CS11-737 Multilingual NLP

Semi-supervised and Unsupervised Machine Translation

Lei Li

https://lileicc.github.io/course/11737mnlp23fa/

Carnegie Mellon University

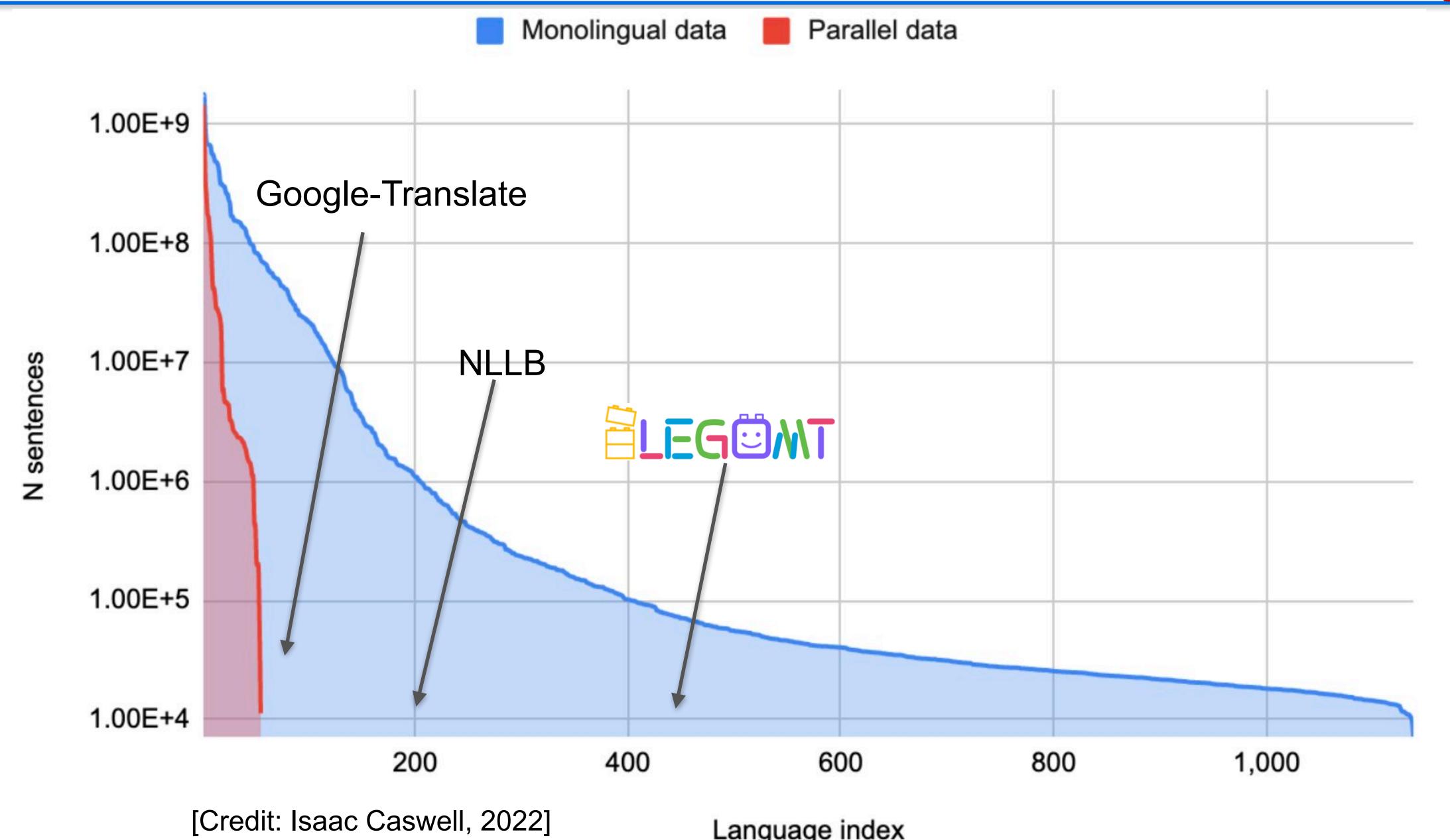
Language Technologies Institute

Outline

Semi-supervised NMT

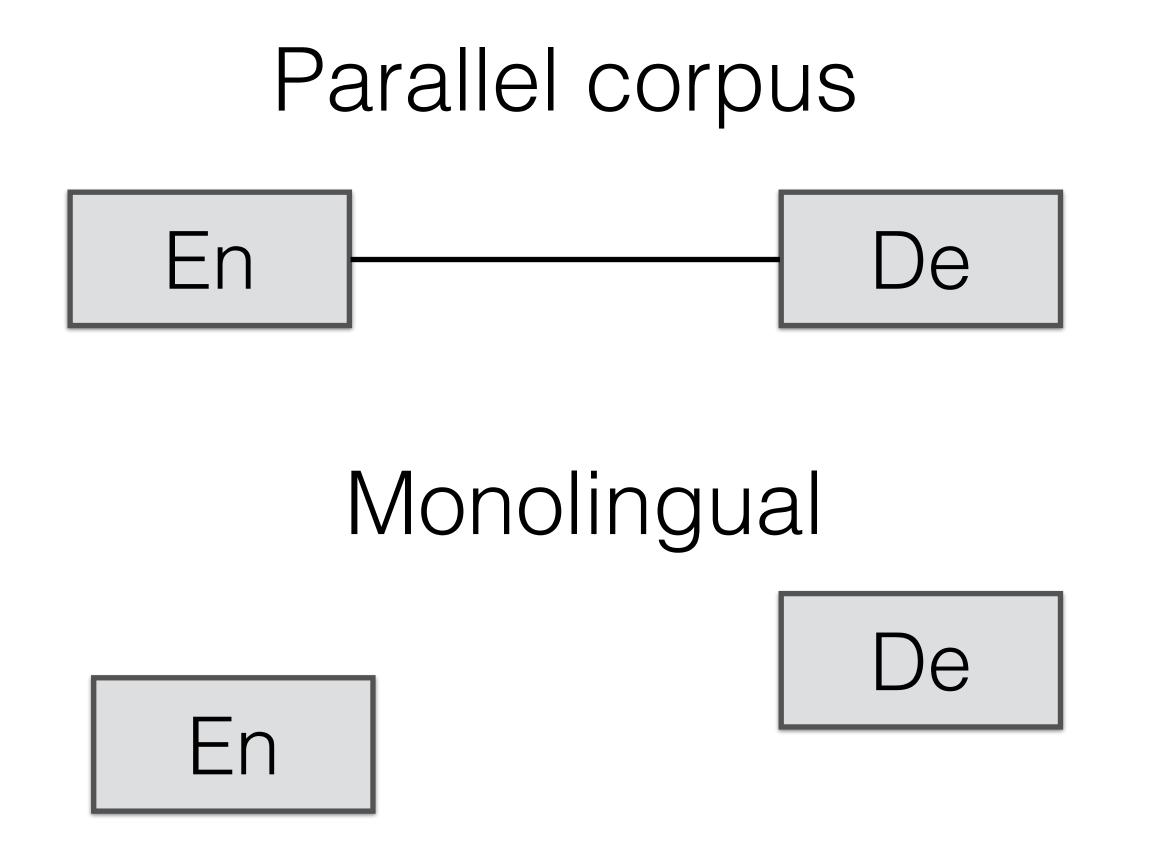
Unsupervised MT

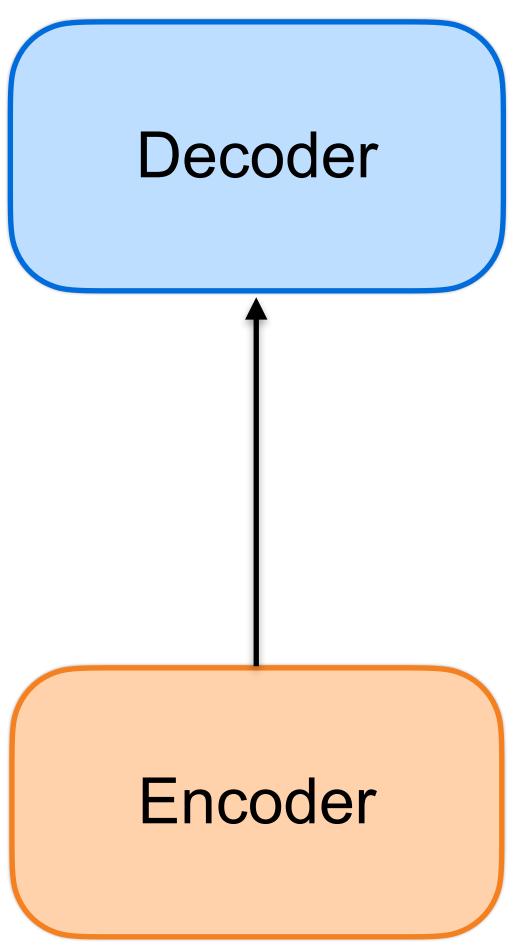
Main Bottleneck for NMT: Data Scarcity



Semi-supervised Learning for MT

Using both parallel corpus and monolingual data to train an MT system





WMT 23 General MT

- Testing MT's capability in general domain: news, conversation, social media
- https://www2.statmt.org/wmt23/translation-task.html
- Chinese to/from English
- German to/from English: document-level (testset won't be sentence breaked)
- Hebrew to/from English: low-resource
- Japanese to/from English
- Russian to/from English
- Ukrainian to/from English
- Czech to Ukrainian: non-English
- English to Czech

