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• Semi-supervised NMT


• Unsupervised MT

Outline
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Main Bottleneck for NMT: Data Scarcity

[Credit: Isaac Caswell, 2022]

Google-Translate

NLLB



• Using both parallel corpus and monolingual data to train an 
MT system

Semi-supervised Learning for MT
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• Testing MT’s capability in general domain: news, conversation, social media

• https://www2.statmt.org/wmt23/translation-task.html

• Chinese to/from English

• German to/from English: document-level (testset won’t be sentence 

breaked)

• Hebrew to/from English: low-resource

• Japanese to/from English

• Russian to/from English

• Ukrainian to/from English

• Czech to Ukrainian: non-English

• English to Czech

WMT 23 General MT 
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https://www2.statmt.org/wmt23/translation-task.html
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WMT 23 Data
WMT23 Monolingual CorpusWMT23 Parallel Corpus

File CS-
EN

DE-
EN

JA-
EN

RU-
EN

ZH-
EN

HE-
EN

UK-
EN

UK-
CS

Europarl v10 ✓ ✓

ParaCrawl v9 ✓ ✓ ✓ ✓ ✓ ✓

Common Crawl corpus ✓ ✓ ✓

News Commentary v18.1 ✓ ✓ ✓ ✓ ✓

CzEng 2.0 ✓

Yandex Corpus ✓

Wiki Titles v3 ✓ ✓ ✓ ✓ ✓

UN Parallel Corpus V1.0 ✓ ✓

Tilde MODEL corpus ✓ ✓ ✓ ✓

CCMT Corpus ✓

WikiMatrix ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Back-translated news ✓ ✓ ✓

Japanese-English 
Subtitle Corpus

✓

The Kyoto Free ✓

Corpus CS DE EN JA RU ZH HE UK

News crawl ✓ ✓ ✓ ✓ ✓ ✓ ✓

News discussions ✓

Europarl v10 ✓ ✓ ✓

News Commentary ✓ ✓ ✓ ✓ ✓ ✓

Common Crawl ✓ ✓ ✓ ✓ ✓ ✓

Extended Common 
Crawl

✓ ✓ ✓ ✓ ✓

UberText Corpus ✓

Leipzig Corpora ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Legal Ukrainian ✓

http://www.statmt.org/europarl/v10
http://paracrawl.eu/
https://s3.amazonaws.com/web-language-models/paracrawl/release9/en-cs/en-cs.txt.gz
https://s3.amazonaws.com/web-language-models/paracrawl/release9/en-de/en-de.txt.gz
http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/release/3.0/bitext/en-ja.tar.gz
https://s3.amazonaws.com/web-language-models/paracrawl/bonus/en-ru.txt.gz
http://web-language-models.s3-website-us-east-1.amazonaws.com/paracrawl/bonus/en-zh-v1.txt.gz
https://paracrawl.eu/news/item/17-english-ukrainian-bonus-parallel-corpus
http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz
http://data.statmt.org/news-commentary/v18.1
https://ufal.mff.cuni.cz/czeng/czeng20
https://translate.yandex.ru/corpus?lang=en
https://github.com/mashashma/WMT2022-data/tree/main/en-ru
http://data.statmt.org/wikititles/v3
https://conferences.unite.un.org/uncorpus
https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
http://mteval.cipsc.org.cn:81/agreement/description
http://data.statmt.org/wmt21/translation-task/WikiMatrix/
https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/WikiMatrix.en-he.tsv.gz
https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/WikiMatrix.en-uk.tsv.gz
https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/WikiMatrix.cs-uk.tsv.gz
http://data.statmt.org/wmt20/translation-task/back-translation/
https://nlp.stanford.edu/projects/jesc/index.html
https://nlp.stanford.edu/projects/jesc/data/split.tar.gz
http://data.statmt.org/news-crawl
http://data.statmt.org/news-discussions
http://www.statmt.org/europarl/v10
http://data.statmt.org/news-commentary
http://data.statmt.org/ngrams
http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/cs.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/de.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/en-new.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/ja/deduped/ja.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/ru.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/zh/deduped/zh.deduped.xz
http://data.statmt.org/wmt21/translation-task/cc-mono/
https://lang.org.ua/en/corpora/#anchor5
https://wortschatz.uni-leipzig.de/en/download
https://wortschatz.uni-leipzig.de/en/download/ces
https://wortschatz.uni-leipzig.de/en/download/deu
https://wortschatz.uni-leipzig.de/en/download/eng
https://wortschatz.uni-leipzig.de/en/download/jpn
https://wortschatz.uni-leipzig.de/en/download/rus
https://wortschatz.uni-leipzig.de/en/download/zho
https://wortschatz.uni-leipzig.de/en/download/heb
https://wortschatz.uni-leipzig.de/en/download/ukr
https://elrc-share.eu/repository/browse/legal-ukrainian-crawling/b5dc44cc4ecf11ec9c1a00155d026706b57d9b899e884c07aa2c854f59c890f7/
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Back Translation

