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Sequence-to-sequence Pre-training



• BERT/GPT pre-training objective is different from MT
Mismatch between Pre-trained LM and MT
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Decoder

Encoder

Source: 我喜欢唱歌和跳舞。

target:    
I like singing and dancing.



• MASS is carefully designed to jointly pre-train the encoder 

and decoder  
• Mask k consecutive tokens (segment) 
○ Force the decoder to attend on the source representations, i.e., 

encoder-decoder attention 
○ Develop the decoder with the ability of language modeling

 MASS: Pre-train for Sequence to Sequence Generation
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MASS vs. BERT/GPT
MASS vs. BERT/GPT

K=1 K=mK=mK=m

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]
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Unsupervised NMT
Unsupervised NMT 

XLM: Cross-lingual language model pretraining, CoRR 2019

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]
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Low-resource NMT

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



• Advantages 
○ Unified sequence-to-sequence pretraining which jointly pretrains 

encoder, decoder and cross attention 
○ Achieves improvements on zero-shot / unsupervised NMT 

• Limitions 
○ No evidence on rich resource NMT 
○ Pre-training objective inconsistent with NMT, e.g. monolingual v.s. 

multilingual  

Summary
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Summary

• MASS jointly pre-trains the encoder-attention-decoder framework for 
sequence to sequence based language generation tasks

• MASS achieves significant improvements over the baselines without pre-
training or with other pre-training methods on zero/low-resource NMT, 
text summarization and conversational response generation.

 MASS: Pre-train for Sequence to Sequence Generation,  [Song et al ICML 2019]



• Standard sequence-to-sequence Transformer architecture 
• Trained by corrupting documents and then optimizing a 

reconstruction loss 
• Allows to apply any type of document corruption. 

BART: Denoising Sequence-to-Sequence Pre-training
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(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
are predicted independently, so BERT cannot easily be
used for generation.
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(b) GPT: Tokens are predicted auto-regressively, meaning
GPT can be used for generation. However words can only
condition on leftward context, so it cannot learn bidirec-
tional interactions.
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(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

English, by propagation through BART, thereby us-
ing BART as a pre-trained target-side language model.
This approach improves performance over a strong
back-translation MT baseline by 1.1 BLEU on the
WMT Romanian-English benchmark.

To better understand these effects, we also report
an ablation analysis that replicates other recently pro-
posed training objectives. This study allows us to care-
fully control for a number of factors, including data
and optimization parameters, which have been shown
to be as important for overall performance as the se-
lection of training objectives (Liu et al., 2019). We find
that BART exhibits the most consistently strong perfor-
mance across the full range of tasks we consider.

2 Model

BART is a denoising autoencoder that maps a corrupted
document to the original document it was derived from.
It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
left-to-right autoregressive decoder. For pre-training,
we optimize the negative log likelihood of the original
document.

2.1 Architecture

BART uses the standard sequence-to-sequence Trans-
former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART

BART is trained by corrupting documents and then op-
timizing a reconstruction loss—the cross-entropy be-
tween the decoder’s output and the original document.
Unlike existing denoising autoencoders, which are tai-
lored to specific noising schemes, BART allows us to
apply any type of document corruption. In the extreme
case, where all information about the source is lost,
BART is equivalent to a language model.

We experiment with several previously proposed and
novel transformations, but we believe there is a sig-
nificant potential for development of other new alter-
natives. The transformations we used are summarized
below, and examples are shown in Figure 2.

Token Masking Following BERT (Devlin et al.,
2019), random tokens are sampled and replaced with
[MASK] elements.

Token Deletion Random tokens are deleted from the
input. In contrast to token masking, the model must
decide which positions are missing inputs.

Bidirectional 
Encoder

A  _  C  _  E 

B       D    

(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
are predicted independently, so BERT cannot easily be
used for generation.
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(b) GPT: Tokens are predicted auto-regressively, meaning
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condition on leftward context, so it cannot learn bidirec-
tional interactions.
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(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).
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English, by propagation through BART, thereby us-
ing BART as a pre-trained target-side language model.
This approach improves performance over a strong
back-translation MT baseline by 1.1 BLEU on the
WMT Romanian-English benchmark.

To better understand these effects, we also report
an ablation analysis that replicates other recently pro-
posed training objectives. This study allows us to care-
fully control for a number of factors, including data
and optimization parameters, which have been shown
to be as important for overall performance as the se-
lection of training objectives (Liu et al., 2019). We find
that BART exhibits the most consistently strong perfor-
mance across the full range of tasks we consider.

2 Model

BART is a denoising autoencoder that maps a corrupted
document to the original document it was derived from.
It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
left-to-right autoregressive decoder. For pre-training,
we optimize the negative log likelihood of the original
document.

2.1 Architecture

BART uses the standard sequence-to-sequence Trans-
former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART

BART is trained by corrupting documents and then op-
timizing a reconstruction loss—the cross-entropy be-
tween the decoder’s output and the original document.
Unlike existing denoising autoencoders, which are tai-
lored to specific noising schemes, BART allows us to
apply any type of document corruption. In the extreme
case, where all information about the source is lost,
BART is equivalent to a language model.

We experiment with several previously proposed and
novel transformations, but we believe there is a sig-
nificant potential for development of other new alter-
natives. The transformations we used are summarized
below, and examples are shown in Figure 2.

Token Masking Following BERT (Devlin et al.,
2019), random tokens are sampled and replaced with
[MASK] elements.

Token Deletion Random tokens are deleted from the
input. In contrast to token masking, the model must
decide which positions are missing inputs.

A schema comparison with BERT, GPT and BART. 

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,  [Lewis et al ACL 2020]



• Token masking: Random tokens are sampled and replaced with [MASK]  
• Token deletion: Random tokens are deleted from the input. 
• Text infilling: A number of span are sampled. Each span is replaced with 

[MASK].  0-length span corresponding the insertion of [MASK].  
• Sentence permutation:  Sentences are shuffled with random order.  
• Document Rotation: A token is chosen uniformly at random, and the document 

is rotated so that it begins with that token.  