WIMT 23 Data

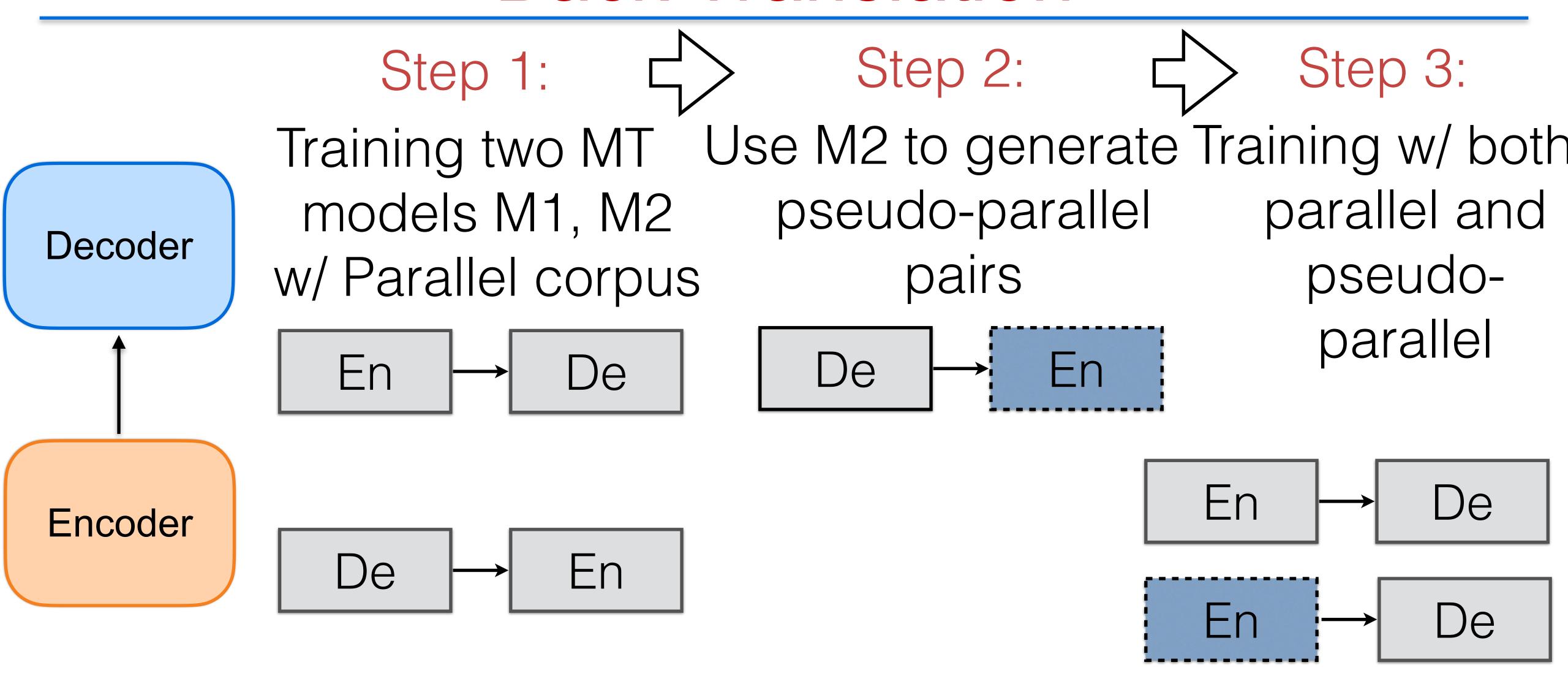
WMT23 Parallel Corpus

WMT23 Monolingual Corpus

File	CS- EN	DE- EN		RU- EN	ZH- EN	HE- EN	UK- EN	UK- CS
Europarl v10	✓	✓						
ParaCrawl v9	✓	✓	✓	✓	✓		✓	
Common Crawl corpus	✓	√		√				
News Commentary v18.1	✓	√	√	✓	✓			
CzEng 2.0	✓							
Yandex Corpus				<u>√</u>				
Wiki Titles v3	✓	✓	√	√	✓			
UN Parallel Corpus V1.0				✓	√			
Tilde MODEL corpus	✓	√		✓			✓	
CCMT Corpus					✓			
WikiMatrix	✓	✓	√	√	✓	<u>√</u>	<u>√</u>	✓
Back-translated news	✓			✓	✓			
Japanese-English Subtitle Corpus			<u>√</u>					

		DE	TIN T	TA	DII		TTT	T T T T
Corpus	CS	DE	EN	JA	RU	ZH	HE	UK
News crawl	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√		√
News discussions			√					
Europarl v10	✓	✓	√					
News Commentary	✓	✓	√	✓	✓	√		
Common Crawl	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>		
Extended Common	√	√		√	√	√		
Crawl								
<u>UberText Corpus</u>								√
Leipzig Corpora	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>	<u>√</u>
Legal Ukrainian								√

