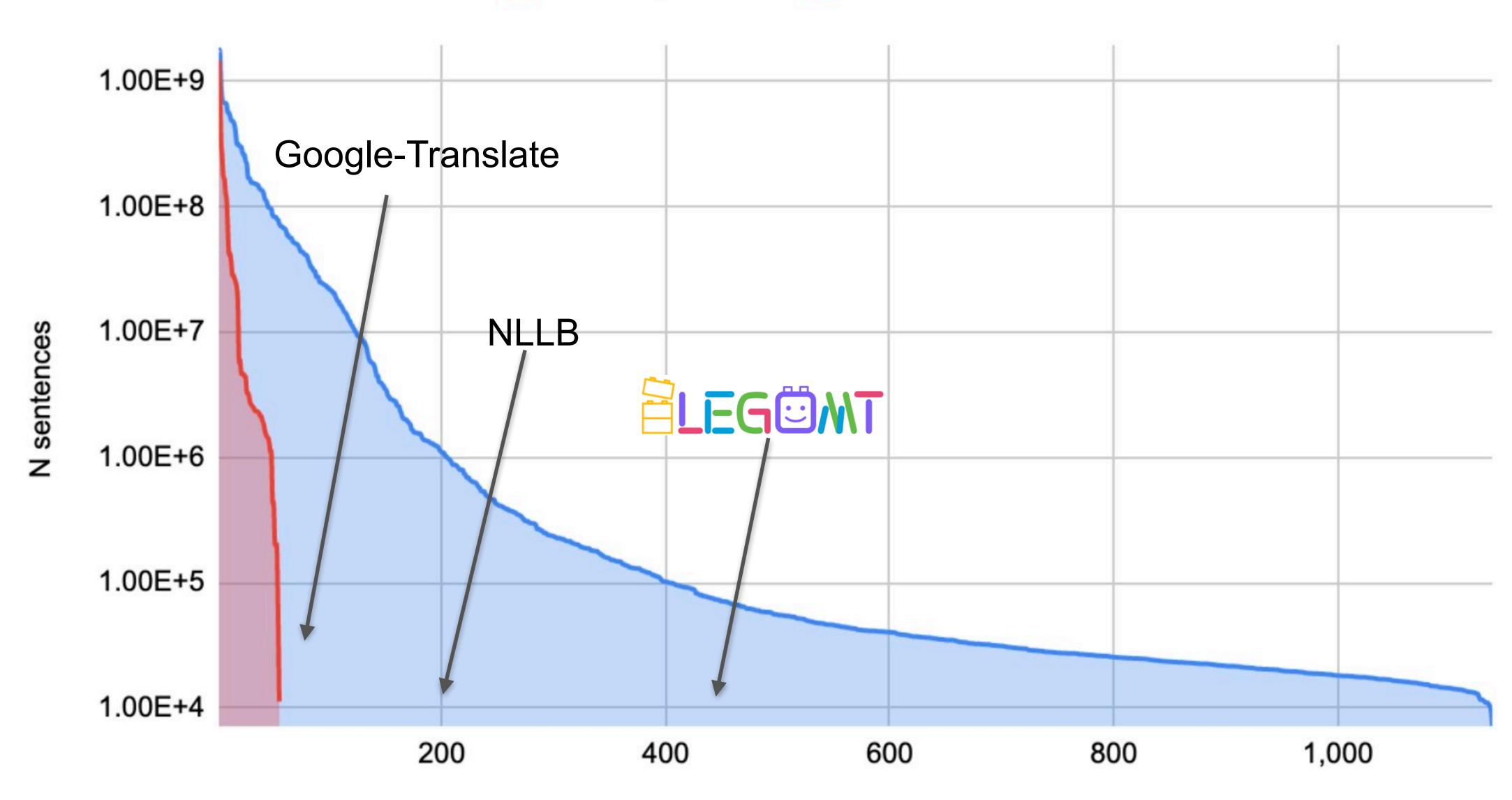
CS11-737 Multilingual NLP Multilingual Neural Machine Translation Model Architecture

- Lei Li
- https://lileicc.github.io/course/11737mnlp23fa/
 - **Carnegie Mellon University** Language Technologies Institute



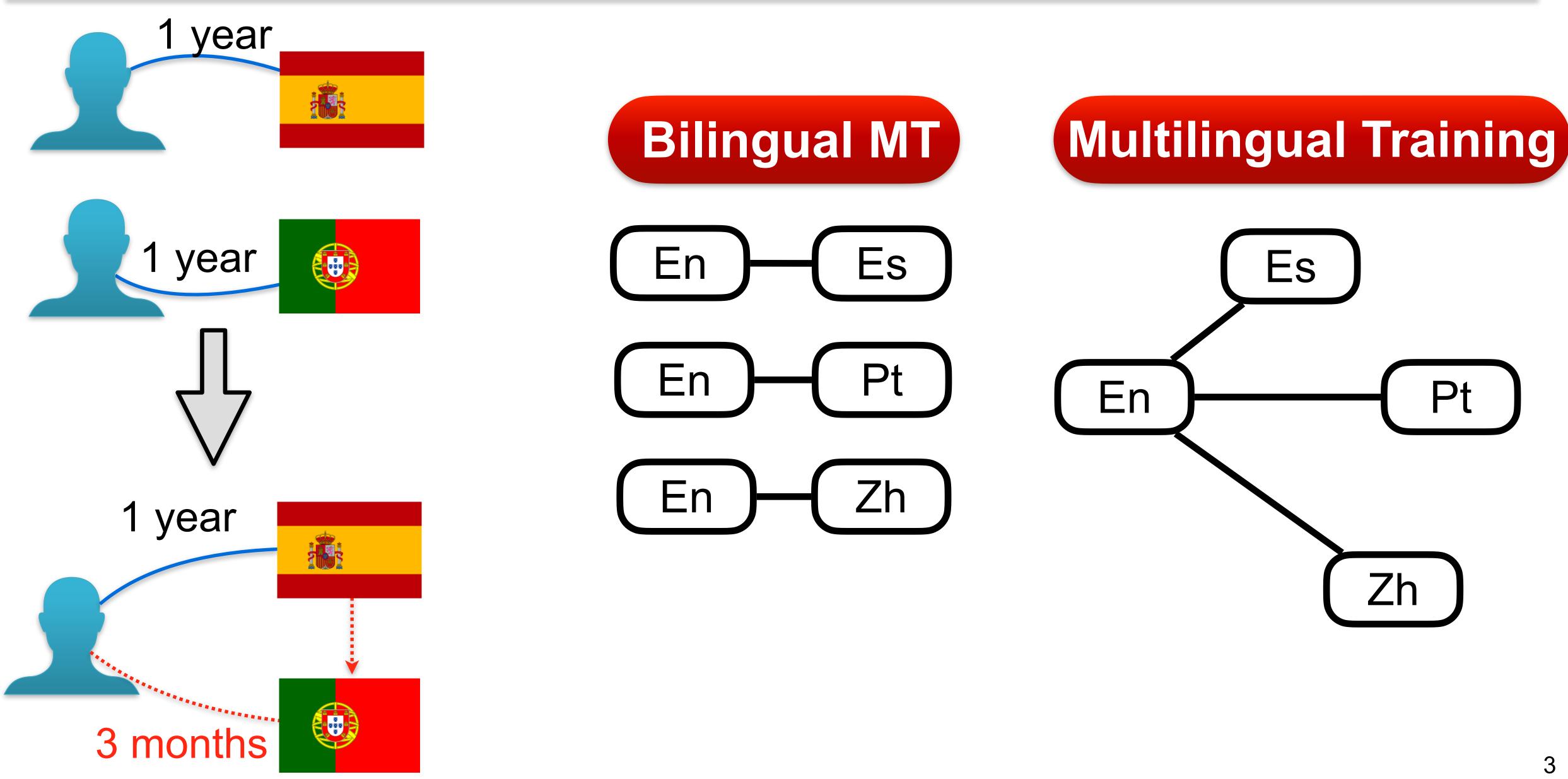
[Credit: Isaac Caswell, 2022]

Language Data

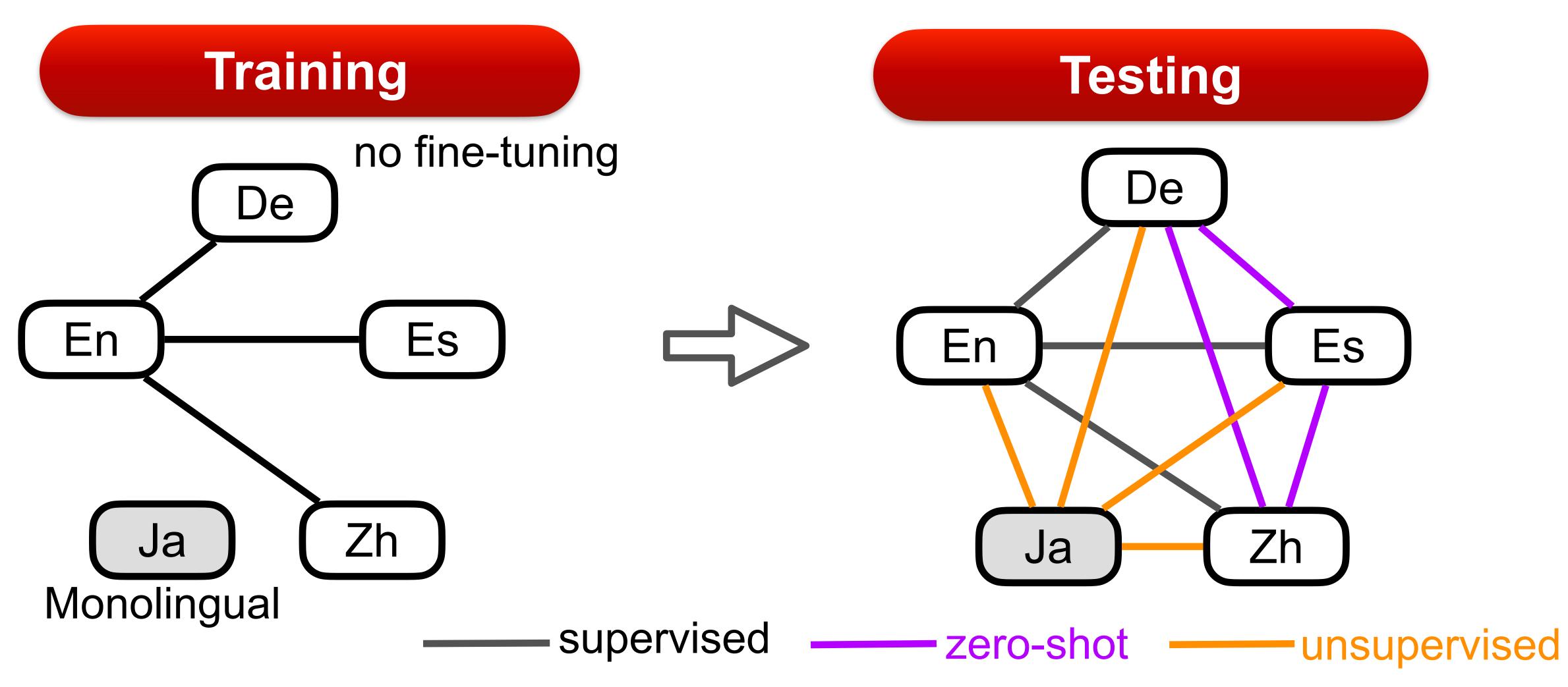
Parallel data

Language index

Training Multilingual MT Jointly



Many-to-Many Multilingual NMT



Why Multilingual NMT?

- Develop one model to translate between all language pairs.
- Model-side: Languages with rich resource could benefit those with low resource
 - Similar languages share tokens
- scheduling.
 - occupy the servers.

 Serving-side: only one model deployment versus of many deployments. Simpler workload and job management and

Many languages would have much few requests but still need to

MNMT Categorization

- Many-to-one:
 - Many source language to a target language Usually the target is English
- One-to-Many: One source language to many target languages Usually the source is English
- Many-to-many:
 - Many source language to many target languages
 - Should include non-English pairs (often low-resource or zero-resource) setting), very challenging!
- Which is simpler?

MNMT Fine-tuning Testing

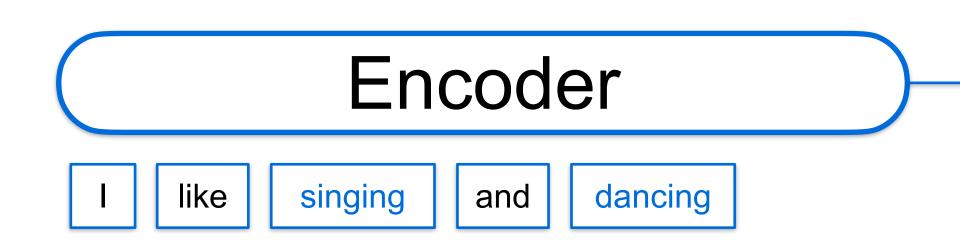
- Exotic (Unseen) pair
 - the source-target pair never appeared in the training
 - Also known as zero-shot MNMT
- Exotic (Unseen) source
 - Testing source language never occur in the training
- Exotic (Unseen) target
 - Testing target language never occur in the training
- Exotic (Unseen) full
 - Neither the source language nor the target language for testing occur in the training
 - Is it even possible? Yes, for the pre-train fine-tuning paradigm.

• Both the testing source language and target language appeared in the training, but

MNMT with Language Tags

A single model for Multilingual NMT

- But hard to learn a joint embedding.
- Challenge:
 - large vocabulary (twice many)
 - o how does the model know it is to translate into German or French?

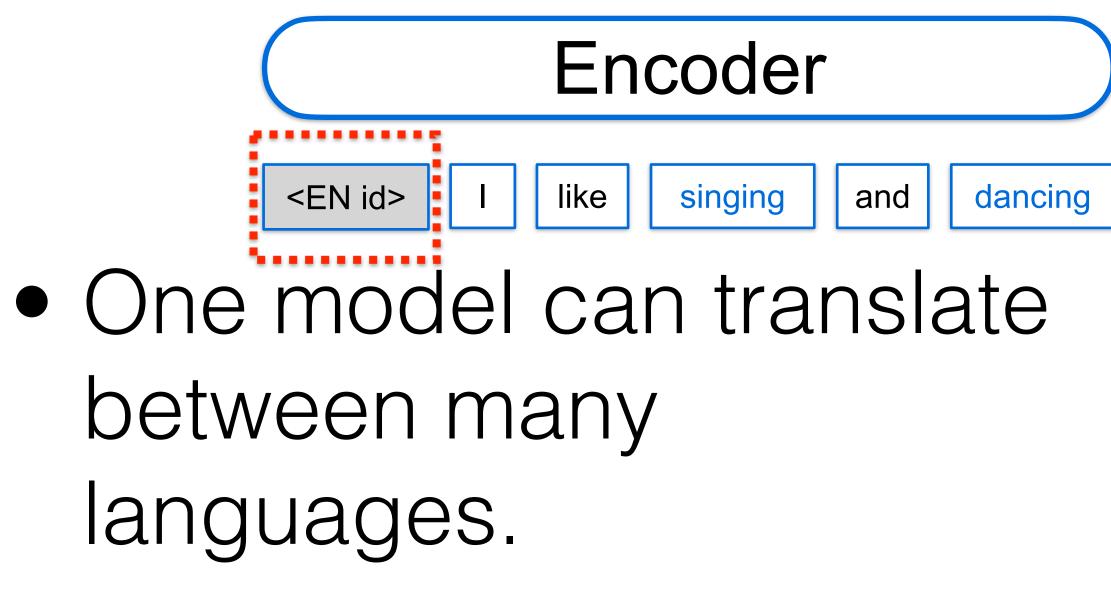


Language-specific encoding (@en@car, @de@automobile)

	J'adore	chanter	et	danser	
-(Dec	cod	er	
	BOS	J'adore	char	nter et	danser

Ha et al. Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder. 2016

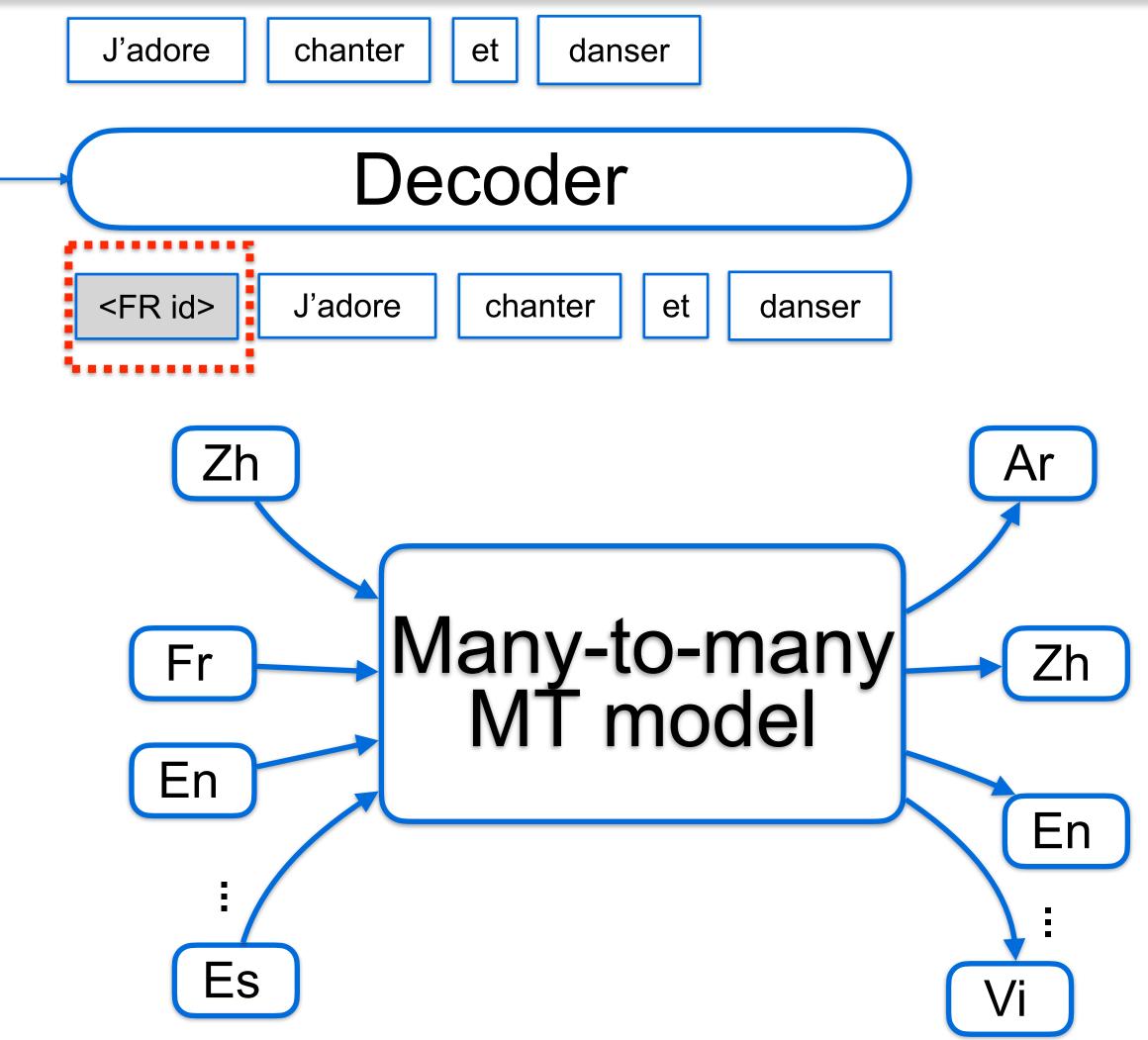
Multilingual Machine Translation - Language Tag



 Language Tag is used to indicate the source and target language.