•

Noising the input 
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,  [Lewis et al ACL 2020]
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is rotated so that it begins with that token.  
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hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.
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with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
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random, and the document is rotated so that it begins
with that token. This task trains the model to identify
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More precisely, we replace BART’s encoder embed-
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The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
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output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
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embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
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Pre-trained 
Decoder

Pre-trained 
Encoder

label

A  B  C  D  E <s> A  B  C  D  E
(a) To use BART for classification problems, the same
input is fed into the encoder and decoder, and the repre-
sentation from the final output is used.

Randomly 
Initialized Encoder

    α   β   γ   δ   ε

Pre-trained  
Decoder

Pre-trained 
Encoder

A  B  C  D  E

<s> A  B  C  D  

(b) For machine translation, we learn a small additional
encoder that replaces the word embeddings in BART. The
new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

re-implement strong pre-training approaches recently
proposed for discriminative and generation tasks. We
aim, as much as possible, to control for differences un-
related to the pre-training objective. However, we do
make minor changes to the learning rate and usage of
layer normalisation in order to improve performance
(tuning these separately for each objective). For refer-
ence, we compare our implementations with published
numbers from BERT, which was also trained for 1M
steps on a combination of books and Wikipedia data.
We compare the following approaches:

Language Model Similarly to GPT (Radford et al.,
2018), we train a left-to-right Transformer language
model. This model is equivalent to the BART decoder,
without cross-attention.

Permuted Language Model Based on XLNet (Yang
et al., 2019), we sample 1/6 of the tokens, and gener-
ate them in a random order autoregressively. For con-
sistency with other models, we do not implement the
relative positional embeddings or attention across seg-
ments from XLNet.

Masked Language Model Following BERT (Devlin
et al., 2019), we replace 15% of tokens with [MASK]
symbols, and train the model to independently predict
the original tokens.

Multitask Masked Language Model As in UniLM
(Dong et al., 2019), we train a Masked Language
Model with additional self-attention masks. Self at-
tention masks are chosen randomly in with the follow
proportions: 1/6 left-to-right, 1/6 right-to-left, 1/3 un-
masked, and 1/3 with the first 50% of tokens unmasked
and a left-to-right mask for the remainder.

Masked Seq-to-Seq Inspired by MASS (Song et al.,
2019), we mask a span containing 50% of tokens,
and train a sequence to sequence model to predict the
masked tokens.

For the Permuted LM, Masked LM and Multitask
Masked LM, we use two-stream attention (Yang et al.,
2019) to efficiently compute likelihoods of the output
part of the sequence (using a diagonal self-attention
mask on the output to predict words left-to-right).

We experiment with (1) treating the task as a stan-
dard sequence-to-sequence problem, where the source
input to the encoder and the target is the decoder out-
put, or (2) adding the source as prefix to the target in
the decoder, with a loss only on the target part of the
sequence. We find the former works better for BART
models, and the latter for other models.

To most directly compare our models on their ability
to model their fine-tuning objective (the log likelihood
of the human text), we report perplexity in Table 1.

4.2 Tasks

SQuAD (Rajpurkar et al., 2016)a an extractive ques-
tion answering task on Wikipedia paragraphs. Answers
are text spans extracted from a given document context.
Similar to BERT (Devlin et al., 2019), we use concate-
nated question and context as input to the encoder of
BART, and additionally pass them to the decoder. The
model includes classifiers to predict the start and end
indices of each token.

MNLI (Williams et al., 2017), a bitext classification
task to predict whether one sentence entails another.
The fine-tuned model concatenates the two sentences
with appended an EOS token, and passes them to both
the BART encoder and decoder. In contrast to BERT,
the representation of the EOS token is used to classify
the sentences relations.

ELI5 (Fan et al., 2019), a long-form abstractive ques-
tion answering dataset. Models generate answers con-
ditioned on the concatenation of a question and sup-
porting documents.

XSum (Narayan et al., 2018), a news summarization
dataset with highly abstractive summaries.

ConvAI2 (Dinan et al., 2019), a dialogue response
generation task, conditioned on context and a persona.

CNN/DM (Hermann et al., 2015), a news summa-
rization dataset. Summaries here are typically closely
related to source sentences.

4.3 Results

Results are shown in Table 1. Several trends are clear:

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,  [Lewis et al ACL 2020]
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mBART: Multilingual Denoising Pre-training for Neural Machine Translation

Where did __ from ? </s> Who __ I __ </s> <En> <En> Who am I ? </s> Where did I come from ? </s> 

Who am I ? </s> Where did I come from ? </s> <En> 

Who am I ? </s> <En> 

Transformer Encoder Transformer Decoder

ᐺ�΅�抑�Ҙ </s> <Ja>

<Ja> ᐺ�΅�抑�Ҙ </s> 

Transformer Encoder Transformer Decoder

 BB�ก෭�̶ </s> ͳ�BB��V!�<Ja> <Ja> ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> 

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

Multilingual Denoising Pre-Training  (mBART) Fine-tuning on Machine Translation

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

:HOO�WKHQ�����V! See you tomorrow .</s> <En>

<En> :HOO�WKHQ�����V! See you tomorrow .</s> 

Doc-MT

Sent-MT

Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks
(right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id
token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Noise function Following Lewis et al. (2019),
we use two types of noise in g. We first remove
spans of text and replace them with a mask to-
ken. We mask 35% of the words in each instance
by random sampling a span length according to a
Poisson distribution (� = 3.5). We also permute
the order of sentences within each instance. The
decoder input is the original text with one posi-
tion offset. A language id symbol <LID> is used
as the initial token to predict the sentence. It is also
possible to use other noise types, such as those in
Lample et al. (2018c), but we leave the exploration
of the optimal noising strategy to future work.

Instance format For each instance of a batch,
we sample a language id symbol <LID>, and
we pack as many consecutive sentences as pos-
sible sampled from the corresponding corpus of
<LID>, until either it hits the document boundary
or reaches the 512 max token length. Sentences
in the instance are separated by the end of sen-
tence (</S>) token. Then, we append the selected
<LID> token to represent the end of this instance.
Pre-training at “multi-sentence” level enables us to
work on both sentence and document translation.