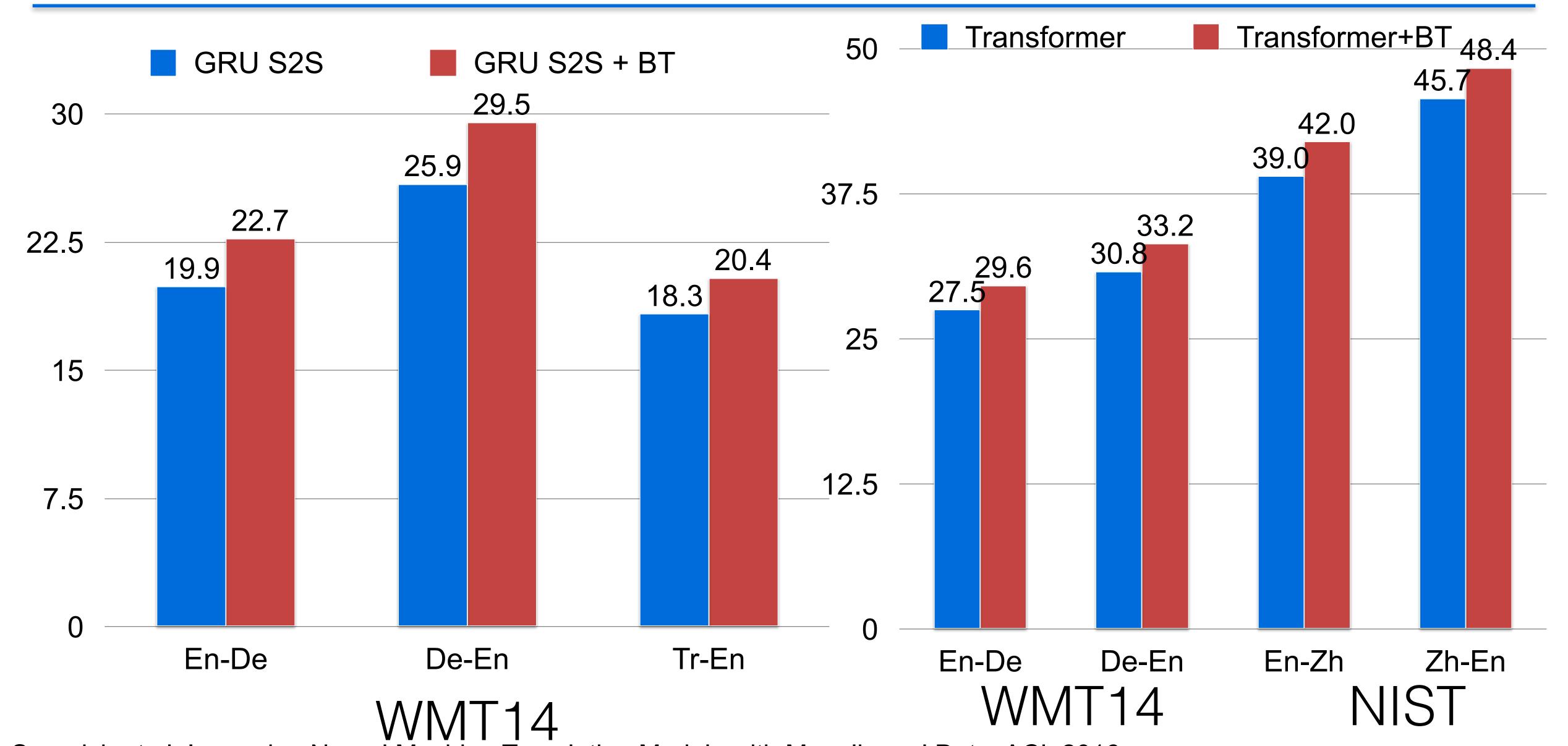
Back Translation



Back Translation Details

- 1.An initial parallel data $D = \langle x, y \rangle$ (e.g. De En)
- 2. Target side monolingual data (En)
- 3. Train two separate NMT systems, M1: x->y, and M2: y->x
- 4. Now use M2 to generate translation for y x' = M2(y), denote this synthetic pairs as $D' = \{ \langle x', y \rangle \}$
- 5. Combine both D and D' —> D"=D U D'
- 6. Train a new model M from x -> y using D"

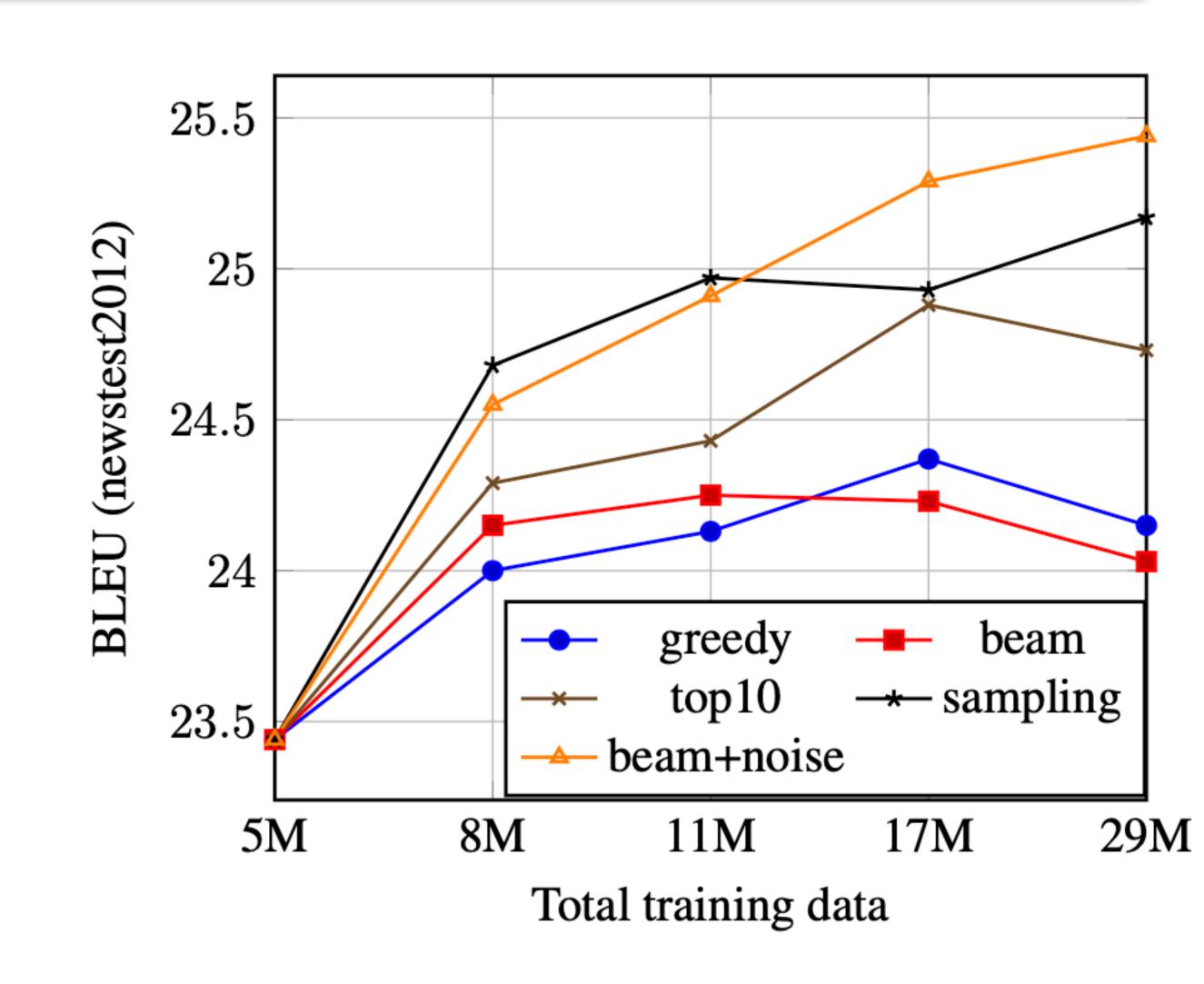
Does Back Translation work? Yes!



Sennrich et al. Improving Neural Machine Translation Models with Monolingual Data. ACL 2016.
Zheng et al. Mirror-Generative Neural Machine Translation. 2020

Decoding Strategy in Back Translation

- Two best practice (for highresource):
 - Noisy beam search (adding noise to source side helps!)
 - Select the highest scoring output
 - Higher quality, but lower diversity, potential for data bias
 - Sampling (instead of beam search)
 - Randomly sample from back-translation model
 - Lower overall quality, but higher diversity



Some Consideration

- Why back-translation from target side to source?
 - why source is pseudo?
- Can we use source monolingual to generation synthetic pairs?
 - Forward-translation

Using Source Monolingual? Forward Translation

- Like back-translation
- Use the model x->y to create monolingual data
- Train x->y MT model again on



Figure 1: The de-tokenized SacreBLEU scores on En \rightarrow De newstest2016, newstest2017 and newstest2018 of the models trained by different synthetic data: (1) $\bar{\mathcal{B}}_s$ from source-side monolingual data only, (2) $\bar{\mathcal{B}}_t$ from target-side monolingual data only and (3) the combination of $\bar{\mathcal{B}}_s$ and $\bar{\mathcal{B}}_t$.