Decoder

Encoder

En De

Step 1:

Training two MT 
models M1, M2 

w/ Parallel corpus

De En

Step 2:

Use M2 to generate 

pseudo-parallel 
pairs

De En

En De

Step 3:

Training w/ both 

parallel and 
pseudo-
parallel

En De



1.An initial parallel data D = <x, y> (e.g. De — En)

2.Target side monolingual data (En)

3.Train two separate NMT systems, M1 : x->y, and M2 : y->x

4.Now use M2 to generate translation for y —> x’ = M2(y), 
denote this synthetic pairs as D’ = {<x’, y>}

5.Combine both D and D’ —> D”=D U D’

6.Train a new model M from x -> y using D”

Back Translation Details
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Does Back Translation work? Yes!
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Transformer Transformer+BT

WMT14 NIST
Zheng et al. Mirror-Generative Neural Machine Translation. 2020.
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WMT14
Sennrich et al. Improving Neural Machine Translation Models with Monolingual Data. ACL 2016.



• Two best practice (for high-
resource):


– Noisy beam search (adding 
noise to source side helps!)

● Select the highest scoring output

● Higher quality, but lower diversity, potential for 

data bias


– Sampling (instead of beam 
search)

● Randomly sample from back-translation model

● Lower overall quality, but higher diversity

10

Decoding Strategy in Back Translation

Edunov et al. Understanding Back-translation at Scale. 2018.



• Why back-translation from target side to source?

– why source is pseudo?


• Can we use source monolingual to generation synthetic 
pairs?


– Forward-translation

Some Consideration

11



• Like back-translation

• Use the model x->y to create synthetic pairs from source 

monolingual data

• Train x->y MT model again on combined data

Using Source Monolingual? Forward Translation

12Zhang & Zong. Exploiting Source-side Monolingual Data in Neural Machine Translation. 2016



Forward Translation + Back Translation + Noise

13



• What kind of monolingual data?

• How much monolingual data?


– Ratio parallel vs. synthetic?

– Usually 1:1

Some Consideration
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• More is better?

• Over BT hurts

• But noised-BT can sustain improvement!

How much monolingual for BT?

15



• Better to pick monolingual data the same as target domain
Target Domain for Back Translation

16
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BT in Low-resource Setting

Edunov et al. Understanding Back-translation at Scale. 2018.
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Iterative Joint Back Translation
D = {⟨X, Y⟩}

M(1)
x→y M(1)

y→xDx Dy

D(1)
yx = D ∪ {⟨X, M(1)

x→y(X)⟩ |X ∈ Dx} D(1)
xy = D ∪ {⟨M(1)

y→x(Y), Y⟩ |Y ∈ Dy}

M(2)
y→xM(2)

x→y Dx Dy

D(1)
yx = D ∪ {⟨X, M(1)

x→y(X)⟩ |X ∈ Dx} D(1)
xy = D ∪ {⟨M(1)

y→x(Y), Y⟩ |Y ∈ Dy}

M(3)
y→xM(3)

x→y

Zhang et al. Joint Training for Neural 
Machine Translation Models with 

Monolingual Data. 2018



• For monolingual , treat X as a random variable, 



• Training with parallel and monolingual corpus 

Ym ∈ Dy
X ∼ P(X |Ym; θ←)

ℓ = CE + Expected reconstruction

= ∑
⟨Xn,Yn⟩∈D

log P(Yn |Xn; θ→) + ∑
Ym∈DY

log ∑
X∈V*

P(Ym |X; θ→)P(X |Ym; θ←)

∑
⟨Xn,Yn⟩∈D

log P(Xn |Yn; θ←) + ∑
Xm∈Dx

log ∑
Y∈V*

P(Y |Xm; θ→)P(Xm |Y; θ←)

Probabilistic Model for Semi-Supervised MT

19Cheng et al. Semi-Supervised Learning for Neural Machine Translation. ACL 2016.



• SGD

• An instance Monte-Carlo EM


•



• 


• Alg 1: generate top-k candidates, then compute the gradient.

ℓ = ∑
⟨Xn,Yn⟩∈D

log P(Yn |Xn; θ→) + ∑
Ym∈DY

log ∑
X∈V*

P(Ym |X; θ→)P(X |Ym; θ←)

∑
⟨Xn,Yn⟩∈D

log P(Xn |Yn; θ←) + ∑
Xm∈Dx

log ∑
Y∈V*

P(Y |Xm; θ→)P(Xm |Y; θ←)

∂ℓ
∂θ→

= ⋯ + ∑
Ym∈DY

∑
X∈V*

P(Ym |X; θ→)P(X |Ym; θ←)
∑X′￼∈V* P(Ym |X′￼; θ→)P(X′￼|Ym; θ←)

∂ log P(Ym |X; θ→)
∂θ→

+ ⋯

Training 

20Cheng et al. Semi-Supervised Learning for Neural Machine Translation. ACL 2016.