Optimization Our full model (including 25 lan-
guages) is trained on 256 Nvidia V100 GPUs
(32GB) for 500K steps. The total batch size
is around 128K tokens per GPU, matching
BART (Lewis et al., 2019) configuration. We use
the Adam optimizer (✏ = 1e�6, �2 = 0.98) and
linear learning rate decay scheduling. The total
training time was approximately 2.5 weeks. We
started the training with dropout 0.1 and reduced it
to 0.05 at 250K steps and 0 at 400K steps. All ex-
periments are done with Fairseq (Ott et al., 2019).

2.3 Pre-trained Models
To better measure the effects of different levels
of multilinguality during pre-training, we built a
range of models as follows:

• mBART25 We pre-train a model on all 25 lan-
guages, using the setting described in §2.2.

• mBART06 To explore the effect of pre-training
on related languages, we pretrain a model on a
subset of six European languages: Ro, It, Cs, Fr,
Es and En. For a fair comparison, we use ⇠ 1/4
of the mBART25 batch size, which allows our
model to have the same number of updates per
language during pre-training.

• mBART02 We pre-train bilingual models, us-
ing English and one other language for four
language pairs: En-De, En-Ro, En-It. We use a
batch size of ⇠ 1/12 of that in the mBART25.

• BART-En/Ro To help establish baseline per-
formance levels, we also train monolingual
BART models on the same En and Ro corpus
only.

• Random As additional baselines, we will also
include a comparison with a model randomly
initialized without pre-training for each trans-
lation task. Since the sizes of different down-
stream datasets vary, we always grid-search the
hyper-parameters (architecture, dropout, etc.) to
find the best non-pretrained configuration.

All models use the same vocabulary (§2.1). Not
all tokens will frequently occur in all pre-training
corpora, but later experiments show that this large
vocabulary can improve generalization in multilin-
gual settings even for unseen languages.

•Multilingual denoising pre-training (25 languages) 
– Sentence permutation  
–Word-span masking 

•Fine-tuning on MT with special language id
Multilingual Denoising Pre-training for Neural Machine Translation  [Liu et al., TACL 2020] 



• Data: CC25 corpus 
○ CC25 includes 25 languages from different 

families and with varied amounts of text from 
Common Crawl (CC) 

○ Rebalanced the corpus by up/down-sampling 
text 

 
○ Sentence Piece which includes 25,000 

subwords 
○ Noisy function follows BART

We also show that mBART enables new types
of transfer across language pairs. For example,
fine-tuning on bi-text in one language pair (e.g.,
Korean-English) creates a model that can trans-
late from all other languages in the monolingual
pre-training set (e.g., Italian-English), with no fur-
ther training. We also show that languages not
in pre-training corpora can benefit from mBART,
strongly suggesting that the initialization is at least
partially language universal. Finally, we present a
detailed analysis of which factors contribute the
most to effective pre-training, including the num-
ber of languages and their overall similarity.

2 Multilingual Denoising Pre-training

We use a large-scale common crawl (CC) corpus
(§2.1) to pre-train BART models (§2.2). Our ex-
periments in the later sections involve finetuning a
range of models pre-trained on different subsets of
the CC languages §2.3).

2.1 Data: CC25 corpus
Datasets We pre-train on a subset of 25 lan-
guages – CC25 – extracted from the Common
Crawl (CC) (Wenzek et al., 2019; Conneau et al.,
2019)1. CC25 includes languages from different
families and with varied amounts of text (Table 1).
Following Lample and Conneau (2019), we re-
balanced the corpus by up/down-sampling text
from each language i with a ratio �i:

�i =
1

pi
· p↵iP

i p
↵
i

, (1)

where pi is the percentage of each language in CC-
25. We use the smoothing parameter ↵ = 0.7.

Pre-processing We tokenize with a sentence-
piece model (SPM, Kudo and Richardson, 2018)
learned on the full CC data that includes 250, 000
subword tokens. While not all of these languages
are used for pre-training, this tokenization sup-
ports fine-tuning on additional languages. We do
not apply additional preprocessing, such as true-
casing or normalizing punctuation/characters.

2.2 Model: mBART
Our models follow the BART (Lewis et al., 2019)
sequence-to-sequence pre-training scheme, as re-
viewed in this section. While BART was only pre-
trained for English, we systematically study the ef-
fects of pre-training on different sets of languages.

1https://commoncrawl.org

Code Language Tokens/M Size/GB

En English 55608 300.8
Ru Russian 23408 278.0
Vi Vietnamese 24757 137.3
Ja Japanese 530 (*) 69.3
De German 10297 66.6
Ro Romanian 10354 61.4
Fr French 9780 56.8
Fi Finnish 6730 54.3
Ko Korean 5644 54.2
Es Spanish 9374 53.3
Zh Chinese (Sim) 259 (*) 46.9
It Italian 4983 30.2
Nl Dutch 5025 29.3
Ar Arabic 2869 28.0
Tr Turkish 2736 20.9
Hi Hindi 1715 20.2
Cs Czech 2498 16.3
Lt Lithuanian 1835 13.7
Lv Latvian 1198 8.8
Kk Kazakh 476 6.4
Et Estonian 843 6.1
Ne Nepali 237 3.8
Si Sinhala 243 3.6
Gu Gujarati 140 1.9
My Burmese 56 1.6

Table 1: Languages and Statistics of the CC25 Cor-
pus. A list of 25 languages ranked with monolingual
corpus size. Throughout this paper, we replace the lan-
guage names with their ISO codes for simplicity. (*)
Chinese and Japanese corpus are not segmented, so the
tokens counts here are sentences counts

Architecture We use a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2017), with 12 layers of encoder and 12 layers
of decoder with model dimension of 1024 on 16
heads (⇠ 680M parameters). We include an addi-
tional layer-normalization layer on top of both the
encoder and decoder, which we found stabilized
training at FP16 precision.

Learning Our training data covers K languages:
D = {D1, ...,DK} where each Di is a collection
of monolingual documents in language i. We (1)
assume access to a noising function g, defined be-
low, that corrupts text, and (2) train the model to
predict the original text X given g(X). More for-
mally, we aim to maximize L✓:

L✓ =
X

Di2D

X

X2Di

logP (X|g(X); ✓) , (2)

where X is an instance in language i and the dis-
tribution P is defined by the Seq2Seq model.