Forward Translation + Back Translation + Noise

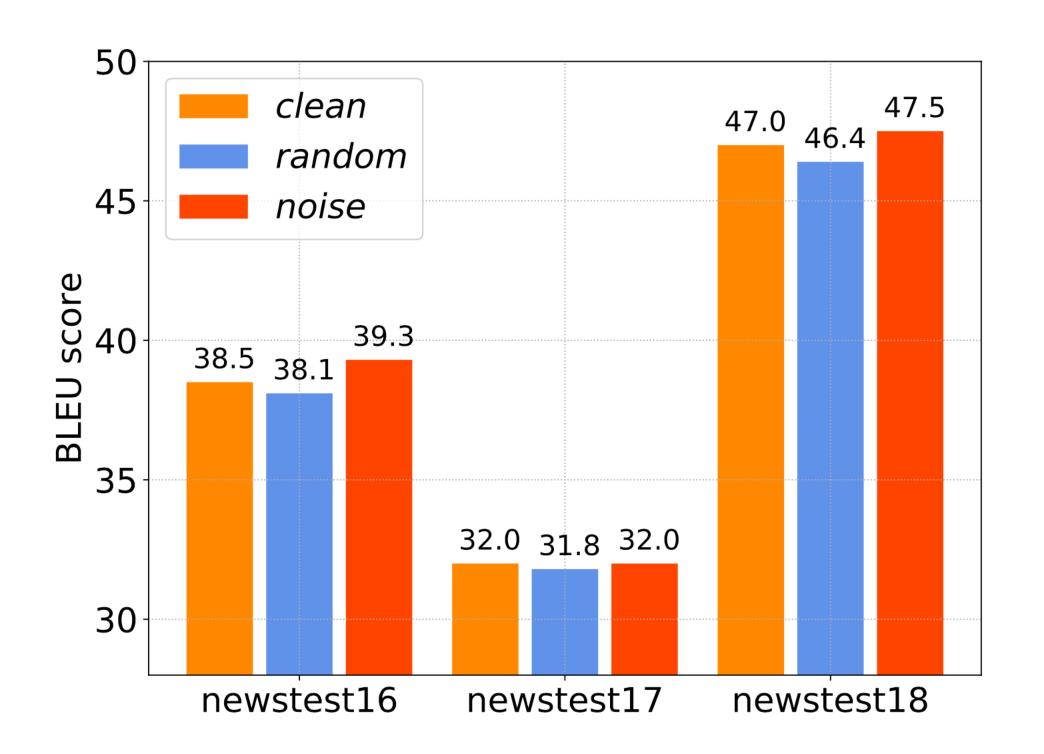


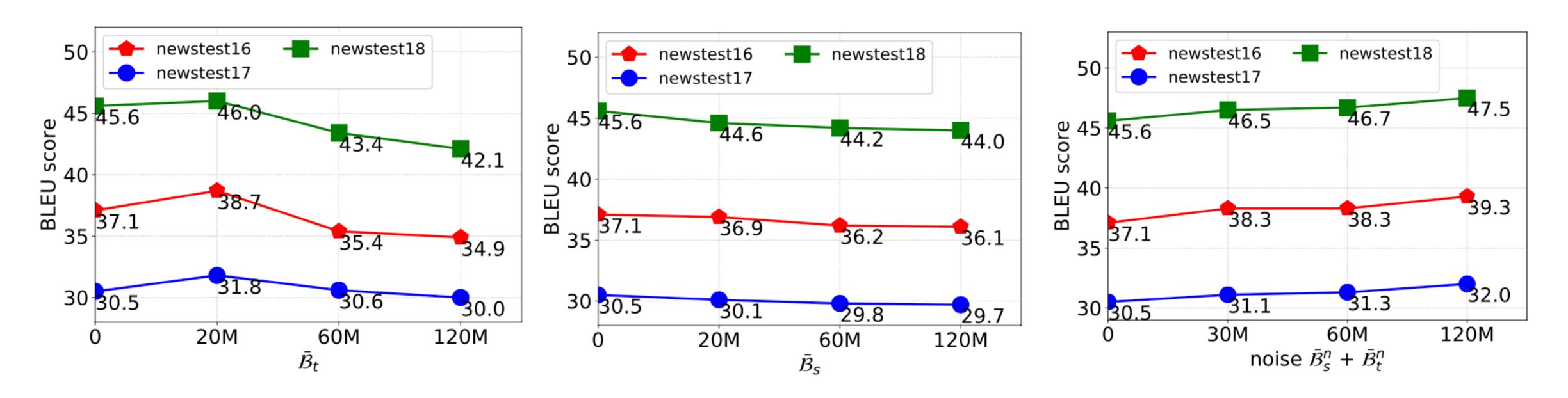
Figure 2: The de-tokenized SacreBLEU scores on En \rightarrow De newstest2016, newstest2017 and newstest2018 of the models trained by synthetic data generated in different ways: (1) clean $\bar{\mathcal{B}}_s$ and $\bar{\mathcal{B}}_t$ data, (2) $\bar{\mathcal{B}}_s^r$ and randomly sampled $\bar{\mathcal{B}}_t^r$ data, and (3) noised $\bar{\mathcal{B}}_s^n$ and $\bar{\mathcal{B}}_t^n$ data.

Some Consideration

- What kind of monolingual data?
- How much monolingual data?
 - Ratio parallel vs. synthetic?
 - Usually 1:1

How much monolingual for BT?

- More is better?
- Over BT hurts
- But noised-BT can sustain improvement!

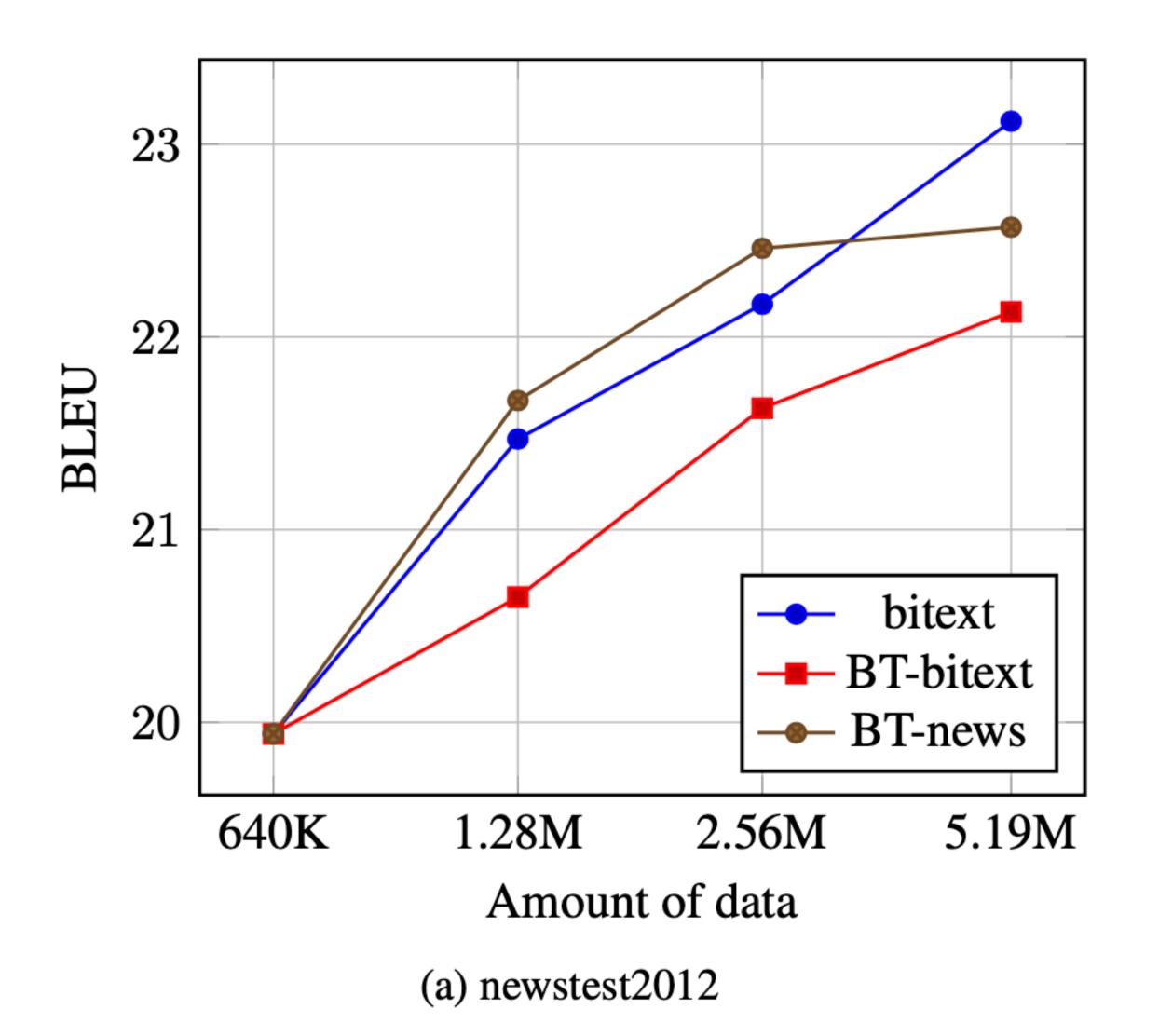


(a) Different scales of $\bar{\mathcal{B}}_t$ data.