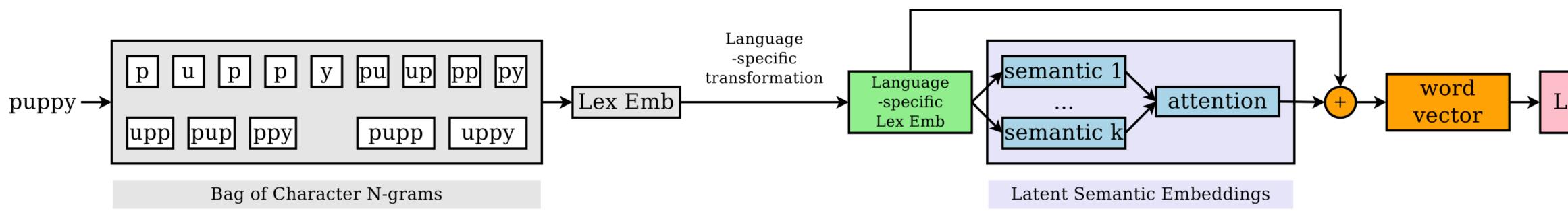
Vocabulary is built jointly

Johnson et al. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

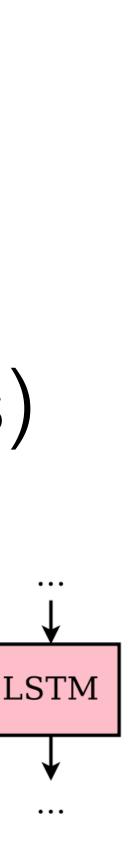


Vocabulary

- Single joint vocabulary [Johnson 2017] combine all corpus together, and apply BPE
- Soft-decoupled encoding [Wang et al 2019]



• Even better: learned vocabulary [Xu 2021], (later in class)



Google's MNMT

- Training 12 language pairs together
- LSTM-s2s:
 - 8 layer LSTM encoder, 1st layer bidirectional
 - 8 layer LSTM decoder with attention

Johnson et al. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

Table 4: Large-scale experiments: BLEU scores for single language pair and multilingual models.

		0			
Model	Single	Multi	Multi	Multi	Multi
#nodes	1024	1024	1280	1536	1792
#params	3B	255M	367M	499M	650M
En→Ja	23.66	21.10	21.17	21.72	21.70
En→Ko	19.75	18.41	18.36	18.30	18.28
Ja→En	23.41	21.62	22.03	22.51	23.18
Ko→En	25.42	22.87	23.46	24.00	24.67
En→Es	34.50	34.25	34.40	34.77	34.70
$En \rightarrow Pt$	38.40	37.35	37.42	37.80	37.92
$Es \rightarrow En$	38.00	36.04	36.50	37.26	37.45
Pt→En	44.40	42.53	42.82	43.64	43.87
En→De	26.43	23.15	23.77	23.63	24.01
$En \rightarrow Fr$	35.37	34.00	34.19	34.91	34.81
De→En	31.77	31.17	31.65	32.24	32.32
Fr→En	36.47	34.40	34.56	35.35	35.52
ave diff	_	-1.72	-1.43	-0.95	-0.76
vs single	-	-5.6%	-4.7%	-3.1%	-2.5%

Google's MNMT Zero-shot

• Bilingual pivot Multilingual joint models. • What is missing in the table? (a) (b) Multilingual pivot (c) (d)zero-shot (e) Mo (†) no longer zero-shot, since additional Pt-Es pairs are used.

Johnson et al. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

Table 5: Portuguese→Spanish BLEU scores using various

Model	Zero-shot	BLEU
PBMT bridged	no	28.99
NMT bridged	no	30.91
NMT Pt \rightarrow Es	no	31.50
Model 1 (Pt \rightarrow En, En \rightarrow Es)	yes	21.62
Model 2 (En \leftrightarrow {Es, Pt})	yes	24.75
odel 2 + incremental training	no	31.77

Google's MNMT Zero-shot

MNMT is worse than pivot on zero-shot directions

zero-shot

Table 6: Spanish→Japanese BLEU scores for explicit and implicit bridging using the 12-language pair large-scale model from Table 4.

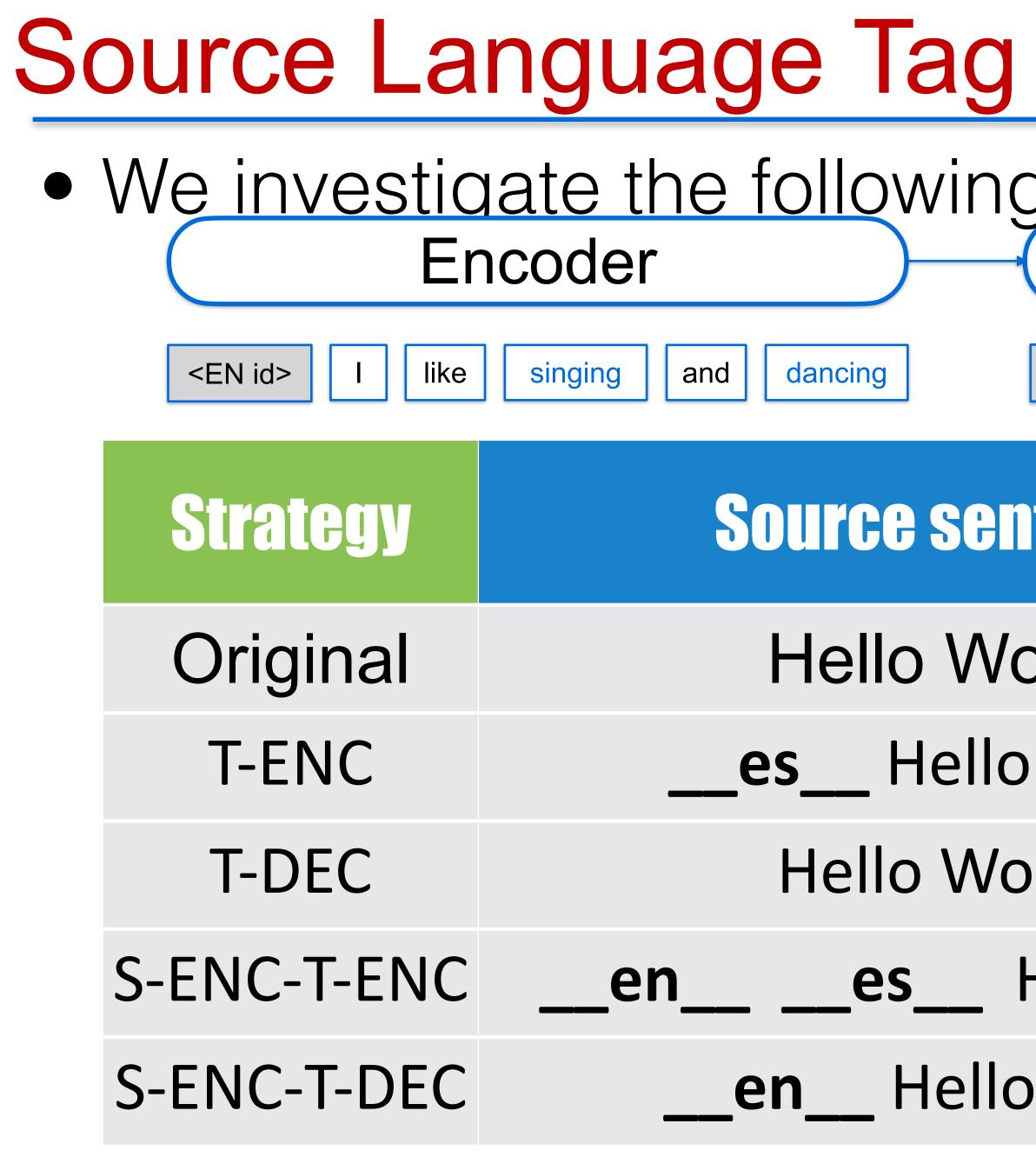
Mod

NMT Es \rightarrow Ja exp

NMT Es \rightarrow Ja imp

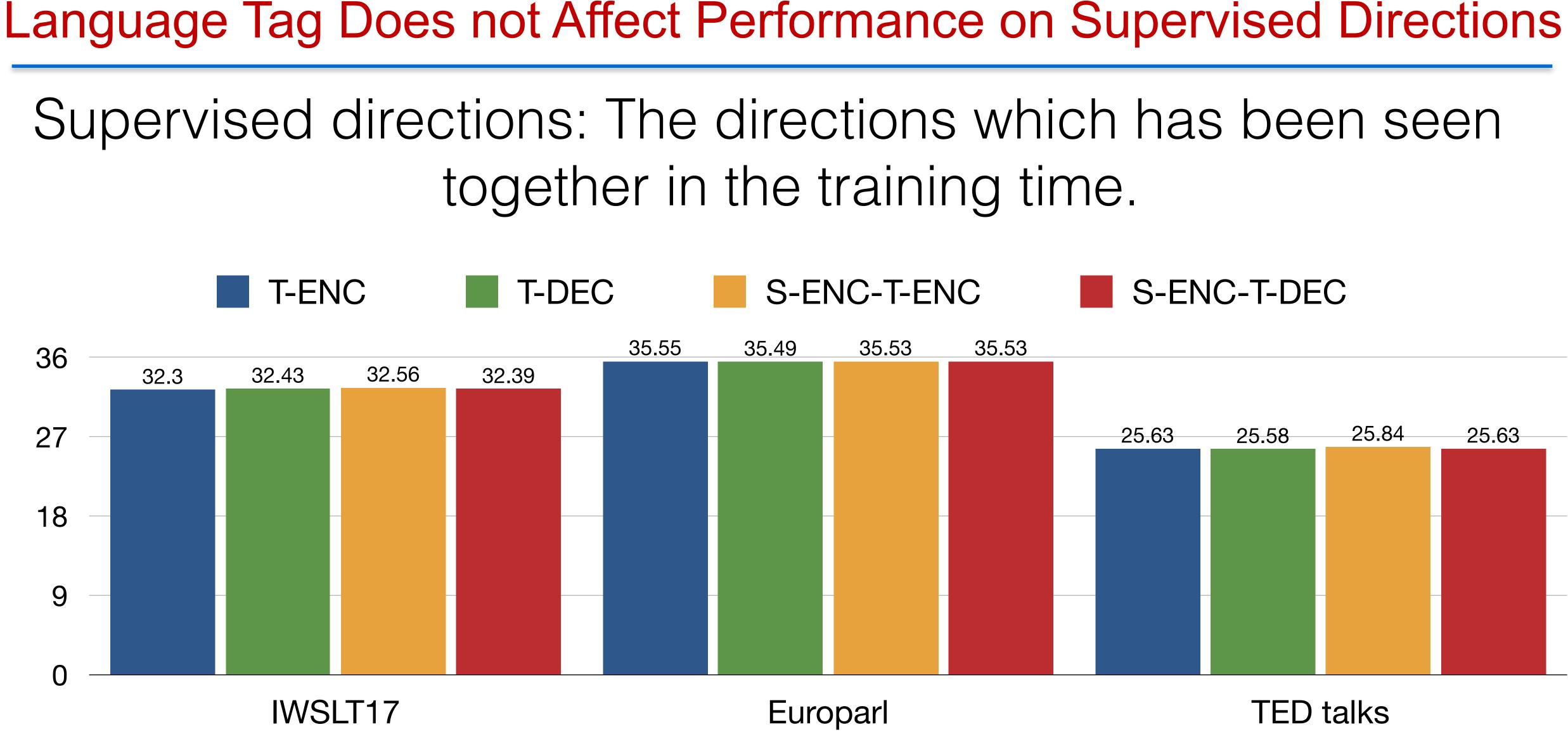
lel	BLEU	
olicitly bridged	18.00	
plicitly bridged	9.14	





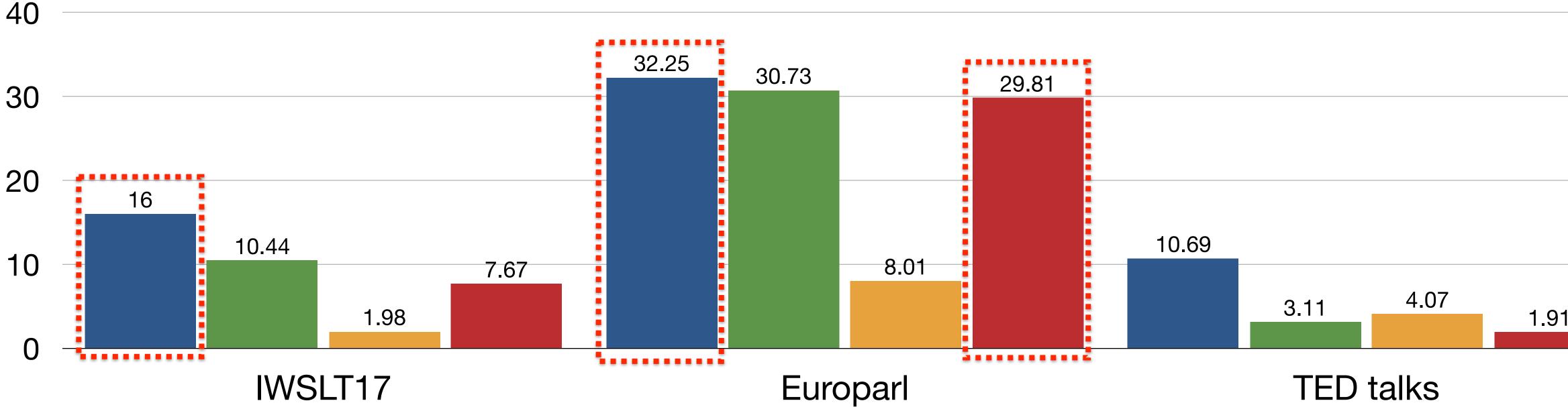
Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021.

or target	Language Tag									
g four language tag str Decoder <fr id=""> J'adore chanter et danser</fr>										
Itence	Target sentence									
orld!	¡Hola Mundo									
o World!	iHola Mundo									
orld!	es iHola Mundo									
Hello World!	iHola Mundo									
o World!	es iHola Mundo									



Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021.

Zero-shot directions: The directions between known languages that the model has never seen together at training time.



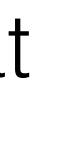
Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021.

Target Language Tag on Encoder Strategy Gets Best Zero-Shot Performance

Mixed Source Language can still be Translated

- {Ja, Ko} -> En
- Tokyo University.
- student at Tokyo University.
- am a student of Tokyo University.

● Japanese: 私は東京大学の学生です。 → I am a student at • Korean: 나ㄴㄴㅗㄷ쿄 ㅐㄷ학ㅣㅇ 학ㅐㅇㅅㅂ이니다. → ㅣam a • Japanese/Korean: 私は東京大学トラコロドへ입トレ 다. → I



Mixed Decoder for Target Language

- En -> {Ja, Ko} • Either generate
- Japanese or Korean

- 私は地球の中心の近くのどこかになっている 0.56に違いない。
- 私は지구の中心의가까이에어딘가에도착하고있 0.58어야한다。
- 나는지구의중심근처어딘가에도착해야합니다。 0.70
- 나는어딘가지구의중심근처에도착해야합니다。 0.90 나는어딘가지구의중심근처에도착해야합니다。 1.00

Table 8: Gradually mixing target languages Ja/Ko.