Dataset
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pus. A list of 25 languages ranked with monolingual
corpus size. Throughout this paper, we replace the lan-
guage names with their ISO codes for simplicity. (*)
Chinese and Japanese corpus are not segmented, so the
tokens counts here are sentences counts

Architecture We use a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2017), with 12 layers of encoder and 12 layers
of decoder with model dimension of 1024 on 16
heads (⇠ 680M parameters). We include an addi-
tional layer-normalization layer on top of both the
encoder and decoder, which we found stabilized
training at FP16 precision.

Learning Our training data covers K languages:
D = {D1, ...,DK} where each Di is a collection
of monolingual documents in language i. We (1)
assume access to a noising function g, defined be-
low, that corrupts text, and (2) train the model to
predict the original text X given g(X). More for-
mally, we aim to maximize L✓:

L✓ =
X

Di2D

X
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logP (X|g(X); ✓) , (2)

where X is an instance in language i and the dis-
tribution P is defined by the Seq2Seq model.
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mBART: Low-medium translation results
Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko

Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17
Size 10K 91K 133K 207K 223K 230K

Direction  !  !  !  !  !  !

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3
mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K
Direction  !  !  !  !  !  !

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction  !  !  !  !  !  !

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-
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mBART: Low-medium translation results
Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko

Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17
Size 10K 91K 133K 207K 223K 230K

Direction  !  !  !  !  !  !

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3
mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K
Direction  !  !  !  !  !  !

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction  !  !  !  !  !  !

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-
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• Pre-training slightly hurts performance when >25M parallel 
sentence are available.  

• When a significant amount of bi-text data is given, 
supervised training are supposed to wash out the pre-
trained weights completely.

mBART: Rich-resource translation
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Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko
Data Source WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17

Size 10K 91K 133K 207K 223K 230K
Direction  !  !  !  !  !  !

Random 0.0 0.0 0.8 0.2 23.6 24.8 12.2 9.5 10.4 12.3 15.3 16.3
mBART25 0.3 0.1 7.4 2.5 36.1 35.4 22.5 17.8 19.1 19.4 24.6 22.6

Languages En-Nl En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16

Size 237K 250K 250K 259K 564K 608K
Direction  !  !  !  !  !  !

Random 34.6 29.3 27.5 16.9 31.7 28.0 23.3 34.9 7.6 4.3 34.0 34.3
mBART25 43.3 34.8 37.6 21.6 39.8 34.0 28.3 36.9 14.5 7.4 37.8 37.7

Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source FLoRes ITTB WMT18 WMT19 WMT17 WMT17

Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction  !  !  !  !  !  !

Random 7.2 1.2 10.9 14.2 22.6 17.9 18.1 12.1 21.8 20.2 15.6 12.9
mBART25 13.7 3.3 23.5 20.8 27.8 21.4 22.4 15.3 28.5 22.4 19.3 15.9

Table 2: Low/Medium Resource Machine Translation Pre-training consistently improves over a randomly ini-
tialized baseline, with particularly large gains on low resource language pairs (e.g. Vi-En).

Languages Cs Es Zh De Ru Fr
Size 11M 15M 25M 28M 29M 41M

Random 16.5 33.2 35.0 30.9 31.5 41.4
mBART25 18.0 34.0 33.3 30.5 31.3 41.0

Table 3: High Resource Machine Translation where
all the datasets are from their latest WMT competitions.
We only evaluate our models on En-X translation.

3 Sentence-level Machine Translation

This section shows that mBART pre-training pro-
vides consistent performance gains in low to
medium resource sentence-level MT settings, in-
cluding bi-text only and with back translation, and
outperforms other existing pre-training schemes
(§3.2). We also present a detailed analysis to un-
derstand better which factors contribute the most
to these gains (§3.3), and show that pre-training
can even improve performance for languages not
present in the pre-training data at all (§3.4).

3.1 Experimental Settings

Datasets We gather 24 pairs of publicly avail-
able parallel corpora that cover all the languages
in CC25 (Table 1). Most pairs are from previous
WMT (Gu, Kk, Tr, Ro, Et, Lt, Fi, Lv, Cs, Es,
Zh, De, Ru, Fr $ En) and IWSLT (Vi, Ja, Ko,
Nl, Ar, It $ En) competitions. We also use FLo-
Res pairs (Guzmán et al., 2019, En-Ne and En-
Si), En-Hi from IITB (Kunchukuttan et al., 2017),

and En-My from WAT19 (Ding et al., 2018, 2019).
We divide the datasets into three categories – low
resource (<1M sentence pairs), medium resource
(>1M and <10M), and high resource (>10M).

Fine-tuning & Decoding We fine-tune our mul-
tilingual pre-trained models on a single pair of bi-
text data, feeding the source language into the en-
coder and decoding the target language. As shown
in Figure 1, we load the pre-trained weights and
train the MT model on bi-texts with teacher forc-
ing. For all directions, we train with 0.3 dropout,
0.2 label smoothing, 2500 warm-up steps, 3e�5
maximum learning rate. We use a maximum of
40K training updates for all low and medium re-
source pairs and 100K for high resource pairs. The
final models are selected based on validation like-
lihood. For decoding, we use beam-search with
beam size 5 for all directions. The final results
are reported in BLEU (Papineni et al., 2002) with
language-specific settings, see appendix A.

3.2 Main Results

As shown in Table 2, initializing with the pre-
trained mBART25 weights shows gains on all the
low and medium resource pairs when compared
with randomly initialized baselines. We observe
gains of 12+ BLEU on low resource pairs such as
En-Vi, En-Tr, and noisily aligned pairs like En-Hi.
Fine-tuning fails in extremely low-resource setting
such as En-Gu, which only have roughly 10k ex-
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• Test on low resource FLoRes dataset [Guzmán et al., 2019] 
• Use the same monolingual data to generate BT data 
• Initializing the model with mBART25 pre-trained parameters 

improves BLEU scores at each iteration of back translation, 
resulting in new state-of-the-art results in all four translation 
directions

mBART: Pre-training complementary to BT  
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Figure 2: Pre-training + Back Translation on FLoRes with two iterations of BT.