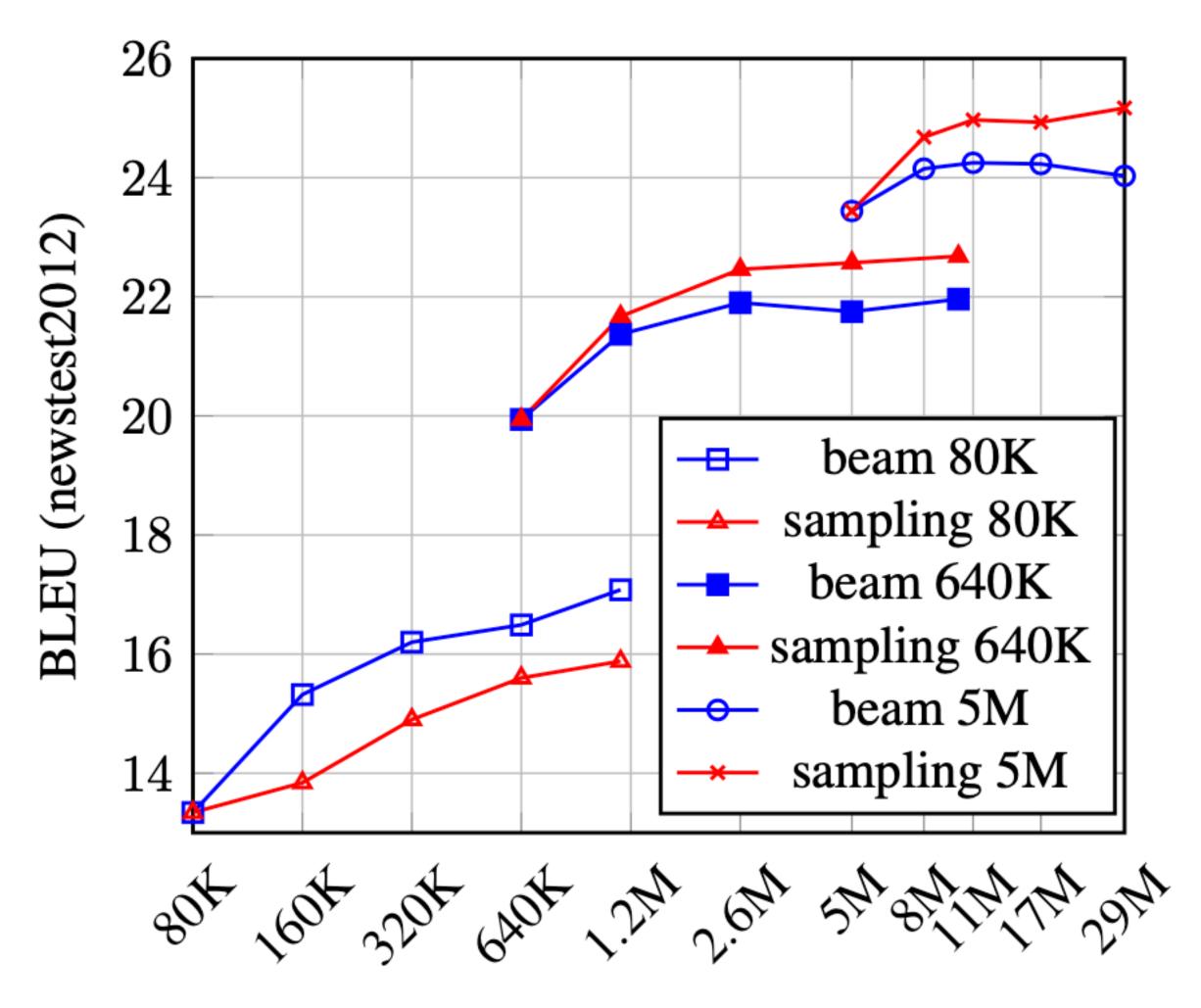
- (b) Different scales of $\bar{\mathcal{B}}_s$ data.
- c) Different scales of noised $\bar{\mathcal{B}}_s + \bar{\mathcal{B}}_t$ data.

Target Domain for Back Translation

Better to pick monolingual data the same as target domain

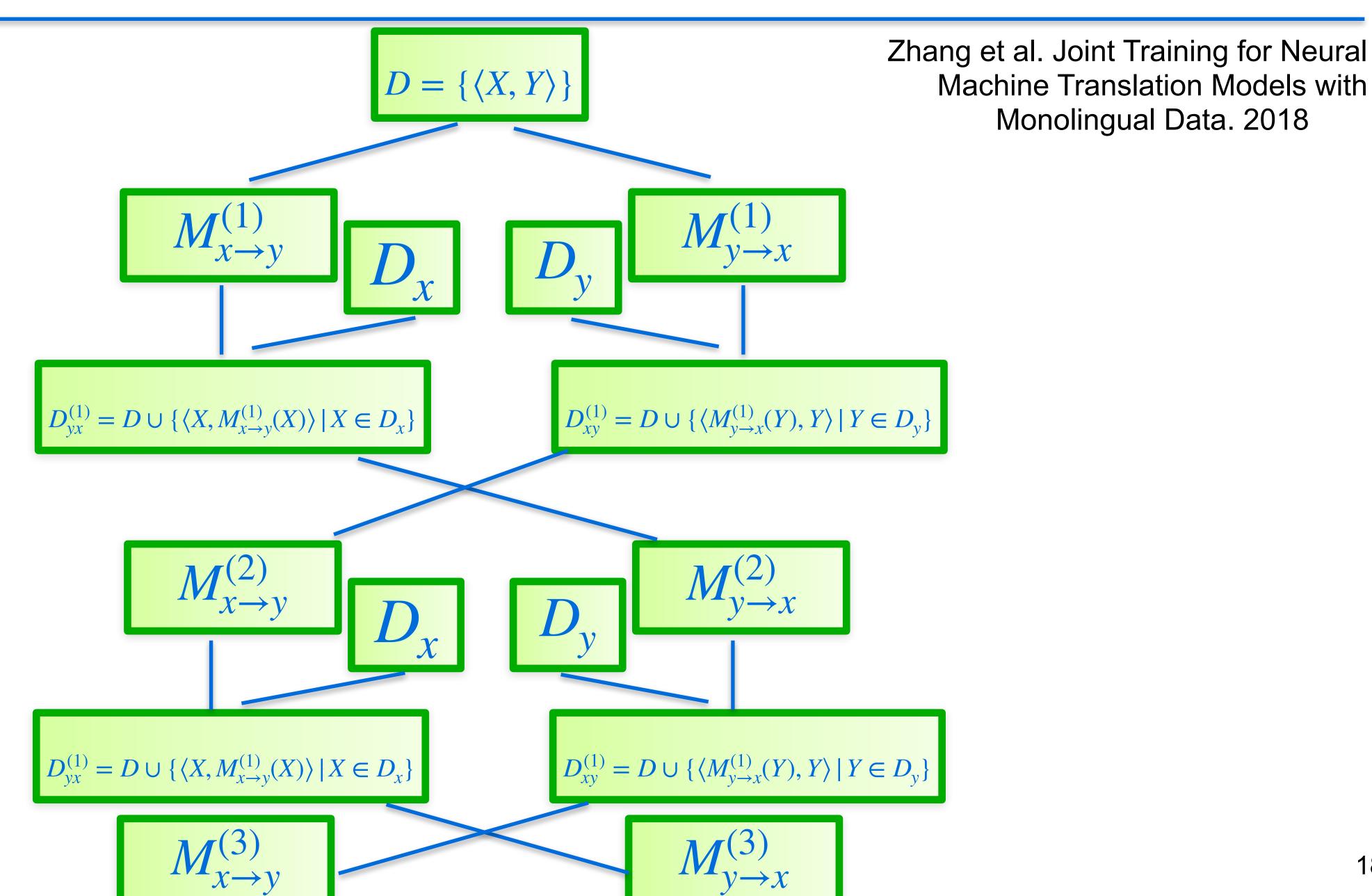


BT in Low-resource Setting



Total training data

Iterative Joint Back Translation



Probabilistic Model for Semi-Supervised MT

- For monolingual $Y_m \in D_y$, treat X as a random variable, $X \sim P(X | Y_m; \theta^{\leftarrow})$
- Training with parallel and monolingual corpus $\ell = CE + Expected reconstruction$

$$= \sum_{\langle X_n, Y_n \rangle \in D} \log P(Y_n | X_n; \theta^{\rightarrow}) + \sum_{Y_m \in D_Y} \log \sum_{X \in V^*} P(Y_m | X; \theta^{\rightarrow}) P(X | Y_m; \theta^{\leftarrow})$$

$$\sum_{\langle X_n, Y_n \rangle \in D} \log P(X_n | Y_n; \theta^{\leftarrow}) + \sum_{X_m \in D_Y} \log \sum_{Y \in V^*} P(Y | X_m; \theta^{\rightarrow}) P(X_m | Y; \theta^{\leftarrow})$$

Training

- SGD
- An instance Monte-Carlo EM

$$\mathscr{C} = \sum_{\langle X_n, Y_n \rangle \in D} \log P(Y_n | X_n; \theta^{\rightarrow}) + \sum_{Y_m \in D_Y} \log \sum_{X \in V^*} P(Y_m | X; \theta^{\rightarrow}) P(X | Y_m; \theta^{\leftarrow})$$

$$\sum_{\langle X_n, Y_n \rangle \in D} \log P(X_n | Y_n; \theta^{\leftarrow}) + \sum_{X_m \in D_x} \log \sum_{Y \in V^*} P(Y | X_m; \theta^{\rightarrow}) P(X_m | Y; \theta^{\leftarrow})$$

$$\frac{\partial \mathcal{E}}{\partial \theta^{\rightarrow}} = \dots + \sum_{Y_m \in D_Y} \sum_{X \in V^*} \frac{P(Y_m | X; \theta^{\rightarrow}) P(X | Y_m; \theta^{\leftarrow})}{\sum_{X' \in V^*} P(Y_m | X'; \theta^{\rightarrow}) P(X' | Y_m; \theta^{\leftarrow})} \frac{\partial \log P(Y_m | X; \theta^{\rightarrow})}{\partial \theta^{\rightarrow}} + \dots$$

Alg 1: generate top-k candidates, then compute the gradient.