- I must be getting somewhere near the centre of the w_{ko} earth.
- 私は地球の中心の近くにどこかに行っている 0.00に違いない。
- 私は地球の中心近くのどこかに着いているに 0.40違いない。

나는지구의센터의가까이에어딘가에도착하고있 0.60어야한다。

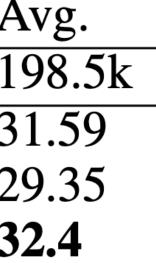
Multilingual NMT with mTransformer

- Data: TED-talk, 59 languages, 116 directions

	Az-En	Be-En	Gl-En	Sk-En	Avg.						
# of examples	5.9k	4.5k	10k	61k	20.3k						
Neubig & Hu 18											
baselines	2.7	2.8	16.2	24	11.42						
many-to-one	11.7	18.3	29.1	28.3	21.85		Ar-En	De-En	He-En	It-En	A
Wang et al. 18	11.82	18.71	30.3	28.77	22.4	# of examples	213k	167k	211k	203k	19
Ours						baselines	27.84	30.5	34.37	33.64	3
many-to-one	11.24	18.28	28.63	26.78	21.23	many-to-one	25.93	28.87	30.19	32.42	29
many-to-many	12.78	21.73	30.65	29.54	23.67	many-to-many	28.32	32.97	33.18	35.14	32

Aharoni et al. Massively Multilingual Neural Machine Translation. 2019

• Model: Transformer-base (6e6d, 512) = > mTransformer



Limitation of mTransformer: does not work for Many-to-Many En-X

	En-Az	En-Be	En-Gl	En-Sk	Avg.
# of examples	5.9k	4.5k	10k	61k	20.3k
baselines	2.16	2.47	3.26	5.8	3.42
one-to-many	5.06	10.72	26.59	24.52	16.72
many-to-many	3.9	7.24	23.78	21.83	14.19
	En-Ar	En-De	En-He	En-It	Avg.

	En-Ar	En-De	En-He	En-It	Avg.
# of examples	213k	167k	211k	203k	198.5k
baselines	12.95	23.31	23.66	30.33	22.56
				35.89	
many-to-many	14.25	27.95	24.16	33.26	24.9

Table 3: En \rightarrow X test BLEU on the TED Talks corpus

Aharoni et al. Massively Multilingual Neural Machine Translation. 2019

Even More Languages

• mTransformer

- 6e6d, 1024 -> 8192
- 473m parameters
- 103 Languages (inc. En)
 - 64k vocah

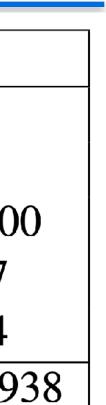
	Ar	Az	Be	De	He	It	Nl	Ro	Sk	Tr	Avg.
	23.34										
many-to-one											
many-to-many	22.17	21.45	23.03	37.06	30.71	35.0	36.18	36.57	29.87	27.64	29.97

	Ar	Az	Be	De	He	It	N1	Ro	Sk	Tr	Avg.
											19.13
one-to-many	12.08	9.92	15.6	31.39	20.01	33	31.06	28.43	17.67	17.68	21.68
many-to-many	10.57	9.84	14.3	28.48	17.91	30.39	29.67	26.23	18.15	15.58	20.11

Table 6: En \rightarrow X test BLEU on the 103-language corpus Aharoni et al. Massively Multilingual Neural Machine Translation. 2019

# of language pairs	102
examples per pair	
min	63,879
max	1,000,00
average	940,087
std. deviation	188,194
total # of examples	95,888,9
std. deviation	940,087 188,194

Table 5: $X \rightarrow En$ test BLEU on the 103-language corpus



More language trained together, but

	Ar-En	En-Ar	Fr-En	En-Fr	Ru-En	En-Ru	Uk-En	En-Uk	Avg.
5-to-5	23.87	12.42	38.99	37.3	29.07	24.86	26.17	16.48	26.14
25-to-25	23.43	11.77	38.87	36.79	29.36	23.24	25.81	17.17	25.8
50-to-50	23.7	11.65	37.81	35.83	29.22	21.95	26.02	15.32	25.18
75-to-75	22.23	10.69	37.97	34.35	28.55	20.7	25.89	14.59	24.37
103-to-103	21.16	10.25	35.91	34.42	27.25	19.9	24.53	13.89	23.41

mTransformer Zero-shot Performance

	Ar-Fr	Fr-Ar	Ru-Uk	Uk-Ru	Avg.
5-to-5	1.66	4.49	3.7	3.02	3.21
25-to-25	1.83	5.52	16.67	4.31	7.08
50-to-50	4.34	4.72	15.14	20.23	11.1
75-to-75	1.85	4.26	11.2	15.88	8.3
103-to-103	2.87	3.05	12.3	18.49	9.17

Table 8: Zero-Shot performance while varying the number of languages involved

Bigger Data

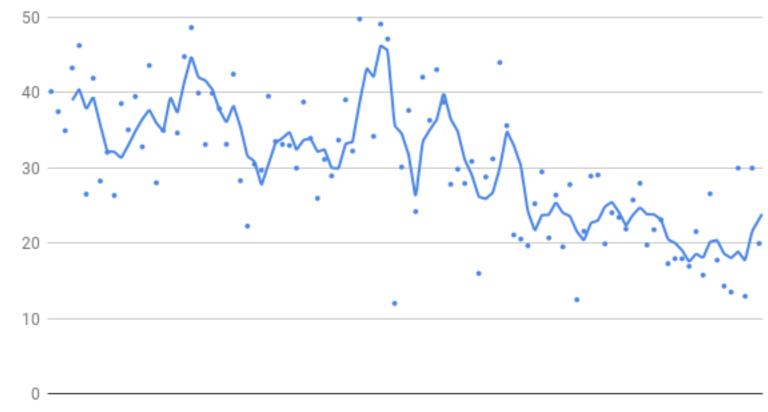
- Data: 25 billion sentence pairs in 103 languages
- Model: mTransformer with 375 million params (larger than Transformer-

$En \rightarrow Any$	High 25	Med. 52	Low 25
Bilingual	29.34	17.50	11.72
$All \rightarrow All$	28.03	16.91	12.75
$En \rightarrow Any$	28.75	17.32	12.98
<i>Any→En</i>	High 25	Med. 52	Low 25
Bilingual	37.61	31.41	21.63
$All \rightarrow All$	33.85	30.25	26.96
<i>Any→En</i>	36.61	33.66	30.56

Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. 2019

Bilingual En→Any translation performance vs dataset size

Bilingual Any→En translation performance vs dataset size

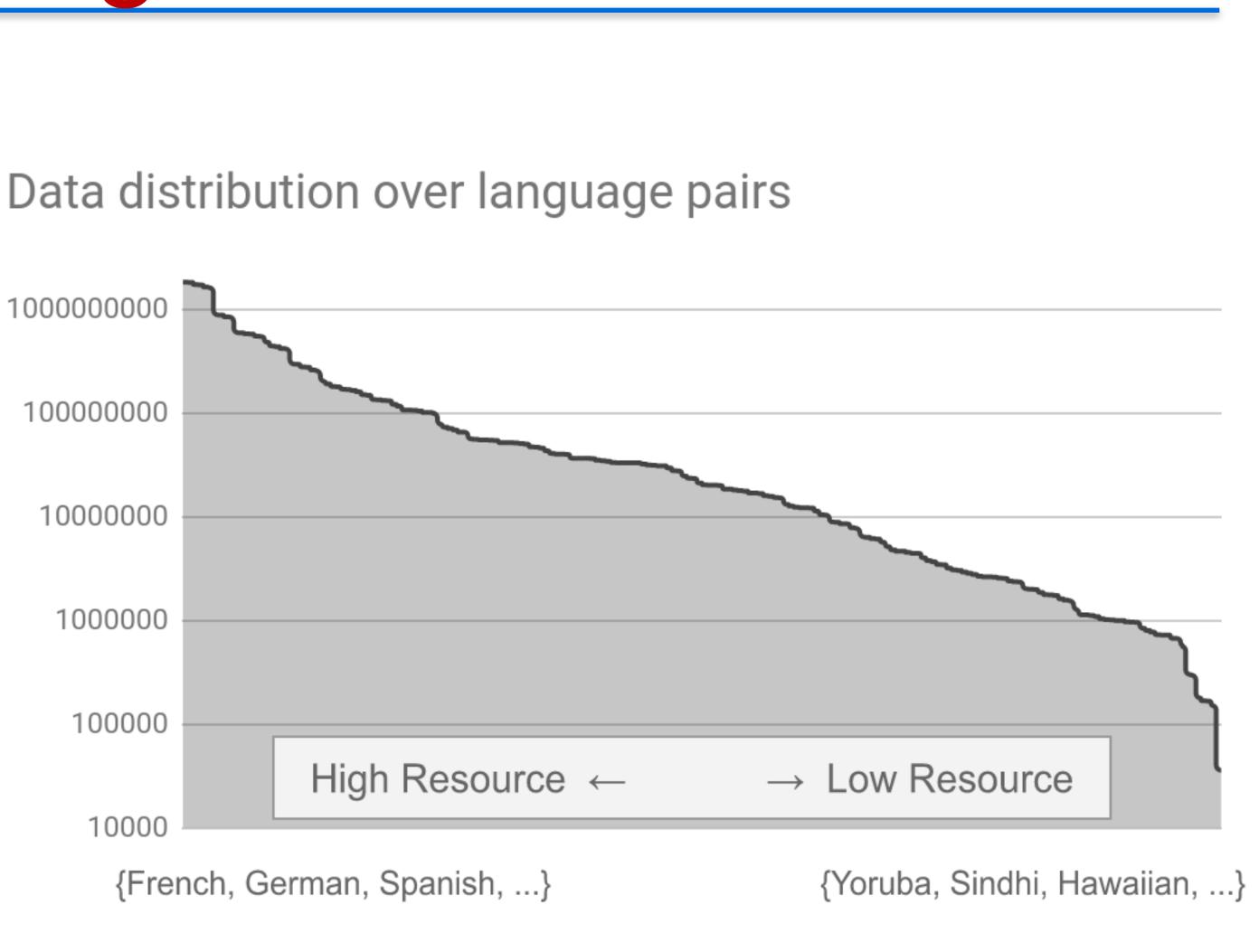


Sampling of Data

• sample data prob w.r.t $D^{\frac{1}{T}}$

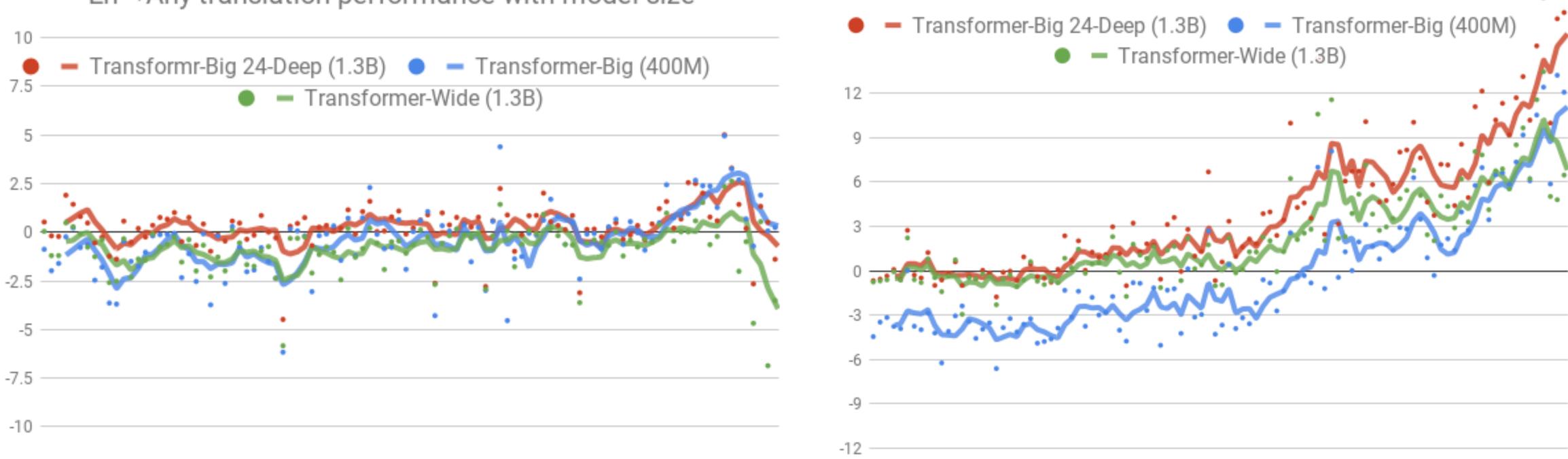
$En \rightarrow Any$	High 25	Med. 52	Low 25
$T_V = 1$	27.81	16.72	12.73
$T_V = 100$	27.83	16.86	12.78
$T_V = 5$	28.03	16.91	12.75
<i>Any→En</i>	High 25	Med. 52	Low 25
$T_V = 1$	33.82	29.78	26.27
$T_V = 100$	33.70	30.15	26.91
$T_V = 5$	33.85	30.25	26.96

Data distribution over language pairs

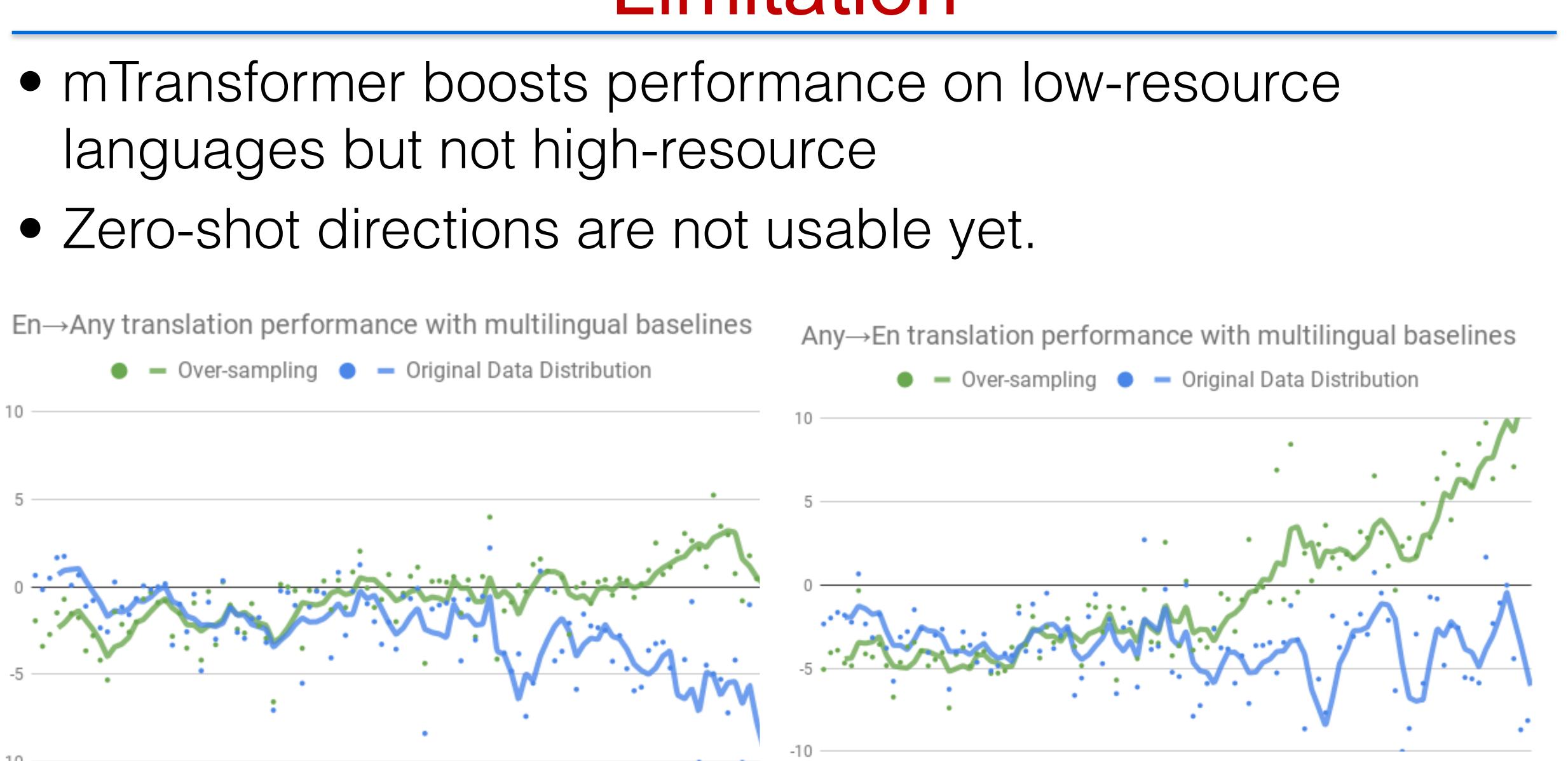


• mTransformer: 400m, 1.3B wide (12e12d), 1.3B deep (24e24d) • Deep is better than wide!