Pre-training Fine-tuning
Model Data En!Ro Ro!En +BT

Random None 34.3 34.0 36.8

XLM (2019) En Ro - 35.6 38.5
MASS (2019) En Ro - - 39.1
BART (2019) En - - 38.0
XLM-R (2019) CC100 35.6 35.8 -

BART-En En 36.0 35.8 37.4
BART-Ro Ro 37.6 36.8 38.1
mBART02 En Ro 38.5 38.5 39.9
mBART25 CC25 37.7 37.8 38.8

Table 4: Comparison with Other Pre-training Ap-
proaches on WMT16 Ro-En.

amples for tuning. In these settings, unsupervised
translation is more appropriate, see §5.2.

For high resource cases (Table 3), we do not
observe consistent gains, and pre-training slightly
hurts performance when >25M parallel sentence
are available. When a significant amount of bi-text
data is given, we suspect that supervised training
washes out the pre-trained weights completely.

+ Back Translation Back-translation (BT, Sen-
nrich et al., 2016b) is a standard approach to aug-
ment bi-text with target side monolingual data. We
combine our pre-training with BT and test it on
low resource language pairs – En-Si and En-Ne –
using the FLoRes dataset (Guzmán et al., 2019).
For a fair comparison, we use the same mono-
lingual data as (Guzmán et al., 2019) to gener-
ate BT data. Figure 2 shows that initializing the
model with our mBART25 pre-trained parameters
improves BLEU scores at each iteration of back
translation, resulting in new state-of-the-art results
in all four translation directions.

v.s. Other Pre-training Approaches We also
compare our pre-trained models with recent self-
supervised pre-training methods, as shown in Ta-
ble 4. We consider En-Ro translation, the only
pair with established results. Our mBART model

outperforms all the other pre-trained models, both
with and without BT augmentation. We also show
comparisons with the conventional BART model
trained on the same En and Ro data only. Both
have improvements over baselines, while worse
than mBART results, indicating pre-training in a
multilingual setting is essential. Moreover, com-
bining BT leads to additional gains, resulting in a
new state-of-the-art for Ro-En translation.

3.3 Analysis
We also present additional analysis, to better quan-
tify when our pre-training helps.

How many languages should you pre-train on?
We investigate when it is helpful for pre-training
to include languages other than the targeted lan-
guage pair that will be used during fine tuning. Ta-
ble 5 shows performance on four X-En pairs. Pre-
training on more languages helps most when the
target language monolingual data is limited (e.g.
En-My, the size of My is around 0.5% of En).

In contrast, when monolingual data is plenti-
ful (De, Ro), pre-training on multiple languages
slightly hurts the final results (<1 BLEU). In these
cases, additional languages may reduce the ca-
pacity available for each test language. Addition-
ally, the fact that mBART06 performs similar to
mBART02 on Ro-En suggests that pre-training
with similar languages is particularly helpful.

How many pre-training steps are needed? We
plot Ro-En BLEU score v.s. Pre-training steps in
Figure 3, where we take the saved checkpoints (ev-
ery 25K steps) and apply the same fine-tuning pro-
cess described in §3.1. Without any pre-training,
our model overfits and performs much worse than
the baseline. However, after just 25K steps (5% of
training), both models outperform the best base-
line. The models keep improving by over 3 BLEU
for the rest of steps and have not fully con-
verged after 500K steps. mBART25 is consistently



• BART model trained on the same En and Ro data only. Both have improvements over 
baselines, while worse than mBART results, indicating pre-training in a multilingual 
setting is essential. 

• Combining BT leads to additional gains, resulting in a new state-of-the-art for Ro-En 
translation 

• mBART02 is better than mBART25. The more seems not the better? 

Is pre-training on multilingual better than on single language?
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Figure 2: Pre-training + Back Translation on FLoRes with two iterations of BT.

Pre-training Fine-tuning
Model Data En!Ro Ro!En +BT

Random None 34.3 34.0 36.8

XLM (2019) En Ro - 35.6 38.5
MASS (2019) En Ro - - 39.1
BART (2019) En - - 38.0
XLM-R (2019) CC100 35.6 35.8 -

BART-En En 36.0 35.8 37.4
BART-Ro Ro 37.6 36.8 38.1
mBART02 En Ro 38.5 38.5 39.9
mBART25 CC25 37.7 37.8 38.8

Table 4: Comparison with Other Pre-training Ap-
proaches on WMT16 Ro-En.

amples for tuning. In these settings, unsupervised
translation is more appropriate, see §5.2.

For high resource cases (Table 3), we do not
observe consistent gains, and pre-training slightly
hurts performance when >25M parallel sentence
are available. When a significant amount of bi-text
data is given, we suspect that supervised training
washes out the pre-trained weights completely.

+ Back Translation Back-translation (BT, Sen-
nrich et al., 2016b) is a standard approach to aug-
ment bi-text with target side monolingual data. We
combine our pre-training with BT and test it on
low resource language pairs – En-Si and En-Ne –
using the FLoRes dataset (Guzmán et al., 2019).
For a fair comparison, we use the same mono-
lingual data as (Guzmán et al., 2019) to gener-
ate BT data. Figure 2 shows that initializing the
model with our mBART25 pre-trained parameters
improves BLEU scores at each iteration of back
translation, resulting in new state-of-the-art results
in all four translation directions.

v.s. Other Pre-training Approaches We also
compare our pre-trained models with recent self-
supervised pre-training methods, as shown in Ta-
ble 4. We consider En-Ro translation, the only
pair with established results. Our mBART model

outperforms all the other pre-trained models, both
with and without BT augmentation. We also show
comparisons with the conventional BART model
trained on the same En and Ro data only. Both
have improvements over baselines, while worse
than mBART results, indicating pre-training in a
multilingual setting is essential. Moreover, com-
bining BT leads to additional gains, resulting in a
new state-of-the-art for Ro-En translation.