Back-translation as a Special Case

$$\frac{\partial \mathcal{E}}{\partial \theta^{\rightarrow}} = \cdots + \sum_{Y_m \in D_Y} \sum_{X \in V^*} \frac{P(Y_m | X; \theta^{\rightarrow}) P(X | Y_m; \theta^{\leftarrow})}{\sum_{X' \in V^*} P(Y_m | X'; \theta^{\rightarrow}) P(X' | Y_m; \theta^{\leftarrow})} \frac{\partial \log P(Y_m | X; \theta^{\rightarrow})}{\partial \theta^{\rightarrow}} + \cdots$$

- If instead of top-k, just pick the top-1 beam search result,
 => back-translation
- Back-translation is an instance of Semi-supervised MT
- Other ways to implement?

Also known as Dual Learning

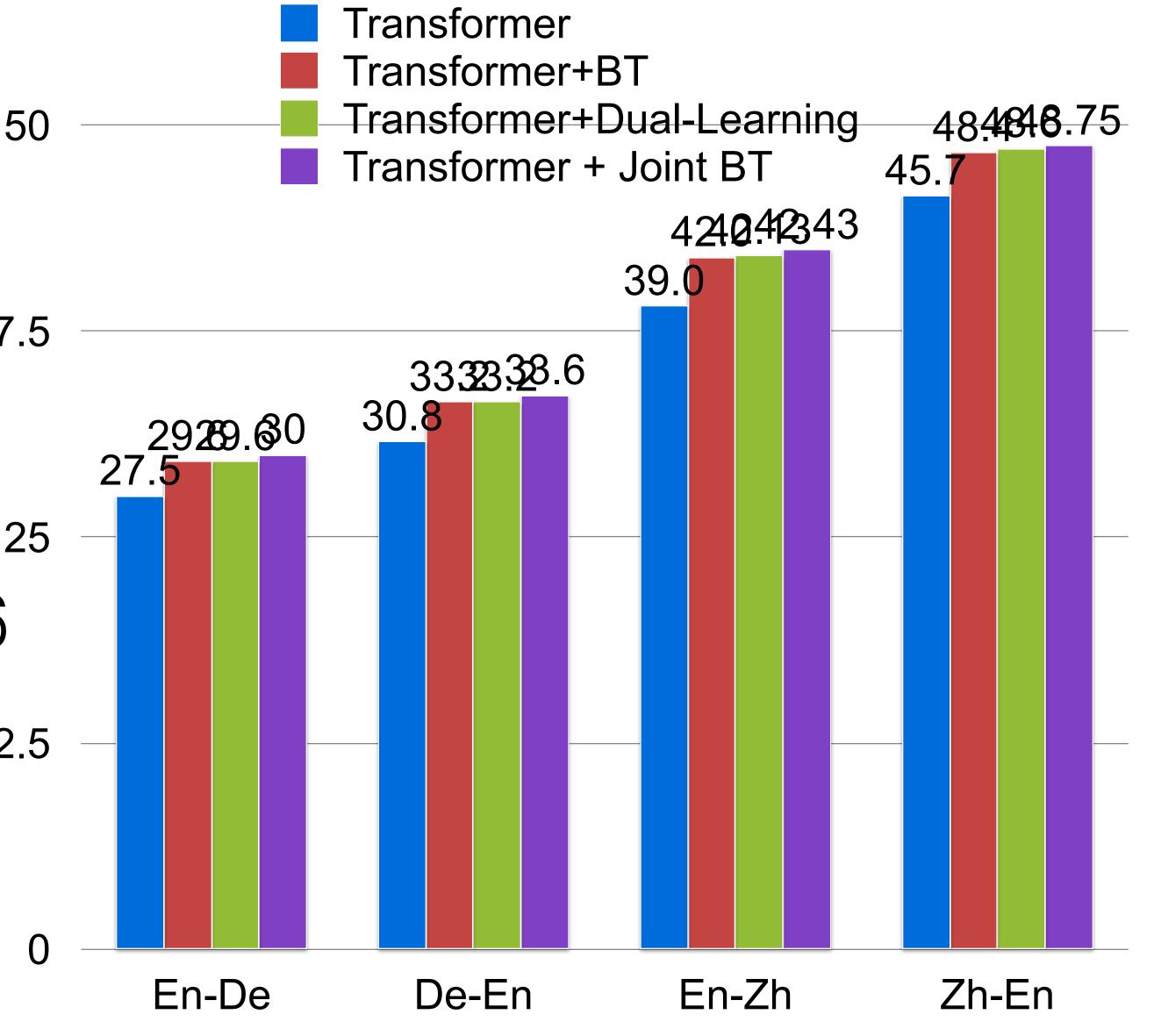
$$\mathscr{E} = \sum_{Y_m \in D_Y} \sum_{X \in V^*} P(X | Y_m; \theta^{\leftarrow} (\log P(Y_m | X; \theta^{\rightarrow}) + \log P(X; \theta_X))$$

 essentially the lower bound of the complete log-likelihood (multiplies with language model probability)

He et al Dual Learning for Machine Translation 2016

Comparing Backtranslation and Dual Learning

- Back-translation [Sennrich 2016], Cheng 2016, Dual Learning [He 2016], joint back-translation [Zhang 2018], all have same performance.
- Formulation of Cheng 2016 and Zhang 2018 are the same.



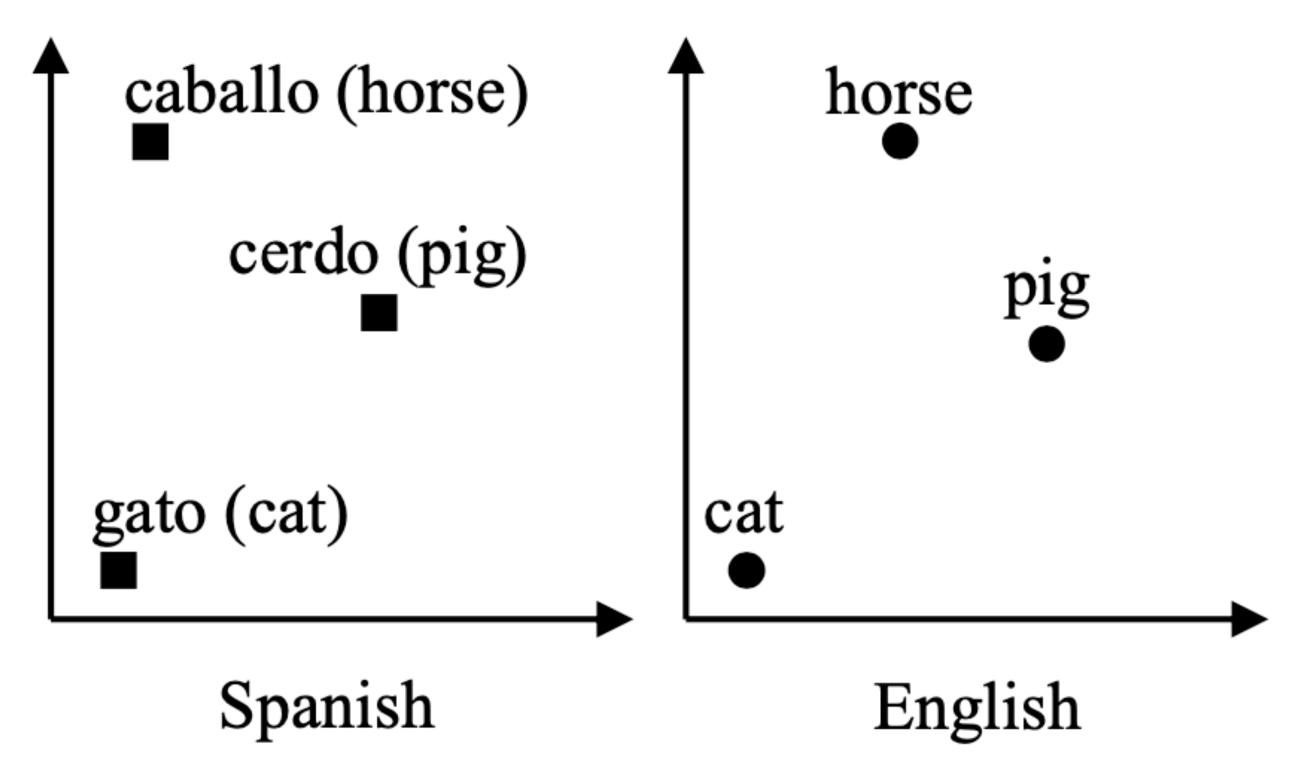
Unsupervised Neural Machine Translation

Unsupervised Machine Translation

- Learning without supervision
 - No parallel corpus, only monolingual data
- Why?
 - many language pairs do not have parallel sentences, or very expensive to create parallel sentences by human
 - but monolingual data are abundant
- How? Basic idea:
 - Cross-lingual pre-training
 - Weight sharing
 - Iterative Back Translation

