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Language Data

[Credit: Isaac Caswell, 2022]
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• Develop one model to translate between all language 
pairs. 


• Model-side: Languages with rich resource could benefit 
those with low resource

○ Similar languages share tokens 


• Serving-side: only one model deployment versus of many 
deployments. Simpler workload and job management and 
scheduling. 

○ Many languages would have much few requests but still need to 

occupy the servers. 

Why Multilingual NMT?
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• Many-to-one:

○ Many source language to a target language 

○ Usually the target is English


• One-to-Many:

○ One source language to many target languages

○ Usually the source is English


• Many-to-many:

○ Many source language to many target languages

○ Should include non-English pairs (often low-resource or zero-resource 

setting), very challenging!

• Which is simpler?

MNMT Categorization
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• Exotic (Unseen) pair

○ Both the testing source language and target language appeared in the training, but 

the source-target pair never appeared in the training

○ Also known as zero-shot MNMT


• Exotic (Unseen) source

○ Testing source language never occur in the training


• Exotic (Unseen) target

○ Testing target language never occur in the training


• Exotic (Unseen) full

○ Neither the source language nor the target language for testing occur in the 

training

○ Is it even possible? Yes, for the pre-train fine-tuning paradigm. 

MNMT Fine-tuning Testing
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MNMT with Language Tags



• Language-specific encoding (@en@car, @de@automobile)

• But hard to learn a joint embedding.

• Challenge: 

○ large vocabulary (twice many)

○ how does the model know it is to translate into German or French?

A single model for Multilingual NMT
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Encoder Decoder
I like singing and dancing J’adore chanter et danser

chanter et danserJ’adore

BOS

Ha et al. Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder. 2016



• One model can translate 
between many 
languages.


• Language Tag is used to 
indicate the source and 
target language. 


• Vocabulary is built jointly

Multilingual Machine Translation - Language Tag
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Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

Encoder Decoder
I like singing and dancing<EN id> J’adore chanter et danser<FR id>

J’adore chanter et danser

https://aclanthology.org/Q17-1024.pdf


• Single joint vocabulary [Johnson 2017]

○ combine all corpus together, and apply BPE


• Soft-decoupled encoding [Wang et al 2019]

• Even better: learned vocabulary [Xu 2021], (later in class)

Vocabulary
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• Training 12 language 
pairs together


• LSTM-s2s:

○ 8 layer LSTM encoder, 

1st layer bidirectional

○ 8 layer LSTM decoder 

with attention
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Google’s MNMT

Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

https://aclanthology.org/Q17-1024.pdf


• Bilingual pivot

• Multilingual joint

• What is missing in 

the table?

○ Multilingual pivot
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Google’s MNMT Zero-shot

zero-shot

no longer zero-shot, since additional 
Pt-Es pairs are used.

Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

https://aclanthology.org/Q17-1024.pdf


• MNMT is worse than pivot on zero-shot directions
Google’s MNMT Zero-shot
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zero-shot



• We investigate the following four language tag str
Source Language Tag or target Language Tag?
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Encoder Decoder
I like singing and dancing<EN id> J’adore chanter et danser<FR id>

Strategy Source sentence Target sentence

Original Hello World! ¡Hola Mundo
T-ENC __es__ Hello World! ¡Hola Mundo
T-DEC Hello World! __es__  ¡Hola Mundo

S-ENC-T-ENC __en__  __es__  Hello World! ¡Hola Mundo
S-ENC-T-DEC __en__ Hello World! __es__  ¡Hola Mundo

Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021. 
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Language Tag Does not Affect Performance on Supervised Directions
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Supervised directions: The directions which has been seen 
together in the training time.

Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021. 
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Target Language Tag on Encoder Strategy Gets Best Zero-Shot Performance
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T-ENC T-DEC S-ENC-T-ENC S-ENC-T-DEC

Zero-shot directions: The directions between known languages 
that the model has never seen together at training time.

Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021. 



• {Ja, Ko} -> En

• Japanese: 私は東京⼤学の学⽣です。 → I am a student at 

Tokyo University. 

• Korean: 나=hb Xᄃ쿄 Qᄃ학cF 학QyDu이니다. → I am a 

student at Tokyo University. 

• Japanese/Korean: 私は東京⼤学PMeyQᄉ입d= 다. → I 

am a student of Tokyo University. 