3.3 Analysis
We also present additional analysis, to better quan-
tify when our pre-training helps.

How many languages should you pre-train on?
We investigate when it is helpful for pre-training
to include languages other than the targeted lan-
guage pair that will be used during fine tuning. Ta-
ble 5 shows performance on four X-En pairs. Pre-
training on more languages helps most when the
target language monolingual data is limited (e.g.
En-My, the size of My is around 0.5% of En).

In contrast, when monolingual data is plenti-
ful (De, Ro), pre-training on multiple languages
slightly hurts the final results (<1 BLEU). In these
cases, additional languages may reduce the ca-
pacity available for each test language. Addition-
ally, the fact that mBART06 performs similar to
mBART02 on Ro-En suggests that pre-training
with similar languages is particularly helpful.

How many pre-training steps are needed? We
plot Ro-En BLEU score v.s. Pre-training steps in
Figure 3, where we take the saved checkpoints (ev-
ery 25K steps) and apply the same fine-tuning pro-
cess described in §3.1. Without any pre-training,
our model overfits and performs much worse than
the baseline. However, after just 25K steps (5% of
training), both models outperform the best base-
line. The models keep improving by over 3 BLEU
for the rest of steps and have not fully con-
verged after 500K steps. mBART25 is consistently
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• Pretraining on more languages helps most when the target 
language monolingual data is limited 

• When monolingual data is plentiful (De, Ro), pre-training on 
multiple languages slightly hurts the final results (<1 BLEU)

How many languages should you pre-train on?
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Languages De Ro It My En

Size/GB 66.6 61.4 30.2 1.6 300.8

mBART02 31.3 38.5 39.7 36.5
mBART06 - 38.5 39.3 -
mBART25 30.5 37.7 39.8 36.9

Table 5: Pretraining Languages on En-X translation.
The size refers to the size of monolingual data for X.
The size of En is shown as reference. All the pretrained
models were controlled to see the same number of En-
glish instances during training.

Models En-My Training Cost
 ! GPU hours

Random (2019) 23.3 34.9 5
+ BT 32.0 37.7 5 + 300 + 350

mBART02 29.1 37.8 300⇠3000 + 40
+ BT 34.9 39.2 -

Table 6: Comparison with Back-Translation on My-En
translation using same mono-lingual data. We also esti-
mate the computational costs for both pre-training and
back-translation based on Nvidia V100 GPUs.

slightly worse than mBART02.

How does the size of bitexts inference the gain
from pre-training? Tables 2 and 3 show that
pre-training consistently improves for low and
medium resource language pairs. To verify this
trend, we plot performance for differing sized sub-
sets of the En-De dataset. More precisely, we take
the full En-De corpus (28M pairs) and randomly
sample 10K, 50K, 100K, 500K, 1M, 5M, 10M
datasets. We compare performance without pre-
training to the mBART02 results, as shown in Fig-
ure 4. The pre-trained model is able to achieve
over 20 BLEU with only 10K training examples,
while the baseline system scores 0. Unsurpris-
ingly, increasing the size of bi-text corpus im-
proves both models. Our pre-trained model con-
sistently outperforms the baseline models, but the
gap reduces with increasing amounts of bi-text, es-
pecially after 10M sentence pairs. This result con-
firms our observation in §3.2 that our pre-training
does not help translation in high-resource pairs.

Is pre-training complementary to BT? Fig-
ure 2 presents that our pre-trained models can
be combined with iterative back-translation (BT)
on additional data, however, it is still not a fair
comparison. Table 6 shows the results when using

Figure 3: Fine-tuning curves for Ro-En along with
Pre-training steps. Both mBART25 and mBART02
outperform the best baseline system after 25K steps.

Figure 4: Fine-tuning curves for En-De along with
size of bitext. The x-axis is on a log scale.

same monolingual data where we use 79M En and
29M My sentences following Chen et al. (2019).

With the same amount of monolingual corpus,
mBART pre-training achieves the same perfor-
mance on En!My as BT, while still 3 BLEU
worse on My!En. We suspect BT benefits from
bigger monolingual data (En). Moreover, combin-
ing mBART02 model with BT, we see further
gains even with same monolingual data. Besides,
we also provide estimated training costs where BT
has a longer pipeline involving training a baseline
system (5h), translating monolingual data (300h)
and formal training (350h). Instead, most of train-
ing costs of mBART lies in the pre-training part
and can be easily adjusted to be more efficient.

3.4 Generalization to Languages NOT in
Pre-training

In this section, we show that mBART can im-
prove performance even with fine tuning for lan-
guages that did not appear in the pre-training cor-
pora, suggesting that the pre-training has language
universal aspects, especially within the parameters
learned at the Transformer layers.

30
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mbart02 mbart06 mbart25
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• mBART can improve performance even with fine tuning for 
languages that did not appear in the pre-training corpora,  

• Pre-training has language universal aspects, especially 
within the parameters learned at the Transformer layers. 

• The more pre-trained languages the better

Analysis: Generalization to unseen  languages
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Monolingual Nl-En En-Nl Ar-En En-Ar Nl-De De-Nl

Random None 34.6 (-8.7) 29.3 (-5.5) 27.5 (-10.1) 16.9 (-4.7) 21.3 (-6.4) 20.9 (-5.2)

mBART02 En Ro 41.4 (-2.9) 34.5 (-0.3) 34.9 (-2.7) 21.2 (-0.4) 26.1 (-1.6) 25.4 (-0.7)
mBART06 En Ro Cs It Fr Es 43.1 (-0.2) 34.6 (-0.2) 37.3 (-0.3) 21.1 (-0.5) 26.4 (-1.3) 25.3 (-0.8)
mBART25 All 43.3 34.8 37.6 21.6 27.7 26.1

Table 7: Generalization to Unseen Languages Language transfer results, fine-tuning on language-pairs without
pre-training on them. mBART25 uses all languages during pre-training, while other settings contain at least one
unseen language pair. For each model, we also show the gap to mBART25 results.

Experimental Settings We analyze the results
of three pairs: Nl-En, Ar-En and De-Nl using the
pre-trained mBART25, mBART06 and mBART02
(EnRo) models. During pre-training, mBART06
and EnRo Bilingual do not contain Arabic (Ar),
German (De) or Dutch (Nl) data, but all languages
are in mBART25. Both De and Nl are European
languages and are related to En, Ro and other the
languages in mBART06 pre-training data.