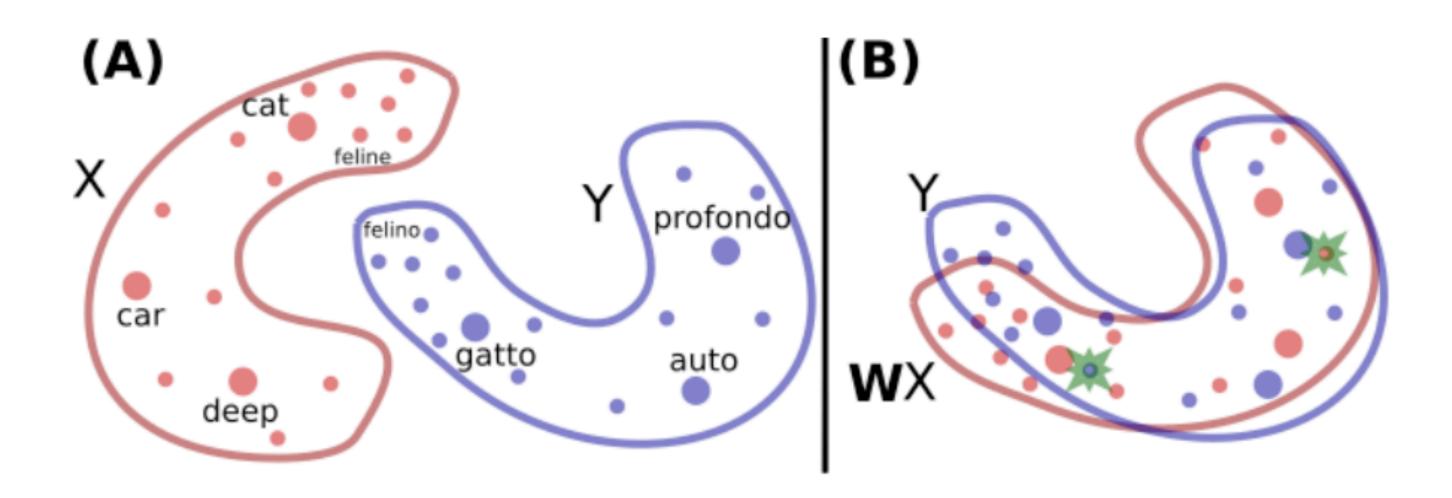
Unsupervised Lexicon Induction

- Also called word translation
- Hypothesis: words with the same meaning in two languages share isomorphic embedding space



Lexicon Induction: Mapping of the Embedding Space

- To learn a matrix W
- Supervised setting (pairs of aligned words available) $\underset{f}{\operatorname{arg\,min}} \|XW Y\|_f$
 - closed form solution for this
- How to learn W without aligned word pairs?

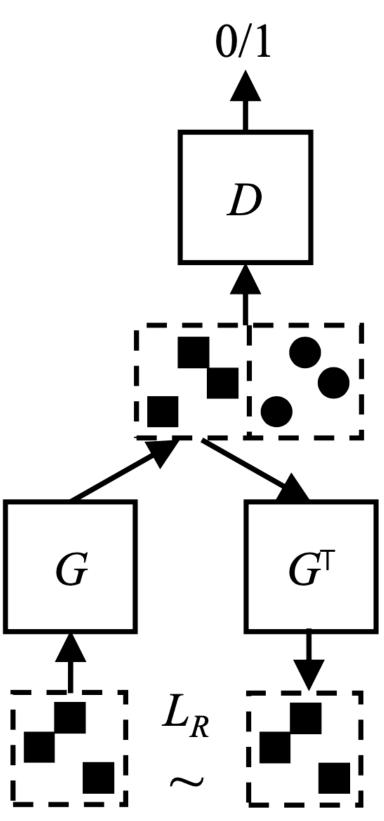


Lexicon Induction via Adversarial Training

- x, y are pretrained word embeddings in two languages.
 But not aligned.
- Using a discriminator to distinguish between
 - Wx and y
 - A feedforward NN with 1 hidden layers.
- Alternating between

$$\min_{D} L_{D} = -\log D(y) - \log(1 - D(Wx))$$

$$\min_{W} L_G = -\log D(Wx) - \cos(x, W^T Wx)$$



Find the closest words

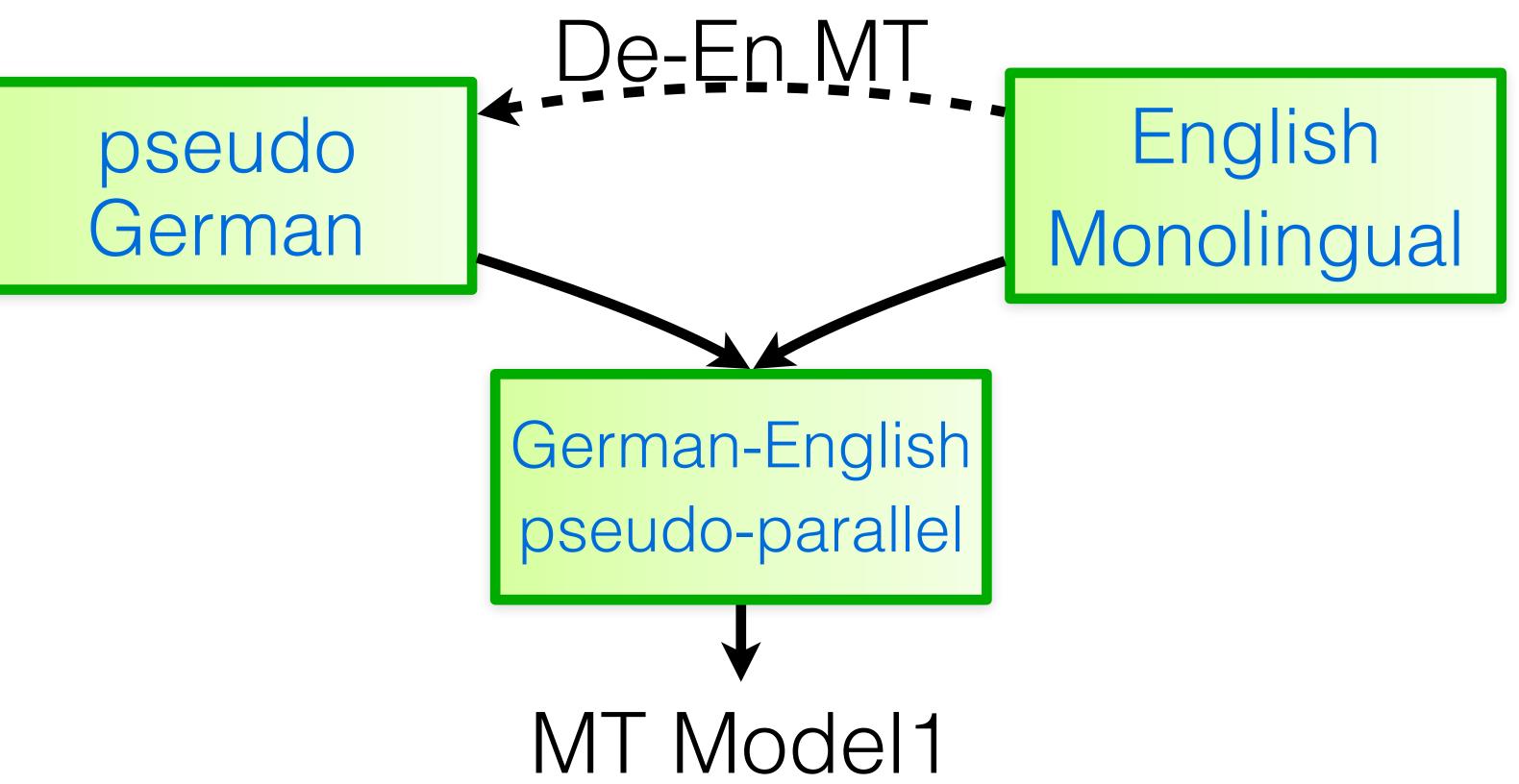
Use this as the word-level translation

method	# seeds	es-en	it-en	ja-zh	tr-en
MonoGiza w/o embeddings	0	0.35	0.30	0.04	0.00
MonoGiza w/ embeddings	0	1.19	0.27	0.23	0.09
TM	50	1.24	0.76	0.35	0.09
	100	48.61	37.95	26.67	11.15
Τ 7	50	39.89	27.03	19.04	7.58
IA	100	60.44	46.52	36.35	17.11
Ours	0	71.97	58.60	43.02	17.18