 $En \rightarrow Any translation performance with model size$



Limitation



Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. 2019

MT w/ Adapter

Parameter Interference issue for MNMT

Insufficient model capacity
the sharing model capacity has directions



Bilingual

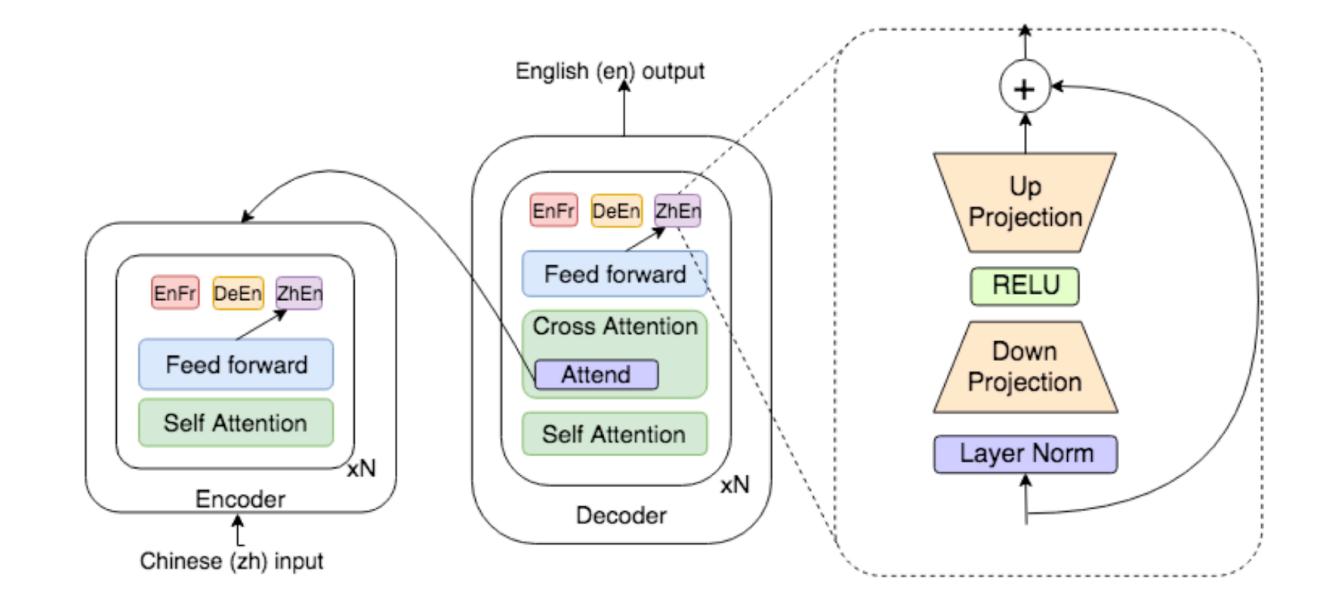
the sharing model capacity has to be split for different translation

Multilingual

Multilingual NMT with Serial Adapter

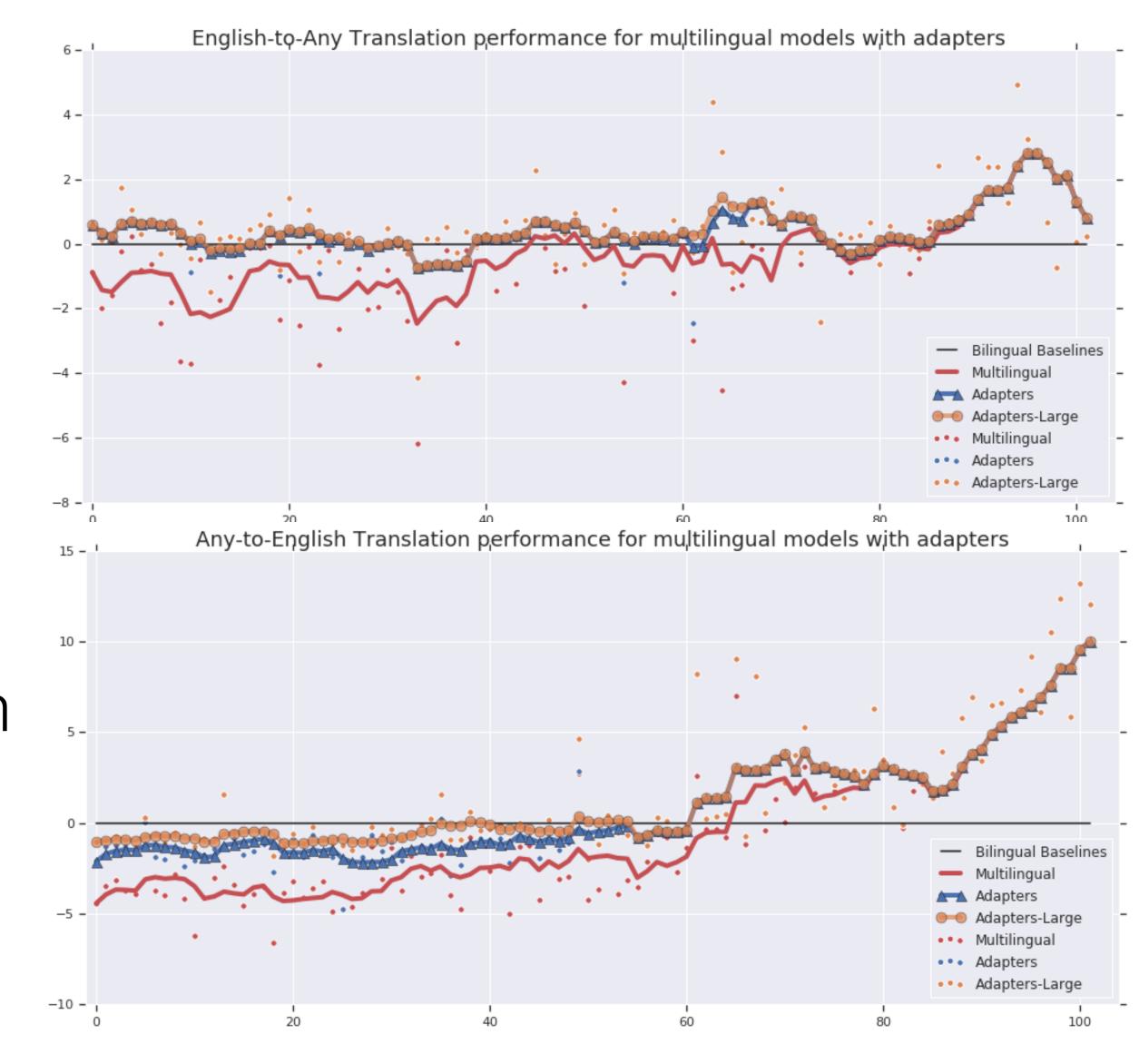
- For each layer, adding language-specific module
- $z^{\sim} = LNT(zi)$.
- h =relu(W z[~])
- x =Wh + z
- Could be used for both domain adaptation and MNMT
- Joint training the whole architecture

Bapna & Firat, Simple, Scalable Adaptation for Neural Machine Translation, 2019



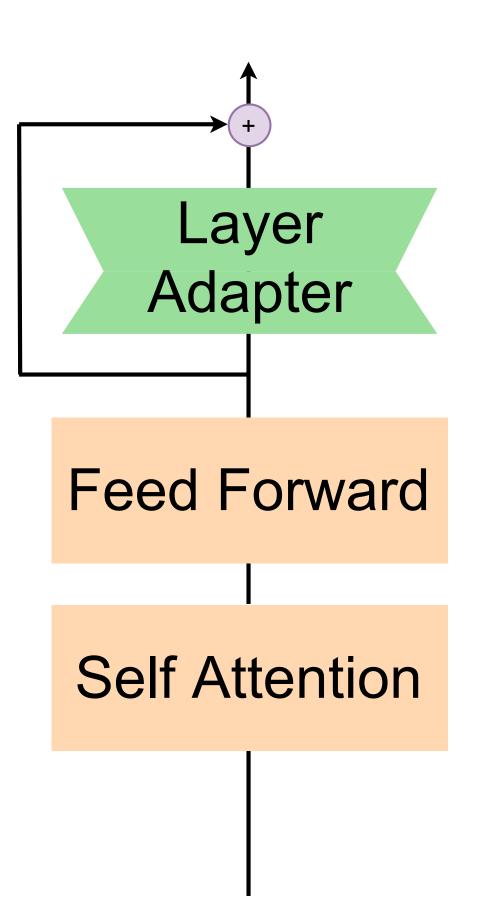
Serial Adapter improves Multilingual Translation

- on rich-resource lang.
- But serial-adapter is not plug-and-play
 - Joint training mTransformer+SA will be better than training mTransformer, fix, and train adapter.
 - Adapter has tight integration with the main architecture.

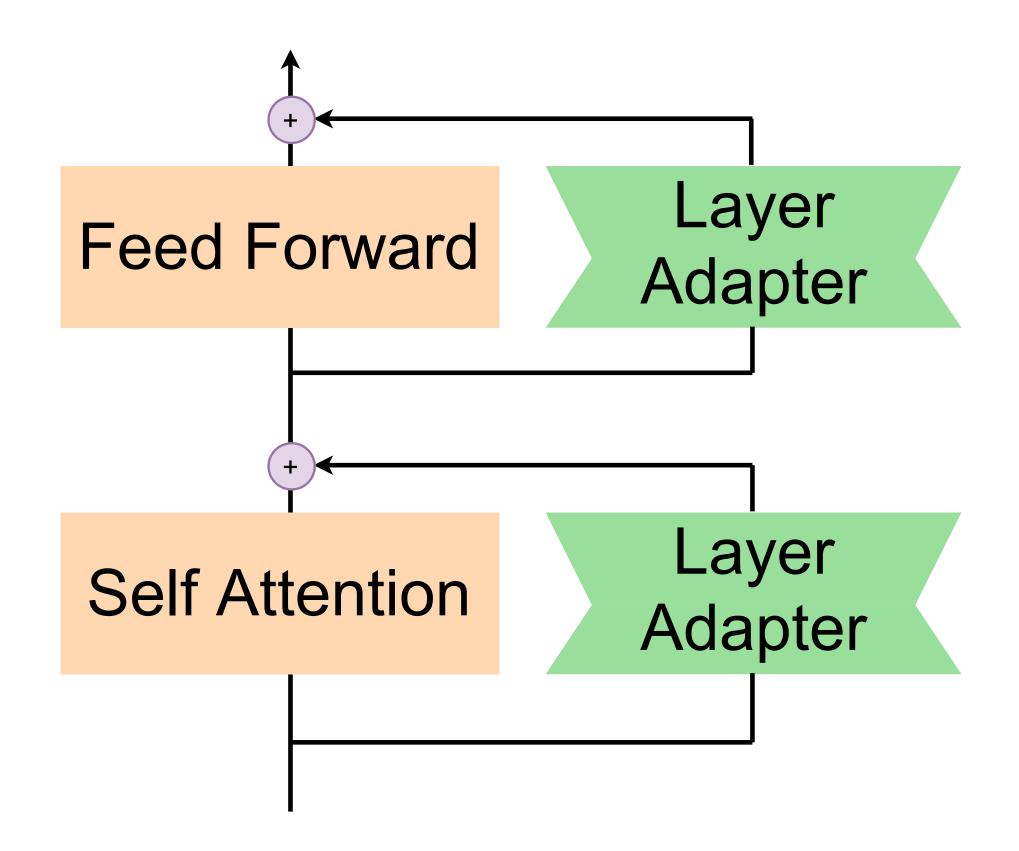


Counter Interference

• Which adapter will remove noise?

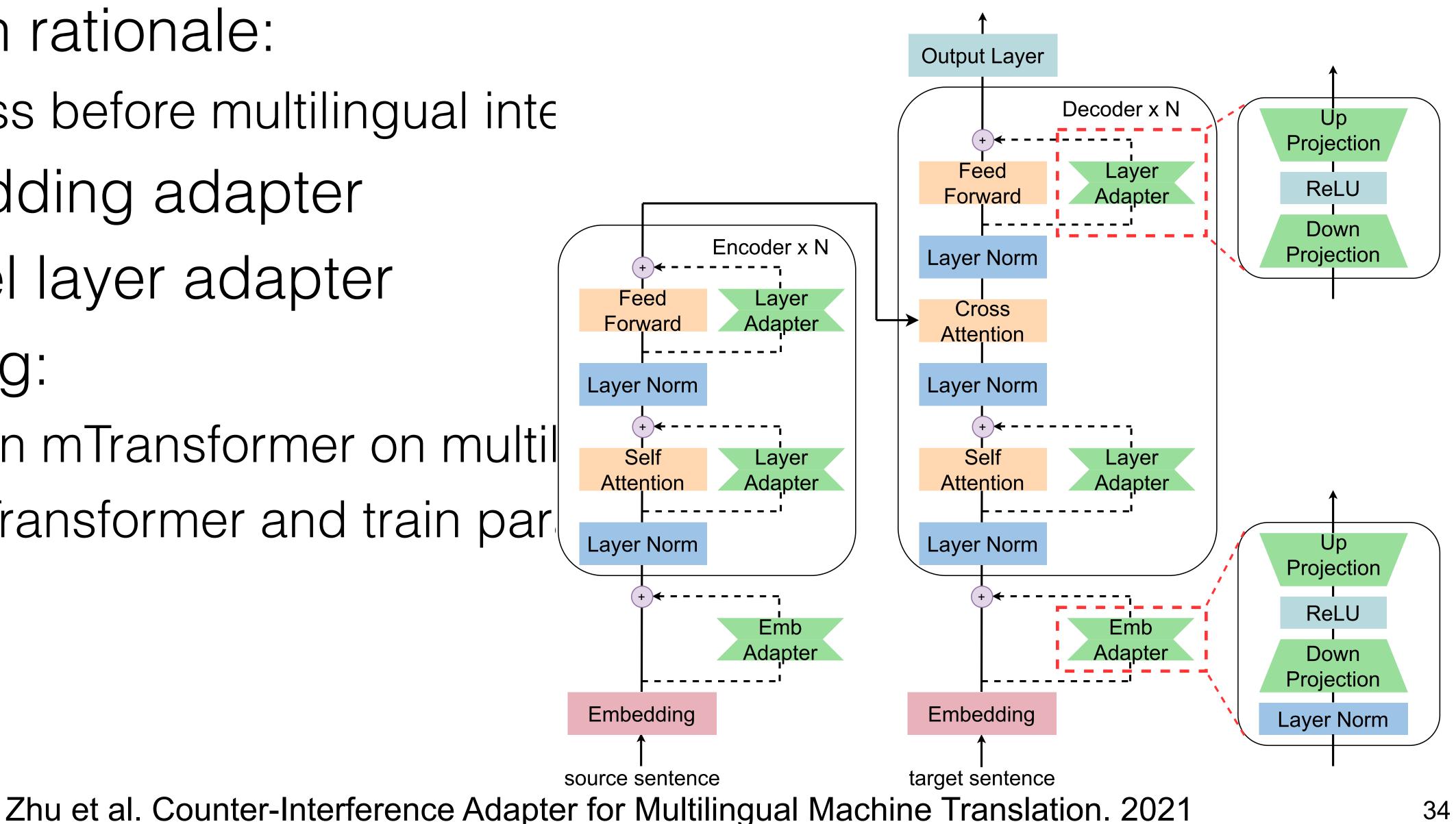


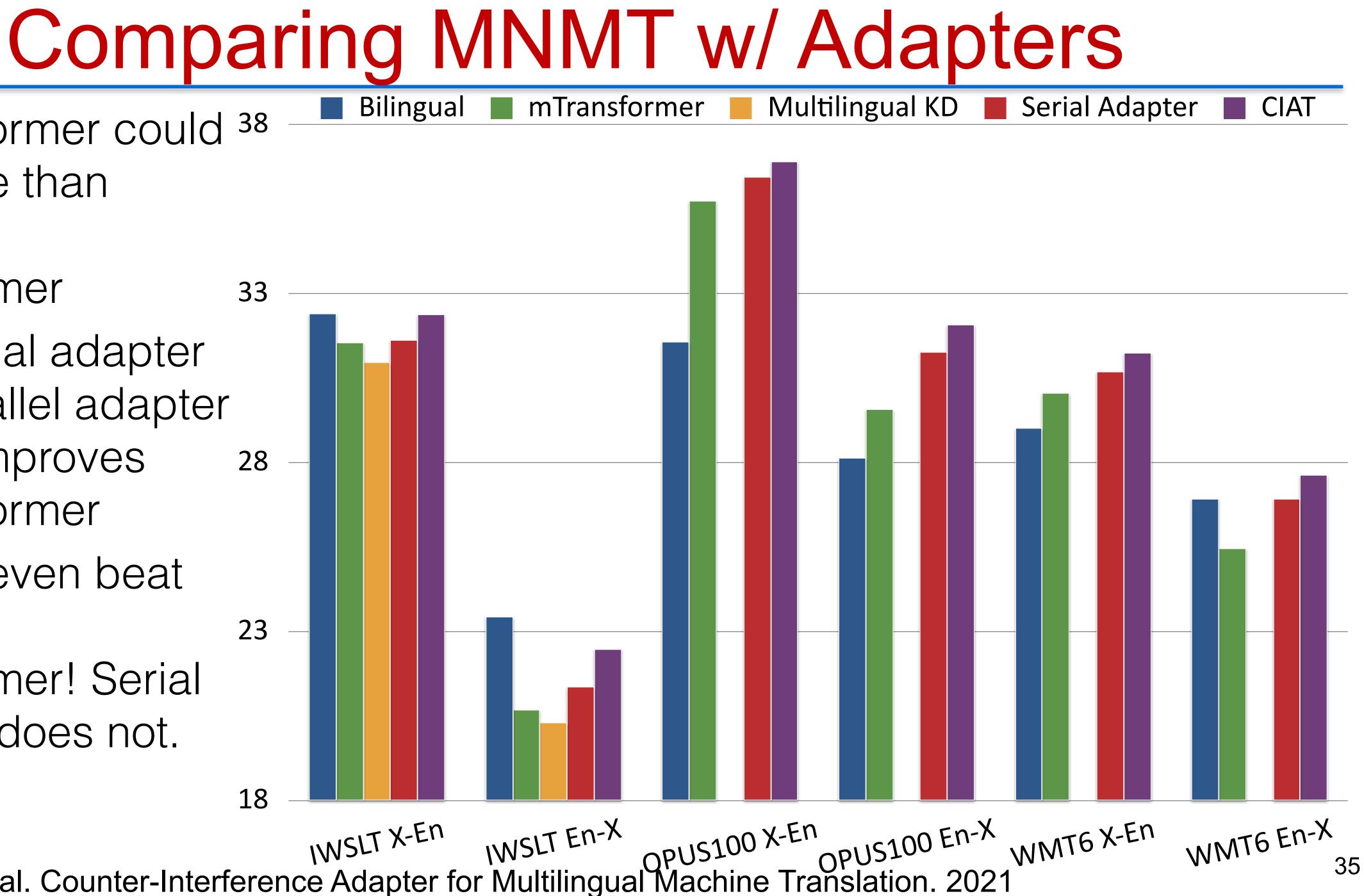
Zhu et al. Counter-Interference Adapter for Multilingual Machine Translation. 2021



