language model)

• Split the problems: speech-to-phone and phoneme-to-text

ASR Phoneme LASR Transcript text

Speech <-> Phoneme <-> Text

Pittsburgh is a city of bridge

Impact on Multilingual Speech Processing

- Pre-training based purely on raw audio data
 - pre-trained models can be applied to down-stream tasks or even a different language
 - XLSR: Unsupervised Cross-lingual Representation Learning for Speech Recognition
- Cross-lingual transfer

30

Summary

- Speech: sound waveform used by human for communication of information
- Speech technology: ASR, TTS, ST, etc
- Speech data: read vs. spontaneous
- Speech hierarchy: phone and phoneme, language difference
- Next lecture: ASR

Announcement

- Office hour of Lei Li: at GHG (instead of GHC 6403)
- Late policy: 3 total late days allowed without penalty, beyond that 10% penalty for each late day
 - Project final report does not have late day (need to turn in final grade)

Office hour of Lei Li: at GHC 5417 every Tuesday 4-5pm

Project ideas

Discussion