Mixed Source Language can still be Translated
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• En -> {Ja, Ko}

• Either generate 

Japanese or Korean
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Mixed Decoder for Target Language



• Model: Transformer-base (6e6d, 512) ==> mTransformer

• Data: TED-talk, 59 languages, 116 directions 

Multilingual NMT with mTransformer

20Aharoni et al. Massively Multilingual Neural Machine Translation. 2019
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Limitation of mTransformer: does not work for Many-to-Many En-X

Aharoni et al. Massively Multilingual Neural Machine Translation. 2019



• mTransformer

○ 6e6d, 1024 -> 8192

○ 473m parameters


• 103 Languages (inc. En)

○ 64k vocab

Even More Languages

22Aharoni et al. Massively Multilingual Neural Machine Translation. 2019
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More language trained together, but 
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mTransformer Zero-shot Performance



• Data: 25 billion sentence pairs in 
103 languages


• Model: mTransformer with 375million 
params (larger than Transformer-
big)

Bigger Data

25Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. 2019



• sample data prob w.r.t 
p

1
T

Sampling of Data
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• mTransformer: 

○ 400m, 1.3B wide (12e12d), 1.3B deep (24e24d) 

○ Deep is better than wide!

Bigger Model
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• mTransformer boosts performance on low-resource 
languages but not high-resource


• Zero-shot directions are not usable yet.

Limitation

28Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. 2019



MT w/ Adapter



• Insufficient model capacity

○ the sharing model capacity has to be split for different translation 

directions

Parameter Interference issue for MNMT

30
Bilingual Multilingual



• For each layer, adding 
language-specific module


• z ̃ =LNT(zi). 

• h =relu(W z ̃ ) 

• x =Wh + z

• Could be used for both 

domain adaptation and 
MNMT


• Joint training the whole 
architecture

Multilingual NMT with Serial Adapter

31Bapna & Firat, Simple, Scalable Adaptation for Neural Machine Translation, 2019



• on rich-resource lang.

• But serial-adapter is not 

plug-and-play

○ Joint training mTransformer+SA 

will be better than training 
mTransformer, fix, and train 
adapter.


○ Adapter has tight integration with 
the main architecture. 

Serial Adapter improves Multilingual Translation
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• Which adapter will remove noise?
Counter Interference
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Zhu et al. Counter-Interference Adapter for Multilingual Machine Translation. 2021



• Design rationale:

○ process before multilingual interference is introduce in each layer 


• Embedding adapter

• Parallel layer adapter

• Training:

○ Pretrain mTransformer on multilingual data

○ Fix mTransformer and train parallel adapters on specific language 

pairs 

Parallel Adapter - CIAT
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• mTransformer could 
be worse than 
bilingual 
Transformer


• Both serial adapter 
and parallel adapter 
(CIAT) improves 
mTransformer


• Parallel even beat 
bilingual 
Transformer! Serial 
adapter does not.

Comparing MNMT w/ Adapters

35
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IWSLT X-En
IWSLT En-X

OPUS100 X-En
OPUS100 En-X

WMT6 X-En
WMT6 En-X

Bilingual mTransformer Multilingual KD Serial Adapter CIAT

Zhu et al. Counter-Interference Adapter for Multilingual Machine Translation. 2021



• Upper decoder layer adapter is more important
Which layer-adapter are more important?
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• Embedding adapter enhance the word embedding 
similarity between language pairs

Embedding Adapter is also important!
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• Improve the performance on MNMT, even beat Bilingual NMT

○ Reducing interference among large languages

○ Boost performance on zero-shot setting


• With a fraction of overhead

○ Bilingual Transformer-big: N x 242m

○ mTransformer: 242m

○ mTransformer+Serial Adapter: 242m + N x 12.6m

○ mTransformer+parallel adapter (CIAT): 242m + N x 12.6~27.3m


• Plug-and-play: CIAT only needs to finetune adapter

Benefit of MNMT w/ Adapter

38



Exploiting Model Capacity with 
Language-specific Subnet



• Challenge: Performance degradation for rich-resource

○ caused by Parameter Interference 

Challenge of Multilingual NMT

40

En-Tr (0.2m) En-Ta(0.6m) ... En-Zh(20m) En-Fr(36m)

Bilingual Multilingual

Low Resource
Rich Resource



• Each direction has 

○ shared parameters with other directions

○ preserves its language-specific parameters

Language-Specific Sub-network (LaSS)

41

En Zh
En Fr
En De

En Zh
En Fr
En De

Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• For each language pair , a sub-network is selected 
from base model  indicated by a binary mask 

si → ti
θ0

Msi→ti ∈ {0,1}|θ|

LaSS overall framework

42

En→Zh

En→Fr

…

Base Model



• Fine-tuning and pruning

○ Fine-tuning on  amplifies important weights and diminishes 

the unimportant weights.
si → ti

How to find language-specific sub-network: Intuition

43
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Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• Start with a vanilla multilingual model  jointly trained on 




• For each language pair , fine-tuning  on , 
respectively


• Rank the weights in fine-tuned model and prune the lowest 
α percent to obtain 

θ0

{𝒟si→ti}
N

i=1
si → ti θ0 𝒟si→ti

Msi→ti

How to find language-specific masks

44
Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• Further continue to train  through structure-aware 
updating after obtaining 

○ Create batch  full of samples from 

○ Forward and backward with sub-network 

θ0
Msi→ti

ℬsi→ti si → ti

θsi→ti = {θ j
0 ∣ Mj

si→ti
= 1}

Structure-aware Joint Training

45Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• LaSS obtains consistent gains for both Transformer-base 
and Transformer-big

Efficacy in alleviating Parameter Interference

46
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Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• LaSS obtains consistent performance gains.