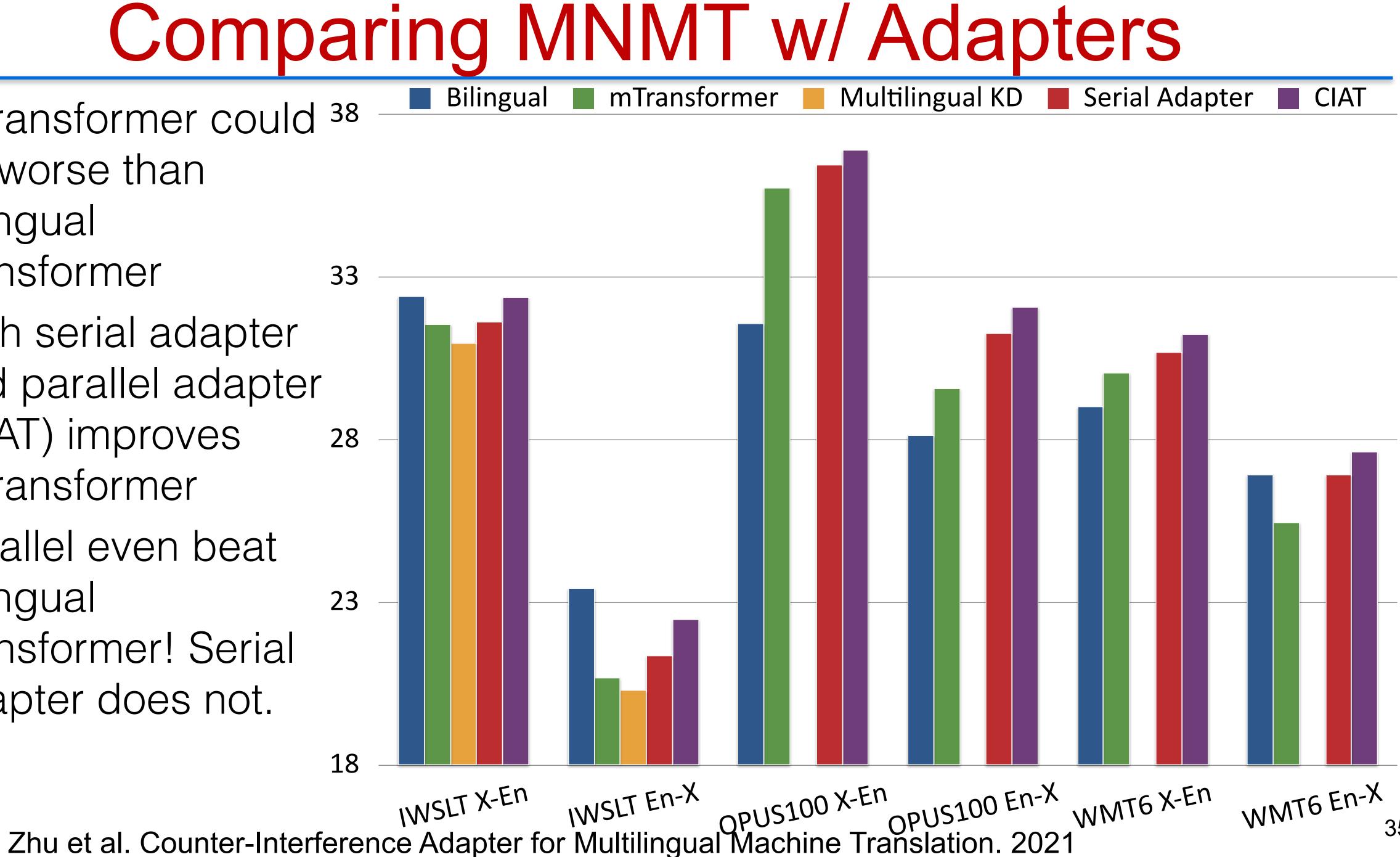
Parallel Adapter - CIAT

- Design rationale:
 - process before multilingual interview
- Embedding adapter
- Parallel layer adapter
- Training:
 - Pretrain mTransformer on multil
 - Fix mTransformer and train par pairs





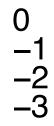
- mTransformer could ³⁸ be worse than bilingual Transformer
- Both serial adapter and parallel adapter (CIAT) improves mTransformer
- Parallel even beat bilingual Transformer! Serial adapter does not.



Which layer-adapter are more important?

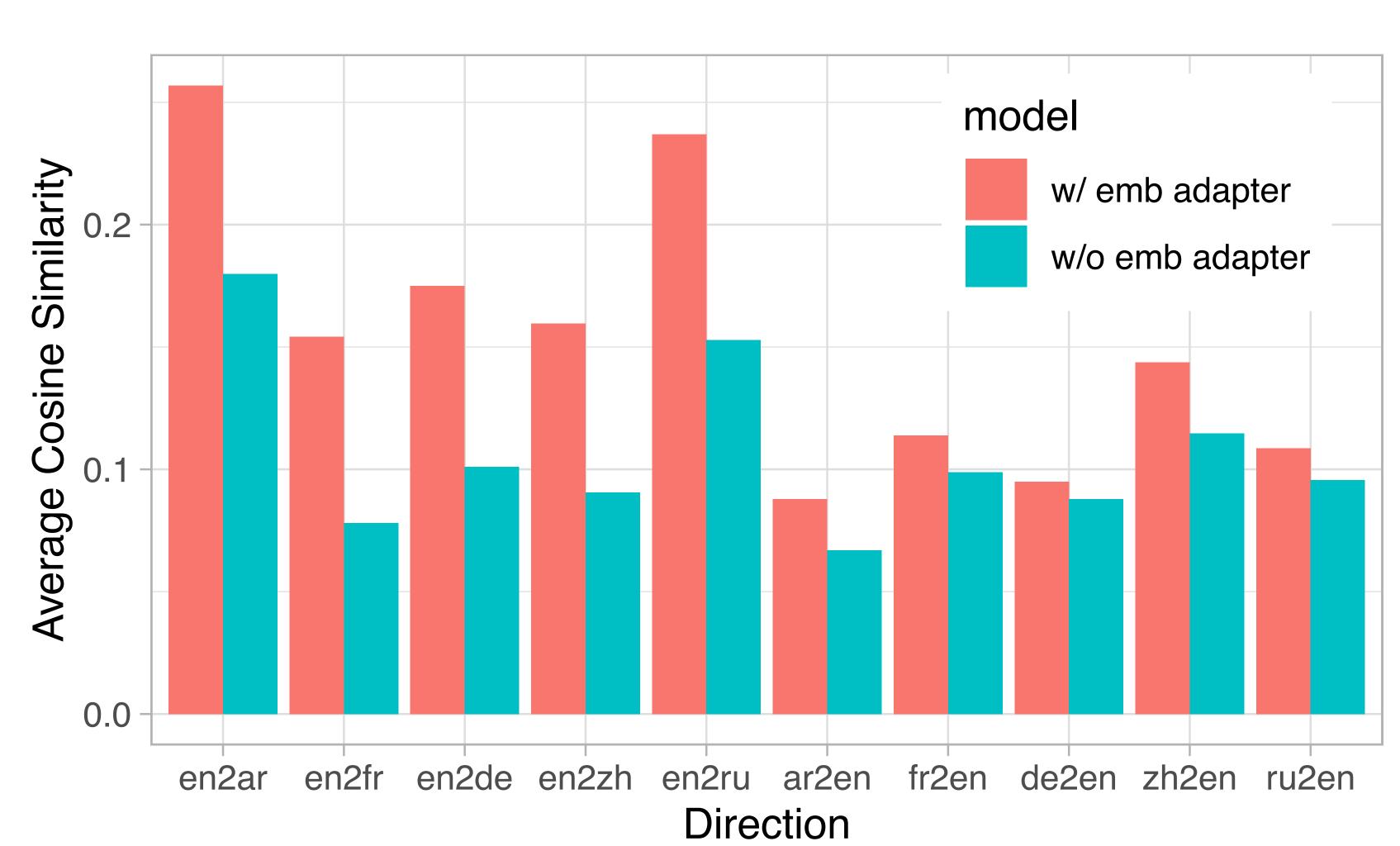
• Upper decoder layer adapter is more important





Embedding Adapter is also important!

 Embedding adapter enhance the word embedding similarity between language pairs



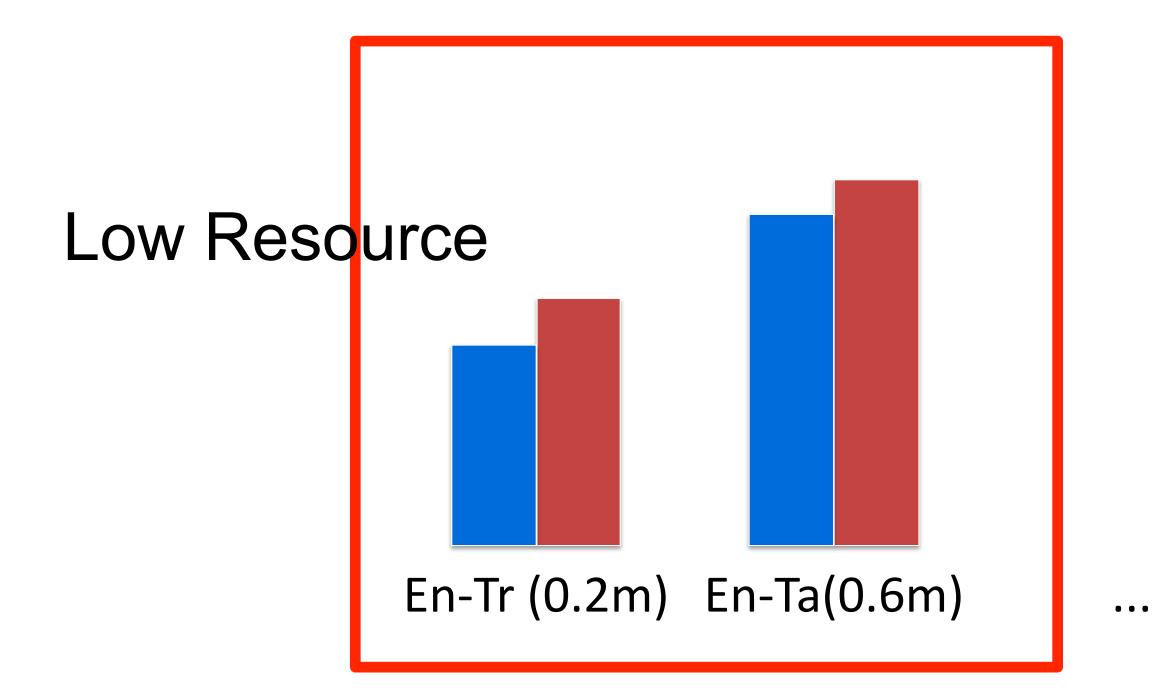
Benefit of MNMT w/ Adapter

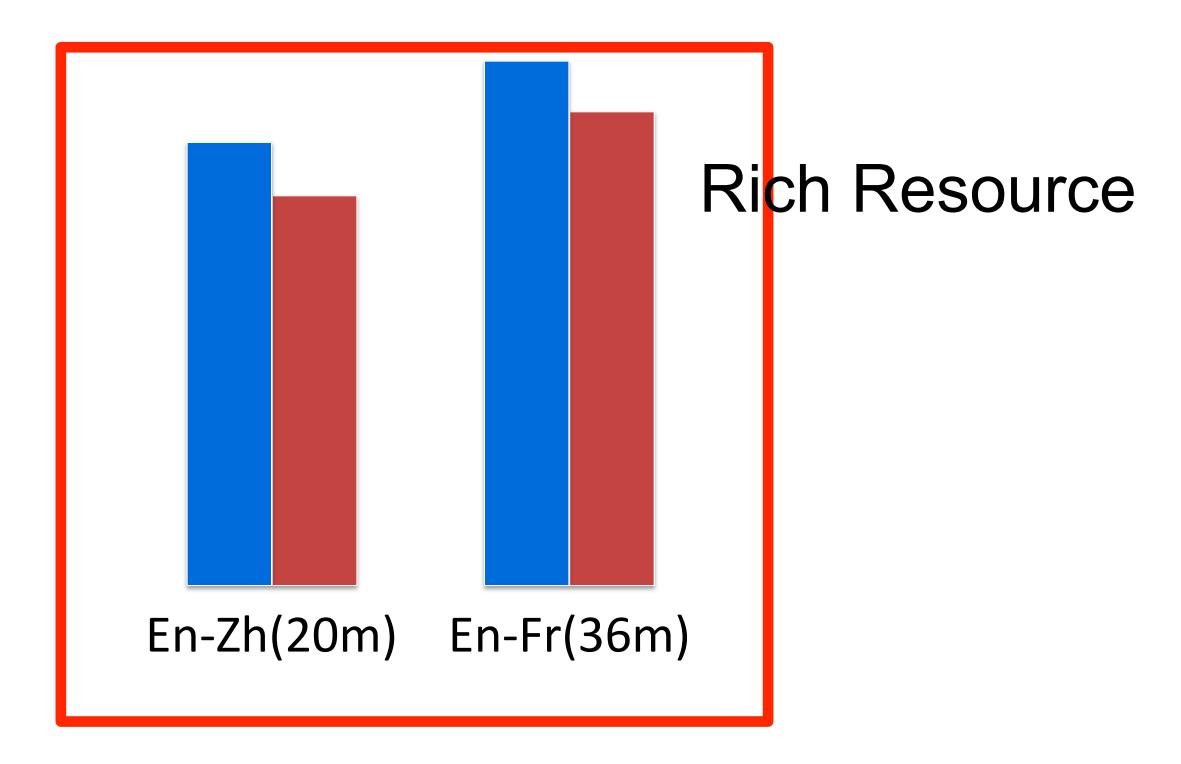
- Improve the performance on MNMT, even beat Bilingual NMT Reducing interference among large languages Boost performance on zero-shot setting
- With a fraction of overhead
 - Bilingual Transformer-big: N x 242m
 - o mTransformer: 242m
 - mTransformer+Serial Adapter: 242m + N x 12.6m mTransformer+parallel adapter (CIAT): 242m + N x 12.6~27.3m
- Plug-and-play: CIAT only needs to finetune adapter

Exploiting Model Capacity with Language-specific Subnet

Challenge of Multilingual NMT

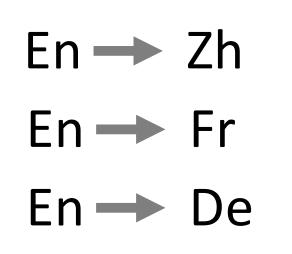
Challenge: Performance degradation for rich-resource caused by Parameter Interference

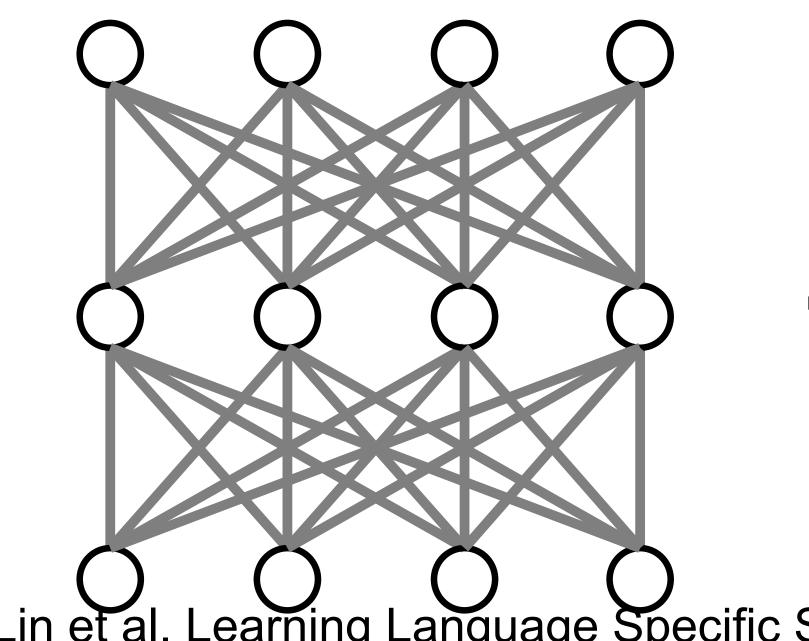




Language-Specific Sub-network (LaSS)

- Each direction has
 - shared parameters with other directions
 - preserves its language-specific parameters





Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021

En — Zh

En - Fr

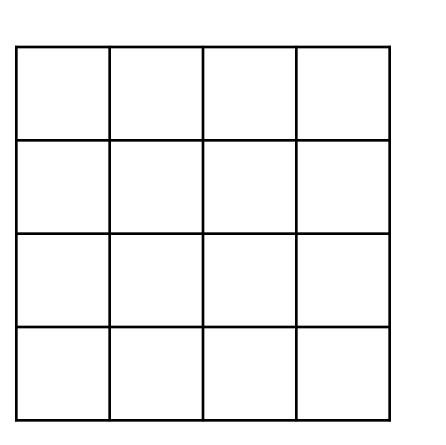
En -> De

LaSS overall framework

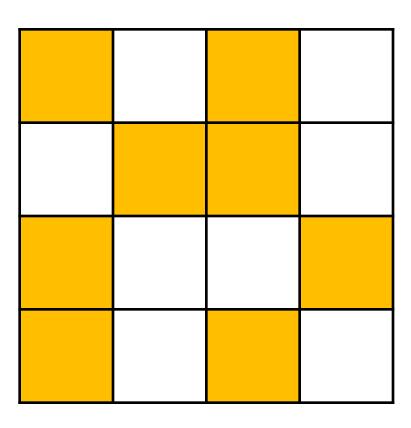
 $En \rightarrow Zh$

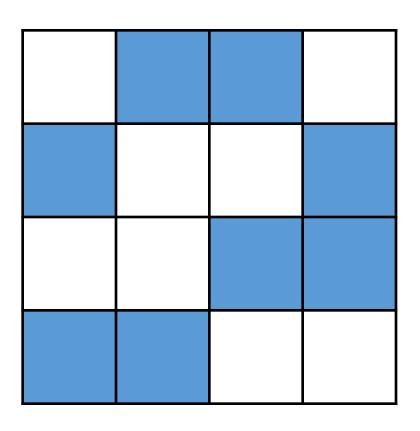
En→Fr

from base model θ_0 indicated by a binary mask $\mathbf{M}_{s_i \to t_i} \in \{0,1\}^{|\theta|}$



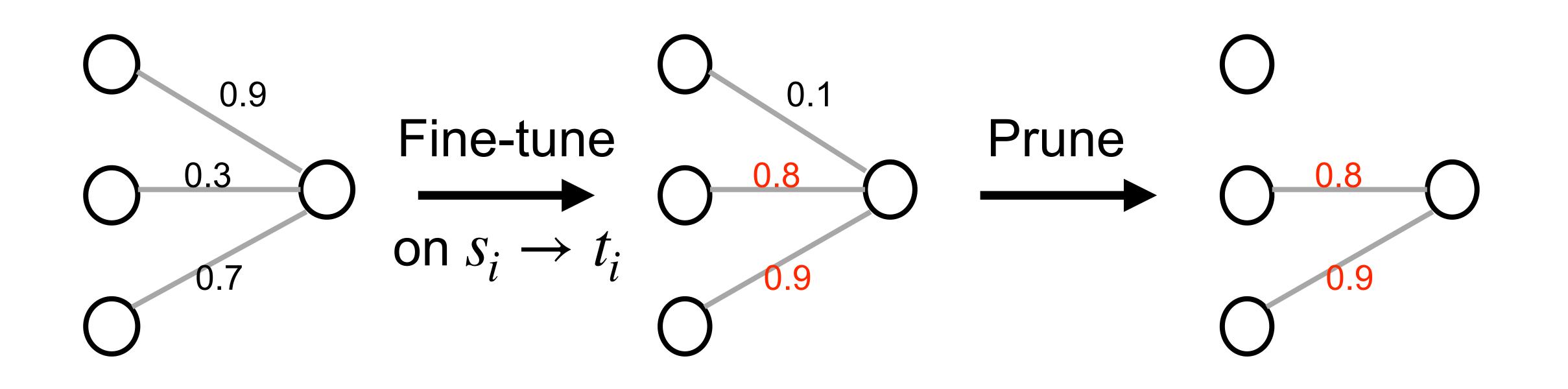
• For each language pair $s_i \rightarrow t_i$, a sub-network is selected





How to find language-specific sub-network: Intuition

- Fine-tuning and pruning
 - the unimportant weights.



Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021

• Fine-tuning on $s_i \rightarrow t_i$ amplifies important weights and diminishes

43

How to find language-specific masks

- $\left\{ \mathscr{D}_{s_i \to t_i} \right\}_{i=1}^{N}$
- For each language pair $s_i \to t_i$, fine-tuning θ_0 on $\mathscr{D}_{s_i \to t_i}$, respectively
- a percent to obtain $\mathbf{M}_{s_i \to t_i}$

Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021

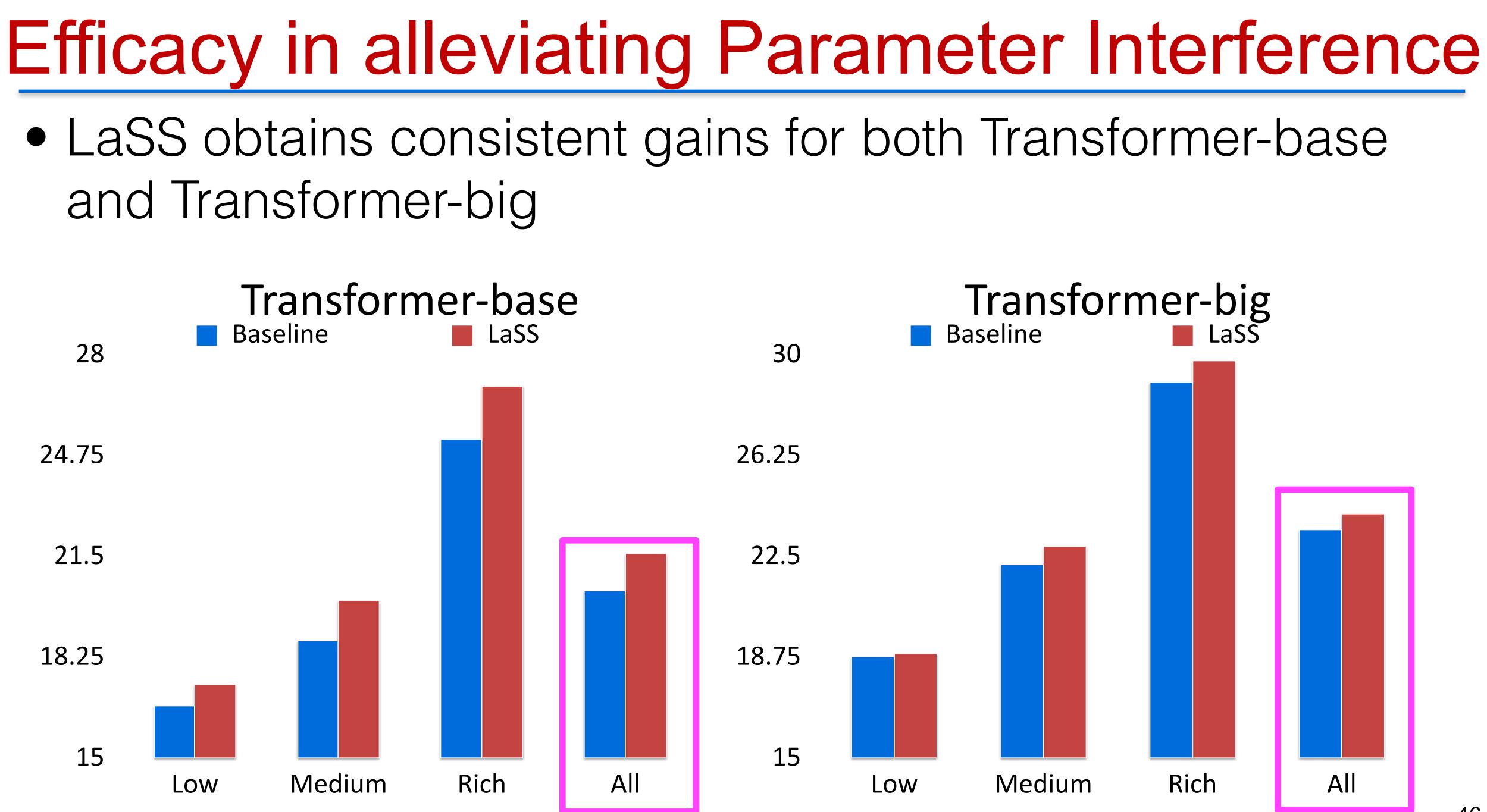
• Start with a vanilla multilingual model $heta_0$ jointly trained on

Rank the weights in fine-tuned model and prune the lowest

Structure-aware Joint Training

- Further continue to train θ_0 through structure-aware updating after obtaining $\mathbf{M}_{s_i \to t_i}$
 - $_{\odot}$ Create batch $\mathscr{B}_{s_i \rightarrow t_i}$ full of samples from $s_i \rightarrow t_i$
 - Forward and backward with sub-network $\theta_{s_i \to t_i} = \left\{ \theta_0^j \mid \mathbf{M}_{s_i \to t_i}^j = 1 \right\}$

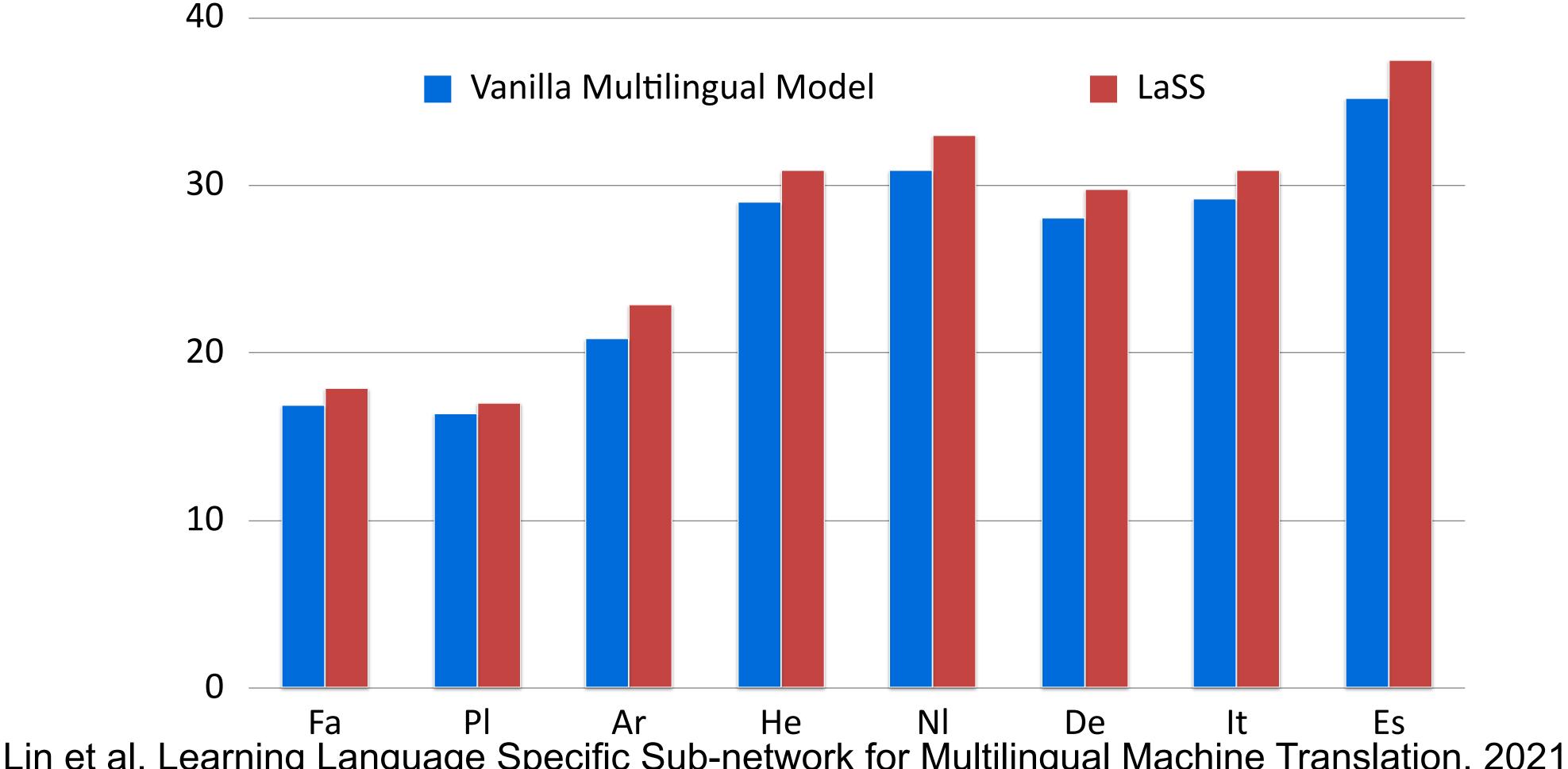
Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021

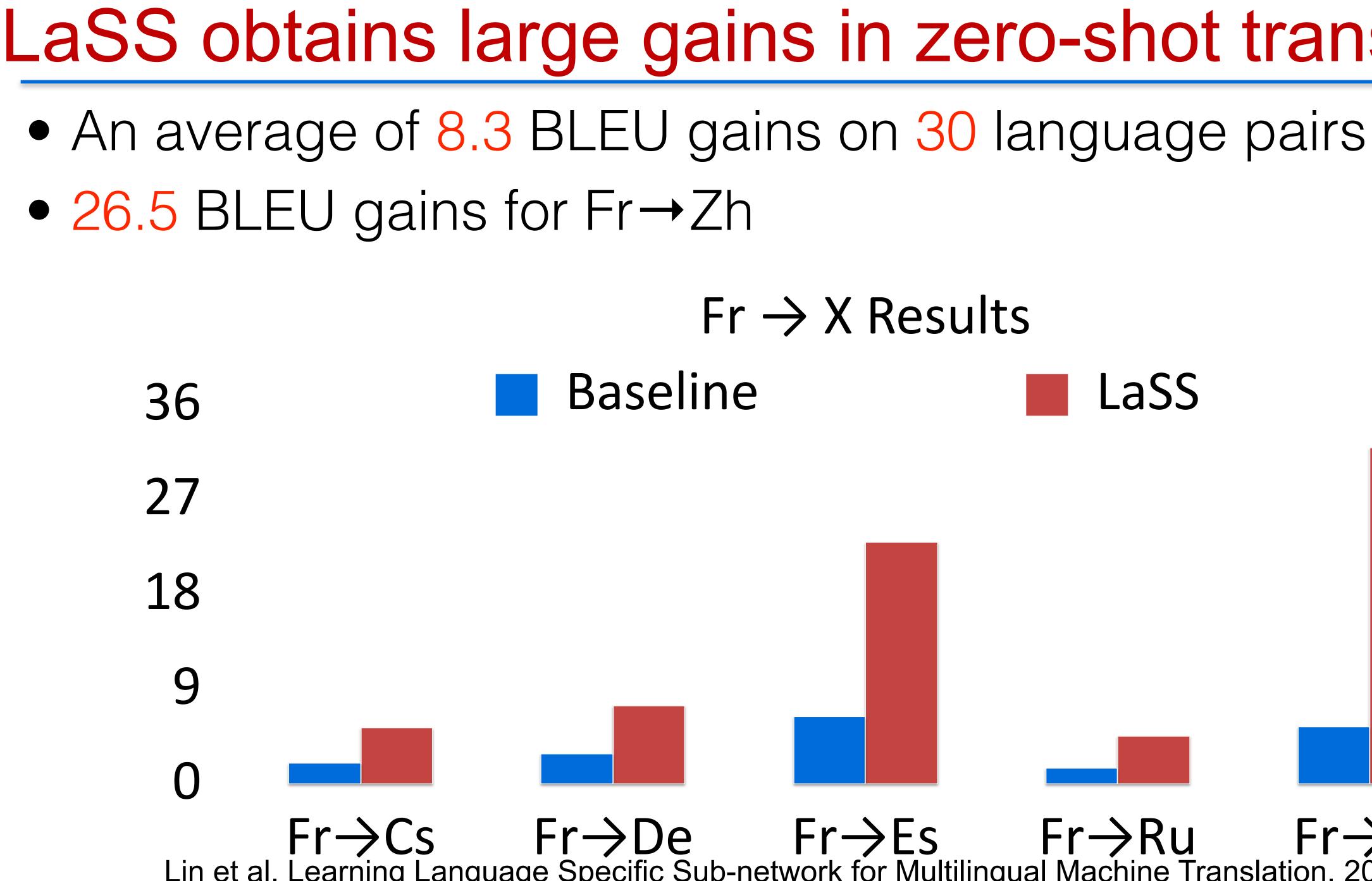


Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation, 2021

Efficacy in alleviating Parameter Interference

LaSS obtains consistent performance gains. IWSLT





LaSS obtains large gains in zero-shot translation

- $Fr \rightarrow X$ Results LaSS

$Fr \rightarrow Es$ Fr→Ru $Fr \rightarrow Zh$ Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021

Benefits of Language-specific Subnet

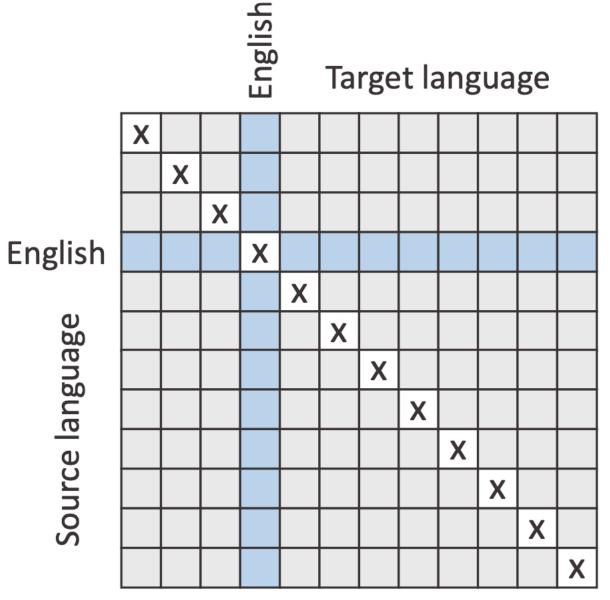
- The same number of parameters, no extra parameter
- translation directions.

Improved performance on both rich-resource and zero-shot

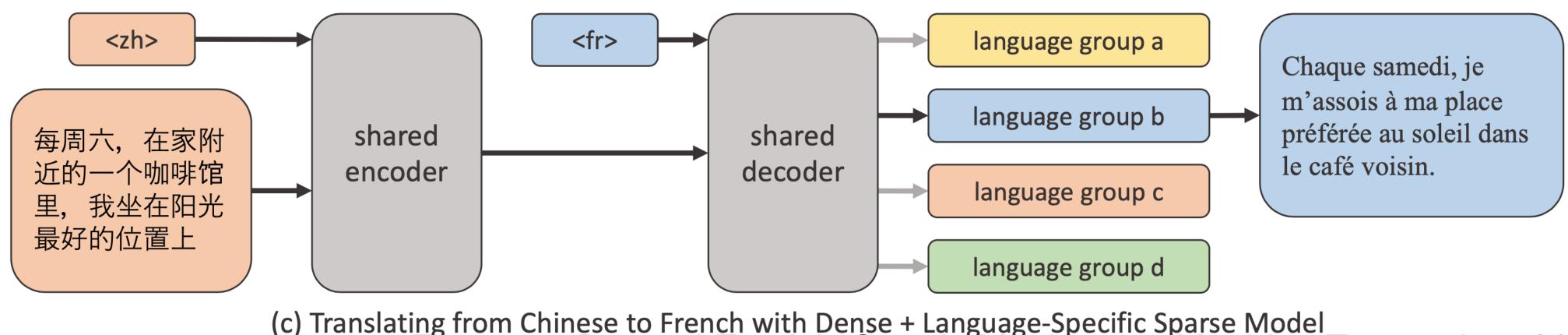
What do we need for larger scale?