• 


• If instead of top-k, just pick the top-1 beam search result, 
==> back-translation


• Back-translation is an instance of Semi-supervised MT

• Other ways to implement?

∂ℓ
∂θ→

= ⋯ + ∑
Ym∈DY

∑
X∈V*

P(Ym |X; θ→)P(X |Ym; θ←)
∑X′￼∈V* P(Ym |X′￼; θ→)P(X′￼|Ym; θ←)

∂ log P(Ym |X; θ→)
∂θ→

+ ⋯

Back-translation as a Special Case

21






• essentially the lower bound of the complete log-likelihood 
(multiplies with language model probability)

ℓ = ∑
Ym∈DY

∑
X∈V*

P(X |Ym; θ← (log P(Ym |X; θ→) + log P(X; θX))
Also known as Dual Learning

22He et al. Dual Learning for Machine Translation. 2016.



• Back-translation [Sennrich 
2016], Cheng 2016, Dual 
Learning [He 2016], joint 
back-translation [Zhang 
2018], all have same 
performance. 


• Formulation of Cheng 2016 
and Zhang 2018 are the 
same.

23

Comparing Backtranslation and Dual Learning
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Zheng et al. Mirror-Generative Neural Machine Translation. 2020.



Unsupervised Neural Machine 
Translation



• Learning without supervision

– No parallel corpus, only monolingual data


• Why?

– many language pairs do not have parallel sentences, or very 

expensive to create parallel sentences by human

– but monolingual data are abundant


• How? Basic idea:

– Cross-lingual pre-training

– Weight sharing

– Iterative Back Translation

Unsupervised Machine Translation

25



• Also called word translation

• Hypothesis: words with the same meaning in two 

languages share isomorphic embedding space

Unsupervised Lexicon Induction

26Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017



• To learn a matrix W

• Supervised setting (pairs of aligned words available)

 

– closed form solution for this


• How to learn W without aligned word pairs?

arg min ∥XW − Y∥f

Lexicon Induction: Mapping of the Embedding Space

27



• x, y are pretrained word embeddings in two languages.  
But not aligned.


• Using a discriminator to distinguish between

– Wx  and y

– A feedforward NN with 1 hidden layers.


• Alternating between

– 


–

min
D

LD = − log D(y) − log(1 − D(Wx))

min
W

LG = − log D(Wx) − cos(x, WTWx)

Lexicon Induction via Adversarial Training

28Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017



• Use this as the word-level translation
Find the closest words 

29Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017



• Build an initial MT system to translate from English -> 
German, and German -> English using word-level 
translation


• Iterate

Unsupervised Machine Translation

30

English

Monolingual

pseudo 
German

De-En MT

MT Model1

German-English

pseudo-parallel
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Shared Encoder with Dual Decoder



• Create a noisy version of source sentence, and reconstruct 
using encoder-decoder


• Using cross-entropy loss on reconstructed sentence

Training Objective 1: Denoising Autoencoder

32
Artetxe et al. Unsupervised Neural Machine Translation. 2018

Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018



• Back-translate: From target to generate pseudo-parallel 
source sentence

Training Objective 2: Back-translation

33
Artetxe et al. Unsupervised Neural Machine Translation. 2018

Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018



• To distinguish between source and target sentence 
embeddings. 

min LD = − log PD(0 or 1 |emb(src or tgt))

Training Objective 3: Adversarial Loss

34
Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018
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Unsupervised Neural Machine Translation

Artetxe et al. Unsupervised Neural Machine Translation. 2018



Does it work?

36

Bidirectional LSTM encoder-decoder

Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018



• Similar languages with large monolingual data

• Distant languages are still difficult

• Eg. En-Tr 4.5 (unsupervised) vs. 20 (supervised)

When does Unsupervised NMT work?

37



• Sennrich et al. Improving Neural Machine Translation Models with 
Monolingual Data. ACL 2016.


• Cheng et al. Semi-Supervised Learning for Neural Machine 
Translation. ACL 2016.


• Artetxe et al. Unsupervised Neural Machine Translation. 2018

• Lample et al. Unsupervised Machine Translation Using Monolingual 

Corpora Only. 2018

• He et al. Dual Learning for Machine Translation. 2016.

• Gulcehre et al. On Using Monolingual Corpora in Neural Machine 

Translation. 2015

• Edunov et al. Understanding Back-translation at Scale. 2018.

Reading
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• There will be no graded discussion, but we'll have a code 
walk through The Annotated Transformer 
https://nlp.seas.harvard.edu/2018/04/03/attention.html


• Organize into group to discuss some of the design 
decisions, their motivation, etc.

Code Walk

39

https://nlp.seas.harvard.edu/2018/04/03/attention.html