Results mBART25 uses all languages during
pre-training, but other settings contain at least one
unseen language. We find large gains from pre-
training on English-Romanian, even when trans-
lating a distantly related unseen language (Arabic)
and two unseen languages (German and Dutch).
The best results are achieved when pre-training in-
cludes both test languages, however pre-training
on other languages is surprisingly competitive.

Unseen Vocabularies Arabic is distantly related
to the languages in mBART02 and mBART06, and
its use of a disjoint character set means that it word
embeddings will be largely untrained. However,
we obtain similar improvements on Ar-En pairs to
those on Nl-En. This result suggests that the pre-
trained Transformer layers learn universal prop-
erties of language that generalize well even with
minimal lexical overlap.

Unseen Source or Target Languages Table 7
shows different performance when the unseen lan-
guages are on the source side, target side, or both
sides. If both sides are unseen, the performance
(in terms of difference from mBART25) is worse
than where at least one language is seen dur-
ing pre-training. Furthermore, although the En-X
pairs perform similarly, mBART06 outperforms
mBART02 by a margin on X-En pairs. Fine-tuning
unseen languages on source side is more difficult,
deserving more extensive future study.

Datasets # Docs # Insts # Sents

WMT19 En-De 77K 171K 3.7M
TED15 Zh-En 1.7K 6.5K 0.2M

Table 8: Statistics for the Document-level Corpus of
WMT19 En-De and TED15 Zh-En. # of instances is
the # of training examples in document model.

4 Document-level Machine Translation

We evaluate mBART on document-level machine
translation tasks, where the goal is to translate seg-
ments of text that contain more than one sentence
(up to an entire document). During pre-training,
we use document fragments of up to 512 tokens,
allowing the models to learn dependencies be-
tween sentences. We show that this pre-training
significantly improves document-level translation.

4.1 Experimental Settings

Datasets We evaluate performance on two com-
mon document-level MT datasets: WMT19 En-De
and TED15 Zh-En (statistics in Table 8). For En-
De, we use the document data from WMT19 to
train our model, without any additional sentence-
level data; Zh-En dataset is from the IWSLT 2014
and 2015 evaluation campaigns (Cettolo et al.,
2012, 2015). Following Miculicich et al. (2018),
we use 2010-2013 TED as the test set.

Pre-processing We use the same pre-processing
as that in pre-training. For each block, sentences
are separated by end of sentence symbols (</S>)
and the entire instance is ended with the specific
language id (<LID>). The numbers of segmented
instances are also shown in Table 8 where on av-
erage, every document is split into 2-4 instances.

Fine-tuning & Decoding We use the same fine-
tuning scheme as for sentence-level translation
(§3.1), without using any task-specific techniques
developed by previous work (Miculicich et al.,
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Multilingual Training 
How can we build a single unified Multilingual MT 

models with superior performance on all 
language directions?



• Key idea:  
○ Words in difference languages with the same meaning should have 

the same embedding, but the training objective does not necessarily 
encourage that!

Idea 1: Aligning Semantic Representations across Languages
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En 
Fr 

Es 

De 

It 

<En> I love you. 
<Fr> Je t’aime. 
<De> Ich liebe dich.  
<Es> Te quiero.  
<It> ti amo. 

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan et al., ACL 2021] 

love
aime

quiero

liebe
amo

ideally



• Key idea:  
○ Words in difference languages with the same meaning should have 

the same embedding 
○ Parallel sentences in difference languages should have the same 

representation

Proposed mRASP: Aligning Semantic Representations across Languages
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En 
Fr 

Es 

De 

It 

<En> I love you. 
<Fr> Je t’aime. 
<De> Ich liebe dich.  
<Es> Te quiero.  
<It> ti amo. 

I love you
Je t’aime

Te quiero

Ich liebe dich
ti amo

ideally

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan, Wu, Wang, Lei Li,  ACL 2021] 

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information 
[Lin, Pan, Wang, Qiu, Feng, Zhou, Lei Li, EMNLP2020] 



• mRASP: multilingual Random Aligned Substitution Pre-
training 
‣ Multilingual Pre-training Approach 
‣ RAS: specially designed training method to align 

semantic embeddings 

Aligning Semantic Representations across Languages

28

Encoder Decoder
X1 Z2 X3 Z4 X5

Y3 Y4Y2

<s> Y1 Y3Y2 Y4

Y1 Y5

X2 X4

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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mRASP: Random Aligned Substitution

Encoder Decoder

I like singing and dancing<EN id>

I like 唱歌 and 跳舞<EN id>

1 2 3 4 50

1 2 3 4 50

Orig

J’adore chanter et danser<FR id>

1 2 3 40

J’adore chanter et danser

Random Aligned Substitution

tok

pos

tok

pos

<EOS>

Randomly replace a source word to its synonym in different language.

ℒRAS = ∑
i,j∈ℰ

𝔼(xi,xj)∼𝒟i,j [−log Pθ (xi ∣ C (xj))]

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information 
[Lin, Pan, Wang, Qiu, Feng, Zhou, Lei Li, EMNLP2020] 
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mRASP: Bringing Synonym Representations Closer

ℒpre = ∑
i,j∈ℰ

𝔼(xi,xj)∼𝒟i,j [−log Pθ (xi ∣ C (xj))]

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 

I like singing and dancing<EN id>

1 2 3 4 50

I like chanter and danser<EN id>

1 2 3 4 50

training with translation loss to bring closer
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Idea 2: Bring parallel sentence representations closer

<Fr> Je t’aime.<En> I love you. <En> It’s sunny.

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan, Wu, Wang, Lei Li,  ACL 2021] 
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mRASP2: Contrastive Learning to Bring Sentence Representations Closer

Encoder Decoder

<Fr> Je t’aime.<Fr> C’est la vie. 
…… 

<Zh> 你是谁

<En> It’s sunny. <En> I love you.

…
Anchor

+

<Fr> Je t’aime.