○ IWSLT

Efficacy in alleviating Parameter Interference

47
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Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• An average of 8.3 BLEU gains on 30 language pairs

• 26.5 BLEU gains for Fr→Zh

LaSS obtains large gains in zero-shot translation

48

Fr → X Results
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Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• The same number of parameters, no extra parameter

• Improved performance on both rich-resource and zero-shot 

translation directions. 

Benefits of Language-specific Subnet

49



What do we need for larger scale?



• Previous many-to-many MNMT does not work well on non-
English pairs


•

Full Many-to-Many MNMT

51Fan et al. Beyond English-Centric Multilingual Machine Translation. 2021



• WMT — 13 languages

• WAT — Burmese-English

• IWSLT — 4 languages

• FLORES— Sinhala and Nepali <—> English

• TED—The TED Talks data set4 (Ye et al., 2018) contains translations 

between more than 50 languages; most of the pairs do not include English. 
The evaluation data is n-way parallel and contains thousands of directions. 


• Autshumato— 11-way parallel data set comprising 10 African languages 
and English from the government domain. Half-half split.


• Tatoeba— 692 test pairs from mixed domains where sentences are 
contributed and translated by volunteers online. The evaluation pairs we 
use from Tatoeba cover 85 different languages. 

100 Langauge Benchmark 
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• CCAligned [El-Kishky et al 2020] 

○ use LASER encoder to produce sentence embedding

○ for every Eng sentence, use vector search engine (e.g. FAISS) to search 

candidate aligned sentence by comparing sentence embedding

○ parallel or comparable web-document pairs in 137 languages aligned 

with English. 

• Use language family as bridge to mine 

○ non-English pairs


• Total Training Data: 7.5B parallel sentences, corresponding to 
2200 directions. 


•

Data mining for parallel corpus

53
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LegoMT
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Lego-MT: Detachable Architecture
Each branch contains a complete encoder-decoder for a language/
language group.

7 branches for central languages, and 1 branch for all languages 
combined. 

Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023]
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Data Flow in Lego-MT

Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023]



• 1st stage: training on many-to-many & one-to-many data


• 2nd stage: training on many-to-one data

Lego-MT Two-stage Training
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min 𝐿𝑚𝑖𝑥 + 𝐿𝑒𝑛𝑐 
𝐿𝑚𝑖𝑥 = − ∑

𝑥,𝑦∼𝐷multi

log𝑃𝜃𝑚𝑖𝑥(𝑦 𝑥)
𝐿𝑒𝑛𝑐 = − ∑

𝑥,𝑦∼𝐷lg→⋅

log𝑃𝜃𝑒𝑛𝑐
(𝑦 |𝑥)

𝐿𝑑𝑒𝑐 = − ∑
𝑥,𝑦∼𝐷⋅→lg

log𝑃𝜃𝑑𝑒𝑐
(𝑦 |𝑥)

Fix the encoder of mix-flow branch
Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023]



• Training Data 

○ 1.3B sentence pairs collected from OPUS

○ 433 languages including 7 central 

languages

• Testing:

○ Flores-101 Devtest, human written 

translation pairs covering 101 languages.

○ 7×85 translation directions


• Evaluation Metric:

○ spBLEU, same in Flores-101

Multi-centric Data for 433 Languages
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Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023]



• Model Parameters

○ Each Flow: 0.6B parameters

○ Total Training Parameters: 

‣ 9.6B = 1.2B (Mix-Flow) + 0.6 * 7 (Enc-Flow)  + 0.6 * 7 (Dec-Flow) 

○ Inference Parameter：

‣ 1.2B (Each branch can be independently loaded during inference)

‣ We use Mix-flow for multilingual evaluation 


• Training Setting

○ Max token 8000

○ The training of all centric languages is conducted in random order

○ Training duration:15 days on 32 A100 GPUs.

Lego-MT Model Configuration

60Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023]
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Lego-MT surpasses plain ChatGPT
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Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023]



• Low-resource is recommended to use Mix-Flow

•  High-resource is better to use E-Flow + D-Flow. 

When to use Mix-flow?

63Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023]
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Language Presentation
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