Full Many-to-Many MNMT

English pairs

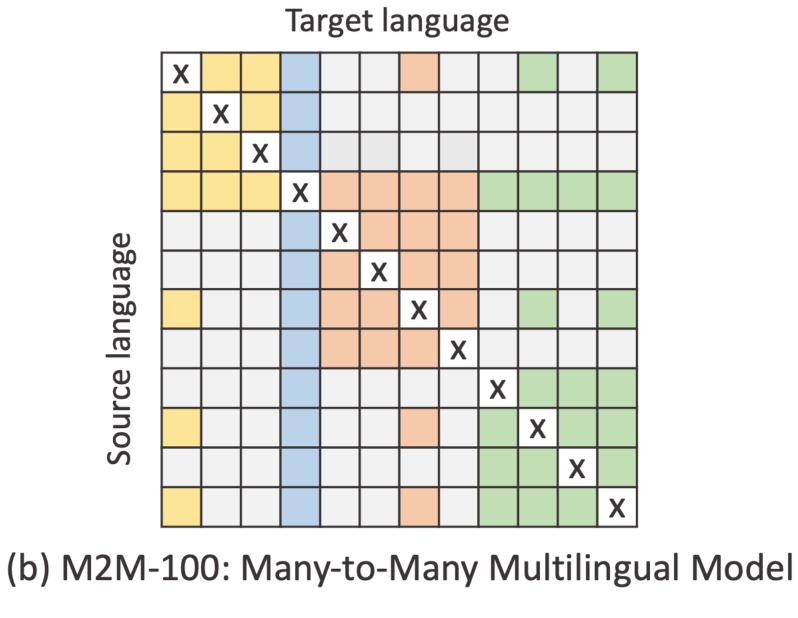


Source language



Previous many-to-many MNMT does not work well on non-

(a) English-Contric Multilingual



(c) Translating from Chinese to French with Dense + Language-Specific Sparse Model Fan et al. Beyond English-Centric Multilingual Machine Translation. 2021

100 Langauge Benchmark

- WMT 13 languages
- WAT Burmese-English
- IWSLT 4 languages
- FLORES— Sinhala and Nepali <—> English
- TED—The TED Talks data set4 (Ye et al., 2018) contains translations between more than 50 languages; most of the pairs do not include English. The evaluation data is n-way parallel and contains thousands of directions.
- Autshumato— 11-way parallel data set comprising 10 African languages and English from the government domain. Half-half split.
- Tatoeba— 692 test pairs from mixed domains where sentences are contributed and translated by volunteers online. The evaluation pairs we use from Tatoeba cover 85 different languages.

Data mining for parallel corpus

- CCAligned [El-Kishky et al 2020] use LASER encoder to produce sentence embedding
 - o for every Eng sentence, use vector search engine (e.g. FAISS) to search candidate aligned sentence by comparing sentence embedding
 - parallel or comparable web-document pairs in 137 languages aligned with English.
- Use language family as bridge to mine non-English pairs
- Total Training Data: 7.5B parallel sentences, corresponding to 2200 directions

Direction

Without Improvement

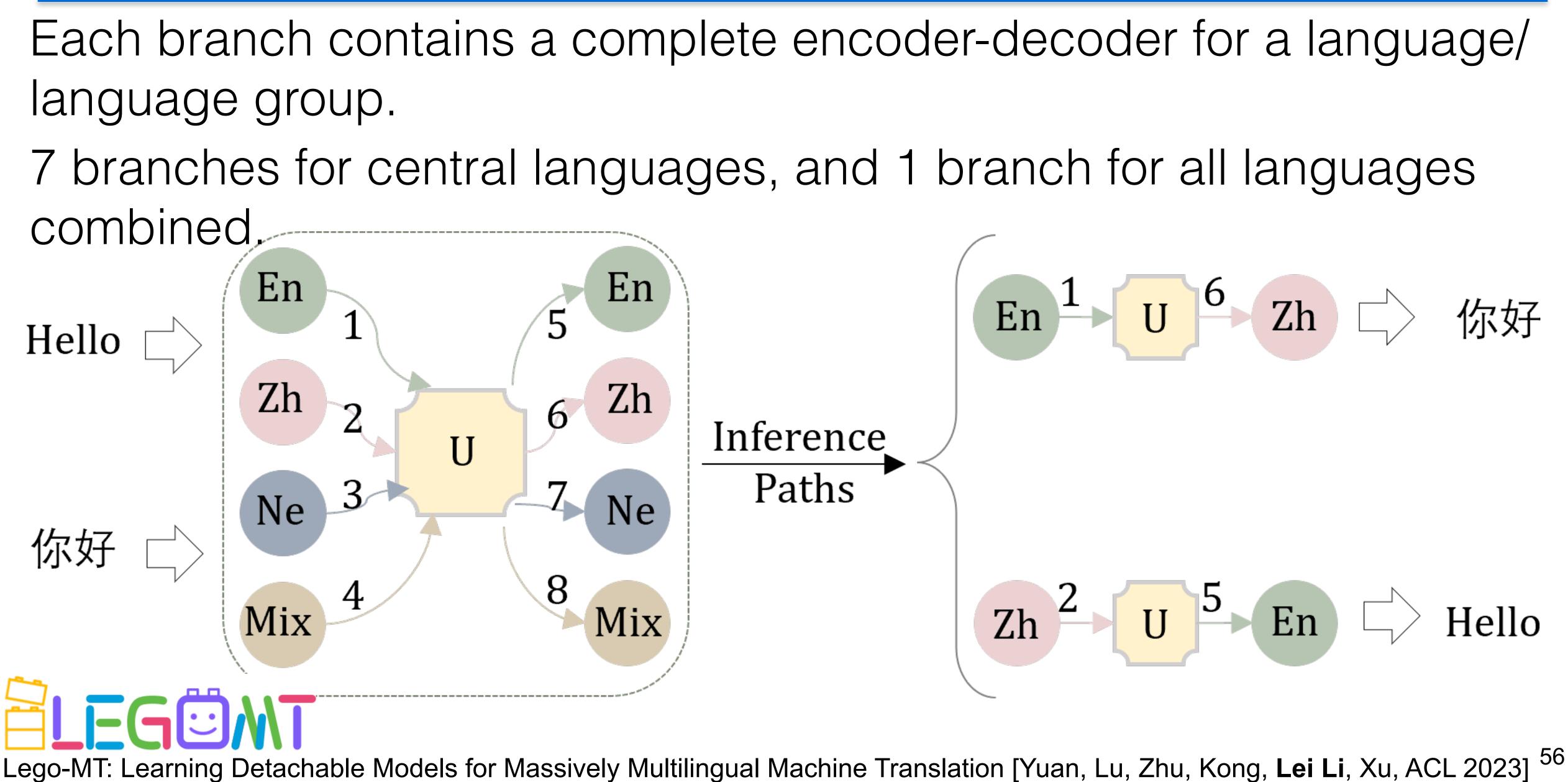
English-Chinese (Li et al., 2019) English-Finnish (Talman et al., 2019) English-Estonian (Pinnis et al., 2018) Chinese-English (Li et al., 2019)

With Improvement

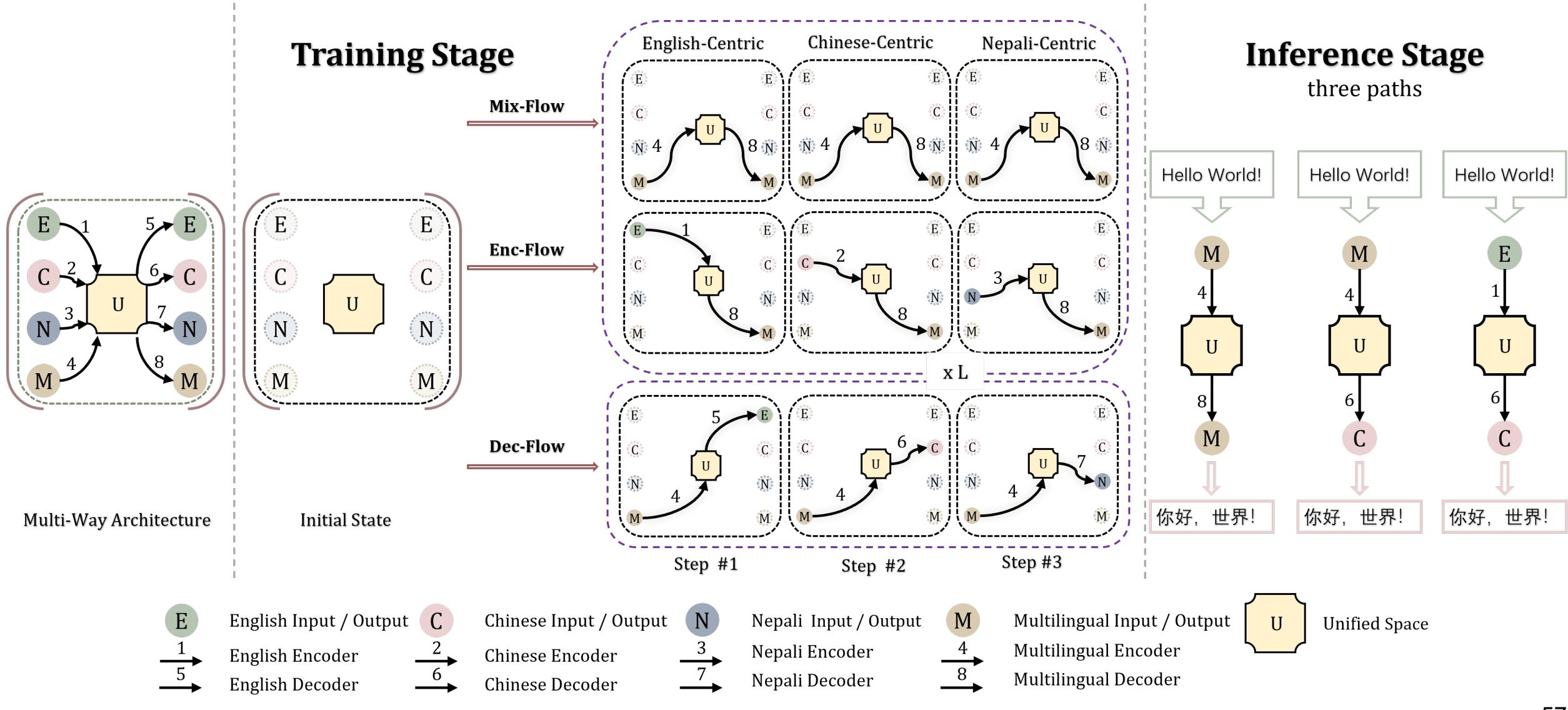
English-French (Edunov et al., 2018) English-Latvian (Pinnis et al., 2017) German-English (Ng et al., 2019) Lithuanian-English (Pinnis et al., 2019) English-Russian (Ng et al., 2019) English-Lithuanian (Pinnis et al., 2019) Finnish-English (Talman et al., 2019) Estonian-English (Pinnis et al., 2018) Latvian-English (Pinnis et al., 2017) Russian-English (Ng et al., 2019) French-English (Edunov et al., 2018) English-German (Ng et al., 2019) English-Turkish (Sennrich et al., 2017) Turkish-English (Sennrich et al., 2017)

		BLEU		
	Test Set	Published	м2м-100	Δ
	WMT'19	38.2	33.2	-5.0
	WMT'17	28.6	28.2	-0.4
	WMT'18	24.4	24.1	-0.3
	WMT'19	29.1	29.0	-0.1
	WMT'14	43.8	43.8	0
	WMT'17	20.0	20.5	+0.5
	WMT'19	39.2	40.1	+0.9
	WMT'19	31.7	32.9	+1.2
	WMT'19	31.9	33.3	+1.4
	WMT'19	19.1	20.7	+1.6
	WMT'17	32.7	34.3	+1.6
	WMT'18	30.9	33.4	+2.5
	WMT'17	21.9	24.5	+2.6
	WMT'19	37.2	40.5	+3.3
	WMT'14	36.8	40.4	+3.6
	WMT'19	38.1	43.2	+5.1
	WMT'17	16.2	23.7	+7.5
	WMT'17	20.6	28.2	+7.6
Average		30.0	31.9	+1.9

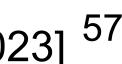
Lego-MT: Detachable Architecture



Data Flow in Lego-MT



Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023] ⁵⁷

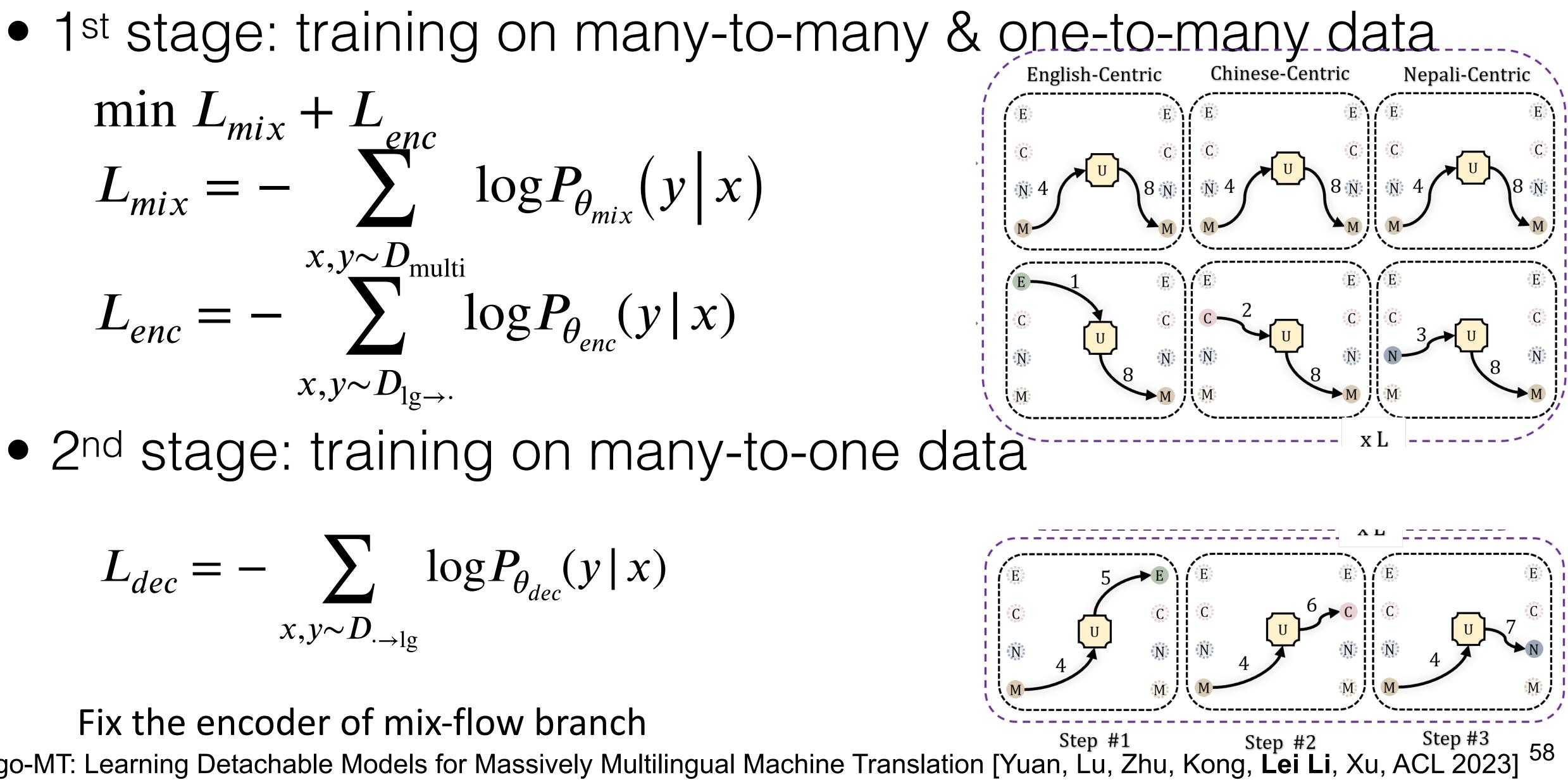


Lego-MT Two-stage Training

- $\min L_{mix} + L_{enc}$ $L_{mix} = \sum_{mix} L_{mix}$ $\log P_{\theta_{mix}}(y \mid x)$ $x, y \sim D_{\text{multi}}$ $\log P_{\theta_{onc}}(y \mid x)$ $L_{enc} =$ $x, y \sim D_{\lg \rightarrow \cdot}$
- 2nd stage: training on many-to-one data

$$L_{dec} = -\sum_{x, y \sim D_{. \to lg}} \log P_{\theta_{dec}}(y \mid x)$$

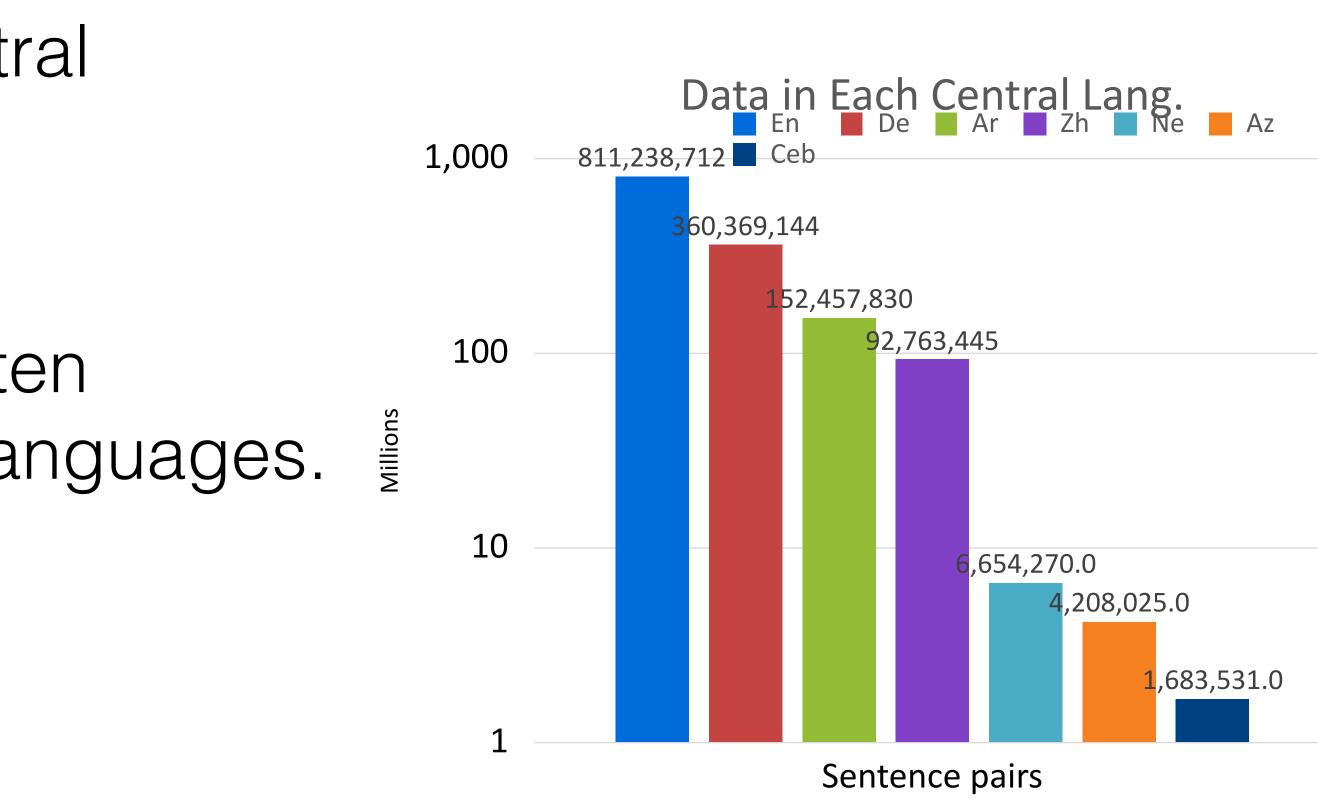
Fix the encoder of mix-flow branch Step #1 Step #2 Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023]