  Contrastive Loss: Lctr        

—

PositiveNegative
  Cross Entropy: Lce           

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan, Wu, Wang, Lei Li,  ACL 2021] 
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mRASP2: Integrating Monolingual Data in Unified Training
•Parallel text

Encoder Decoder

你 like انواع من Musik<ZH id> quel 的 呢

<EOS>你 喜欢 类型 ⾳乐哪种 的 呢

你 喜欢 类型 ⾳乐<ZH id> 哪种 的 呢

喜欢 类型 ⾳乐哪种

C(x
Z H

)
x
Z H

x
Z H

Encoder Decoder

I like 唱歌 and 跳舞<EN id>

J’adore chanter et danser

J’adore chanter et danser

<EOS>

<FR id>

singing dancing

C(x
E N

)
x
F R

x
F R

•Monolingual text

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan, Wu, Wang, Lei Li,  ACL 2021] 



• Pre-training Dataset: PC32 (Parallel Corpus 32) 
○ 32 English-centric language pairs, resulting in 64 directed 

translation pairs in total 
○ Contains a total size of 110.4M public parallel sentence pairs

Training Data for mRASP
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# of En-X sentence pairs

1
10

100
1000

10000
100000

1000000
10000000

100000000

Fr Lv Fi Bg Et It Ru Hi El Cs Tr Ka Sr Af My Gu
Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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mRASP2: a single MNMT model (no fine-tuning)
Overall Results in all 

scenarios: 56 directions

0

5.5

11

16.5

22

Averaged (ALL)

21.03

13.41

m-Transformer mRASP2
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mRASP significantly improves Zero-shot and Unsupervised Translation

0

5

10

15

20

25

30

35

Supervised Unsupervised Zero-shot

m-Transformer mRASP (no finetune) mRASP2 w/o AA mRASP2 w/o MC24 mRASP2

Augmented Training 
w/ Monolingual data 

+14 BLEU 
Contrastive 

Training 
+10 BLEU

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information 
[Lin, Pan, Wang, Qiu, Feng, Zhou, Lei Li, EMNLP2020] 

36 languages

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan, Wu, Wang, Lei Li,  ACL 2021] 
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mRASP2: Comparable or Better Performance on Supervised Directions
Tokenized BLEU on supervised direcIons

0

13

25

38

50

En2Fr Fr2En En2Tr Tr2En En2Es Es2En En2Ro Ro2En En2Fi Fi2En

Bilingual m-Transformer mRASP w/o R mRASP2
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Better Semantic Alignment: Sentence Retrieval

70

75

80

85

90

Averaged Retrieval acc

89.6

84.4

79.8

m-Transformer mRASP2 w/o AA mRASP2

15-way parallel test set(Ted-M): 2284 
samples

Contrastive Learning and Randomly 
Aligned Substitution both contribute 
to the improvement on sentence 
retrieval 
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 mRASP Produces Better Semantic Alignment
m-Transformer mRASP

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation  [Pan, Wu, Wang, Lei Li,  ACL 2021] 



• Further fine-tuning based on mRASP model 
• Fine-tuning Dataset 
• Indigenous Corpus: included in pre-training phase 
○ Extremely low resource (<100K) (Be, My, etc.) 
○ Low resource(>100k and <1M) (He, Tr, etc.) 
○ Medium resource (>1M and <10M) (De, Et, etc.) 
○ Rich resource (>10M) (Zh, Fr, etc.)

mRASP Fine-tuning

40Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



• En->Fr +1.1BLEU.
mRASP Fine-tunes better:  Rich resource works

41

28

28.75

29.5

30.25

31

En2De(wmt2016)

Direct CTNMT XLM
MASS mBERT mRASP

40

41.75

43.5

45.25

47

En2Fr(wmt2014)

Direct CTNMT mBART mRASP

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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mRASP: Low resource works

lower resource higher resource

Extremely-Low Resource DirecIons

0
10
20
30
40

En2Be Be2En En2My My2En En2Af Af2En En2Eo Eo2En

35.8
30.427

31.1
25.328.632.3

25.8

6.74.97.28.35.4
10.29.68.5

Direct mRASP

Low Resource DirecIons

0
10
20
30
40
50

En2He He2En En2Tr Tr2En En2Ro Ro2En En2Cs Cs2En

29.8
23.2

37.439
33.3

21

44.6

32.4
22.719

29.230.5

19.4
10.7

27.6
19

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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mRASP: Unseen languages

Fr-Zh(20K) De-Fr(9M)
—> <— —> <—

Exotic Pair
Direct 0.7 3 23.5 21.2
mRASP 25.8 26.7 29.9 23.4

Nl-Pt(12K) Da-El(1.2M)
—> <— —> <—

Exotic Full
Direct 0.0 0.0 14.1 16.9
mRASP 14.1 13.2 17.6 19.9

En-Mr(11K) En-Gl(1.2M)
—> <— —> <—

Exotic Source/
Target

Direct 6.4 6.8 8.9 12.8
mRASP 22.7 22.9 32.1 38.1

En-Eu(726k) En-Sl(2M)
—> <— —> <—

Direct 7.1 10.9 24.2 28.2
mRASP 19.1 28.4 27.6 29.5

12k: Direct not work VS mRASP achieves 10+ BLEU!!

• mRASP generalizes on all exotic scenarios.

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 
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mRASP: Compare with other methods

0

7.5

15

22.5

30

En2Gu Gu2En En2Kk Kk2En En2Tr Tr2En En2Et Et2En

Direct mBART mRASP

0

12.5

25

37.5

50

En2Fi Fi2En En2Lv Lv2En En2Cs En2De En2Fr

• mRASP outperforms mBART for all but two language pairs.

Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information  [Lin et al., EMNLP 2020] 



• Pre-training for NMT 
○ sequence to sequence training objective 
○ MASS: masked prediction using seq2seq 
○ mBart: Recover original sentence from noised ones in multiple 

languages. 
• Multilingual joint training 
○ mRASP & mRASP2:  
‣ augmenting data with randomly substitute of words from bilingual lexicon  
‣ monolingual reconstruction 
‣ contrastive learning 

Summary
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• What strategies for training multilingual NMT
Discussion

46