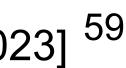


Multi-centric Data for 433 Languages

- Training Data
 - 1.3B sentence pairs collected from OPUS
 - 433 languages including 7 central languages
- Testing:
 - Flores-101 Devtest, human written translation pairs covering 101 languages.
 - 7×85 translation directions
- Evaluation Metric:
 - spBLEU, same in Flores-101

Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023] ⁵⁹



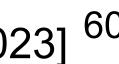


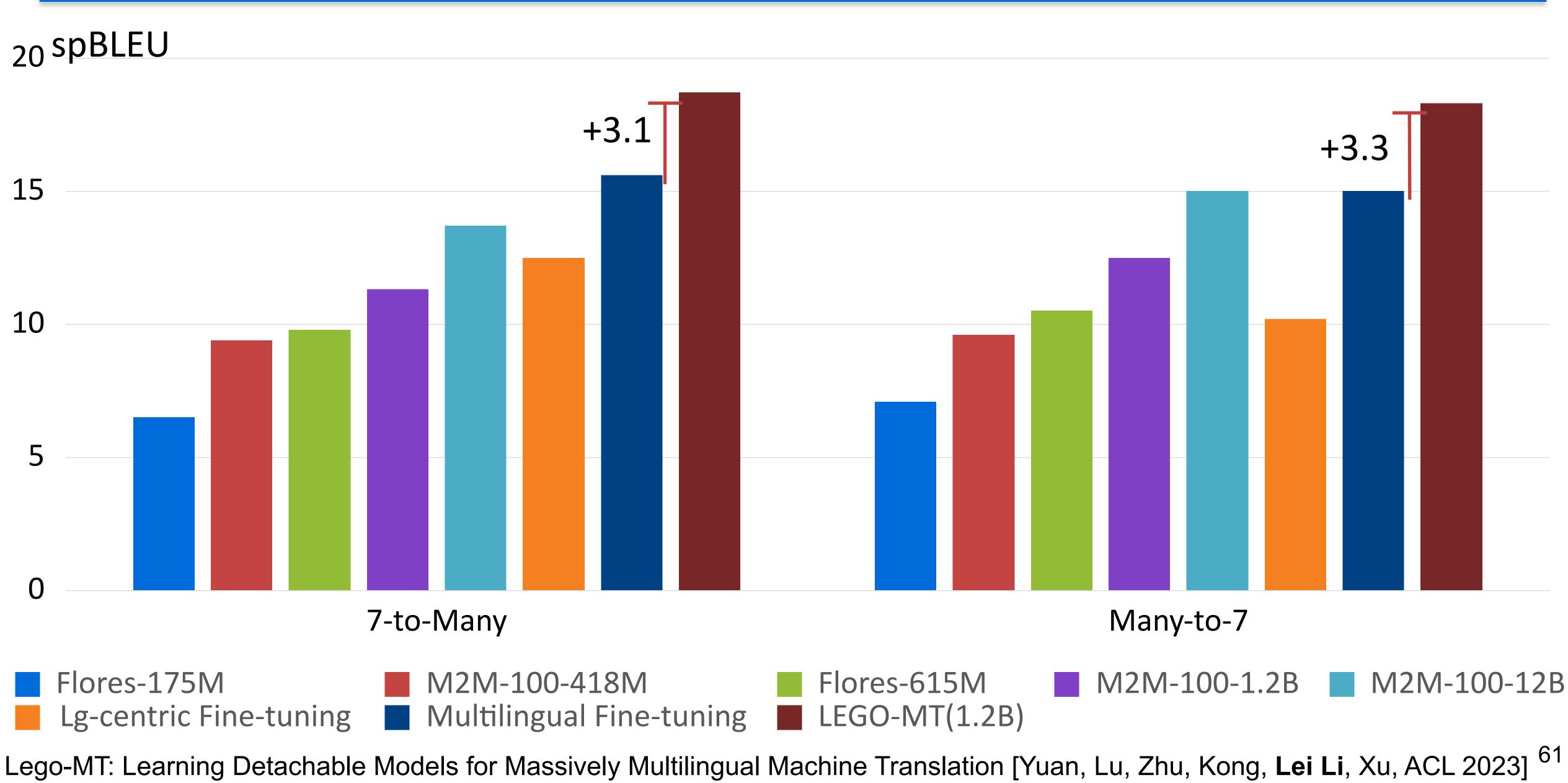
Lego-MT Model Configuration

- Model Parameters
 - Each Flow: 0.6B parameters
 - Total Training Parameters:
 - ▶ 9.6B = 1.2B (Mix-Flow) + 0.6 * 7 (Enc-Flow) + 0.6 * 7 (Dec-Flow)
 - Inference Parameter:

 - 1.2B (Each branch can be independently loaded during inference) We use Mix-flow for multilingual evaluation
- Training Setting
 - Max token 8000
 - The training of all centric languages is conducted in random order Training duration: 15 days on 32 A100 GPUs.

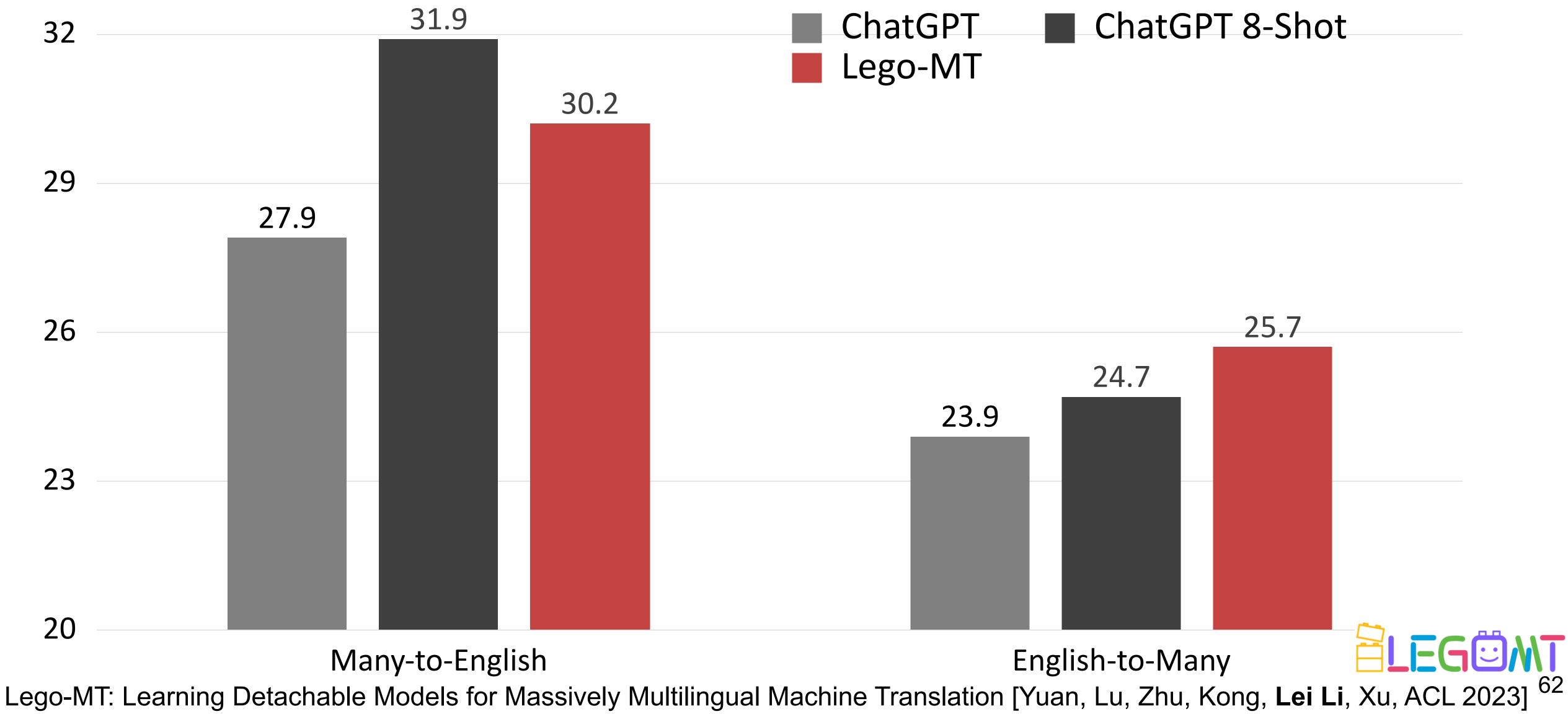
Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023] ⁶⁰

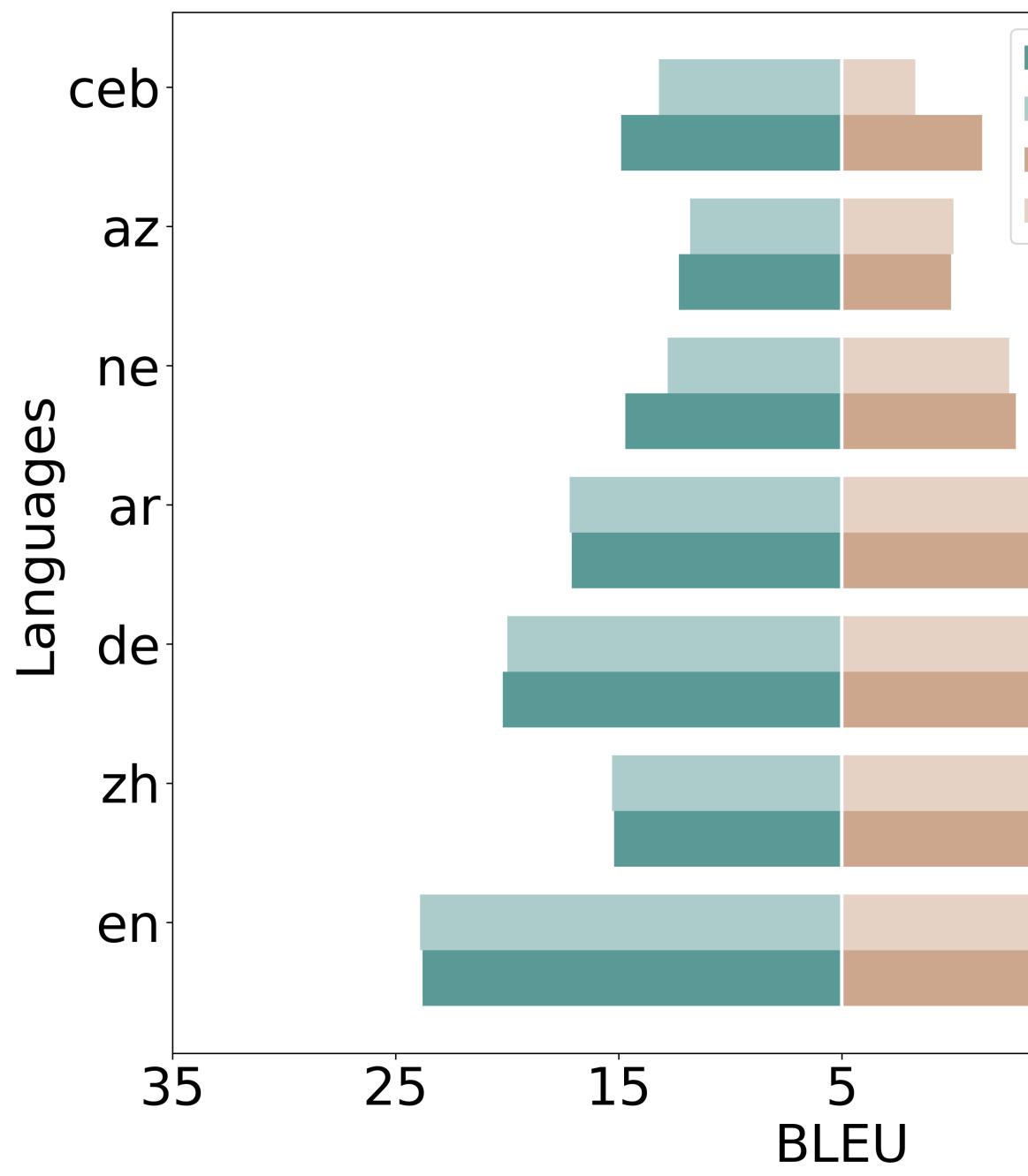




EGONT 1.2B outperforms M2M-100 12B!

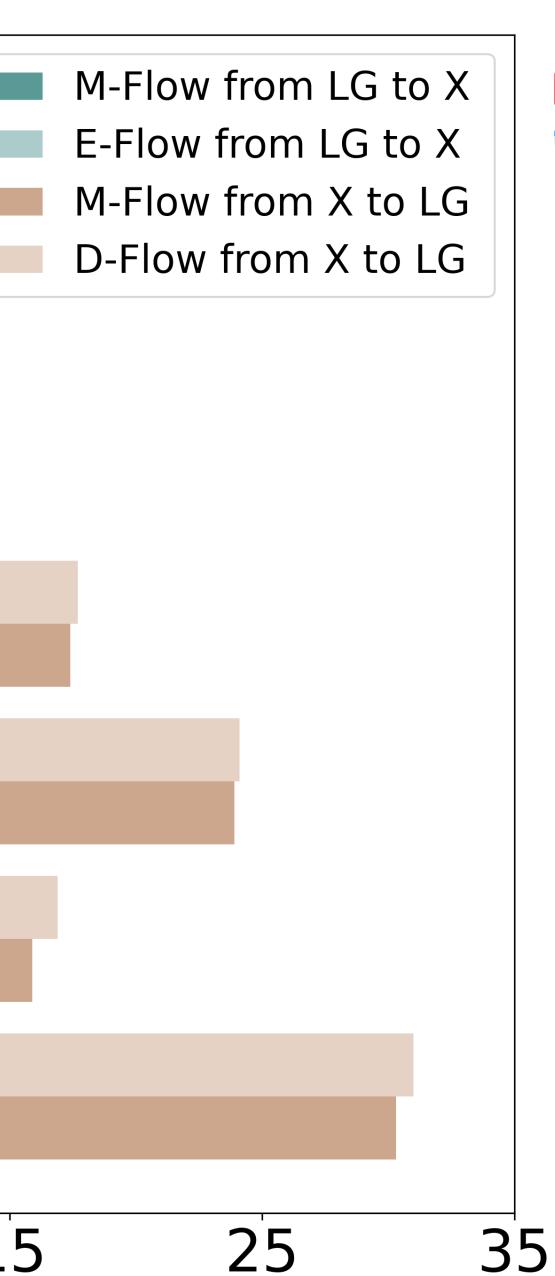
Lego-MT surpasses plain ChatGPT





Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation [Yuan, Lu, Zhu, Kong, Lei Li, Xu, ACL 2023] ⁶³

15



N[°]

Language Presentation

Reading

- Yuan et al. LegoMT: Learning Detachable Models for Massively Multilingual Machine Translation, 2023
- Johnson et al. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017
- Aharoni et al. Massively Multilingual Neural Machine Translation. 2019 • Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild:
- Findings and Challenges. 2019
- Bapna & Firat, Simple, Scalable Adaptation for Neural Machine Translation, 2019 • Zhu et al. Counter-Interference Adapter for Multilingual Machine Translation. 2021
- Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021

Reading

- Monolingual Data. ACL 2016.
- Cheng et al. Semi-Supervised Learning for Neural Machine Translation, ACL 2016.
- Artetxe et al. Unsupervised Neural Machine Translation. 2018 Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018
- He et al. Dual Learning for Machine Translation. 2016. • Gulcehre et al. On Using Monolingual Corpora in Neural Machine
- Translation. 2015
- Edunov et al. Understanding Back-translation at Scale. 2018.

Sennrich et al. Improving Neural Machine Translation Models with