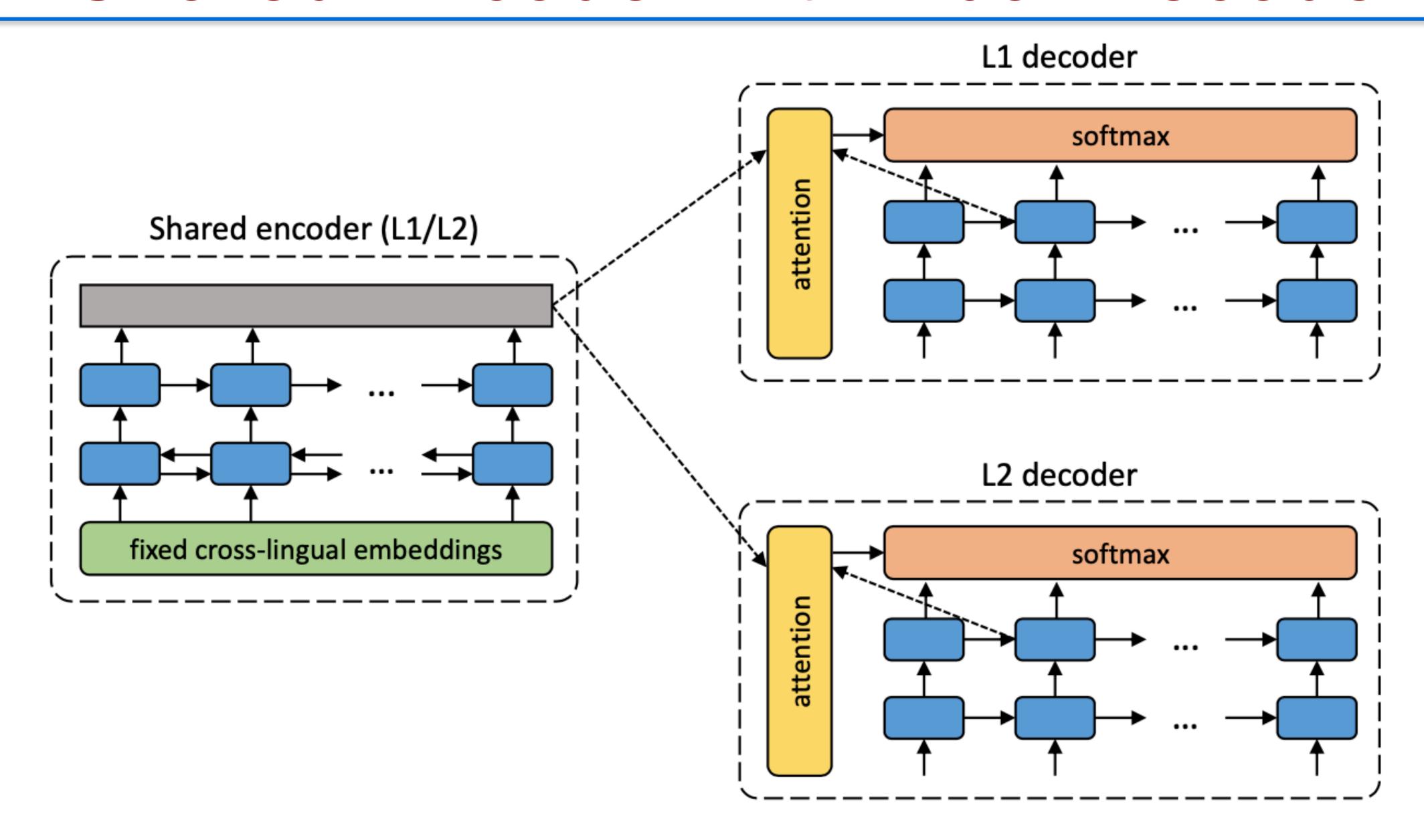
Unsupervised Machine Translation

Build an initial MT system to translate from English ->
 German, and German -> English using word-level
 translation

Iterate

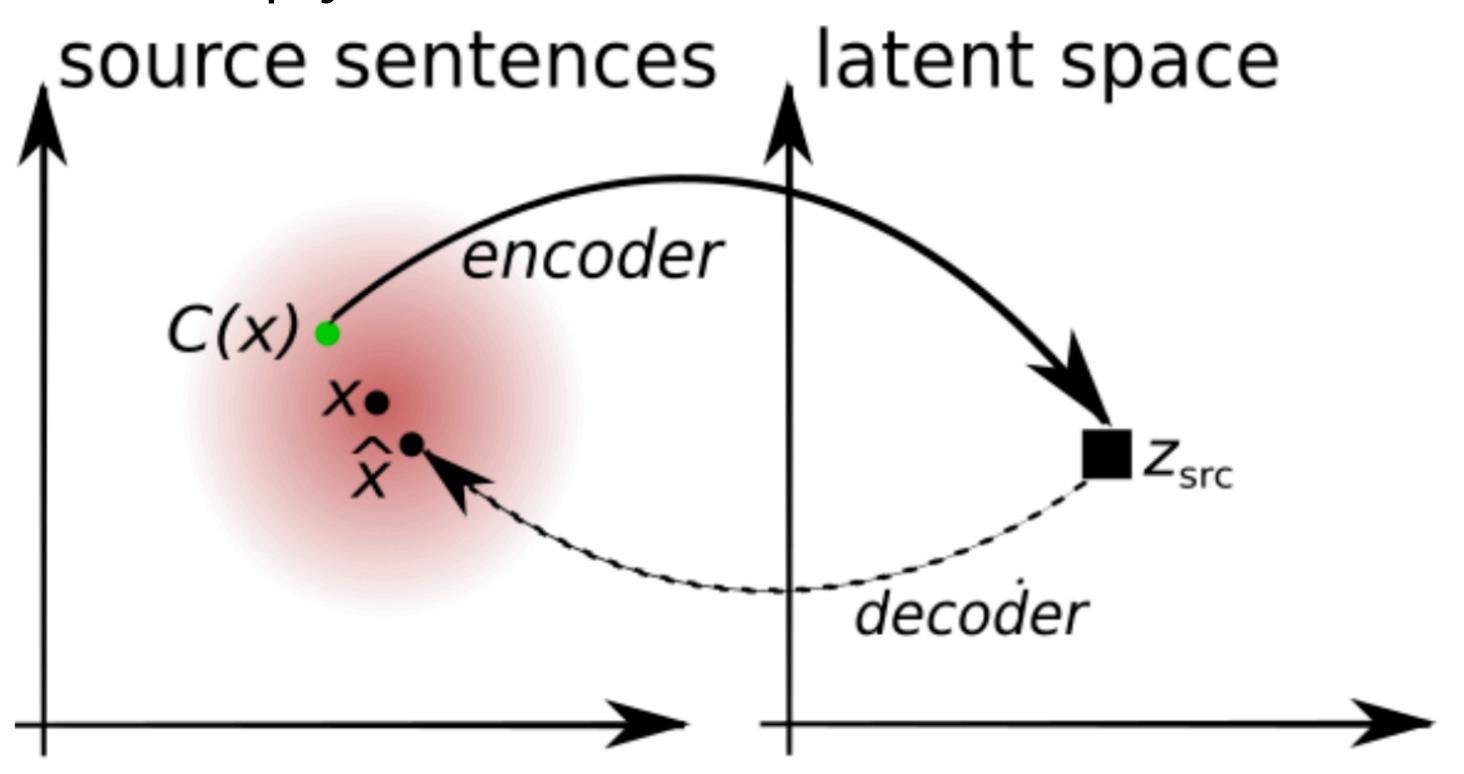


Shared Encoder with Dual Decoder



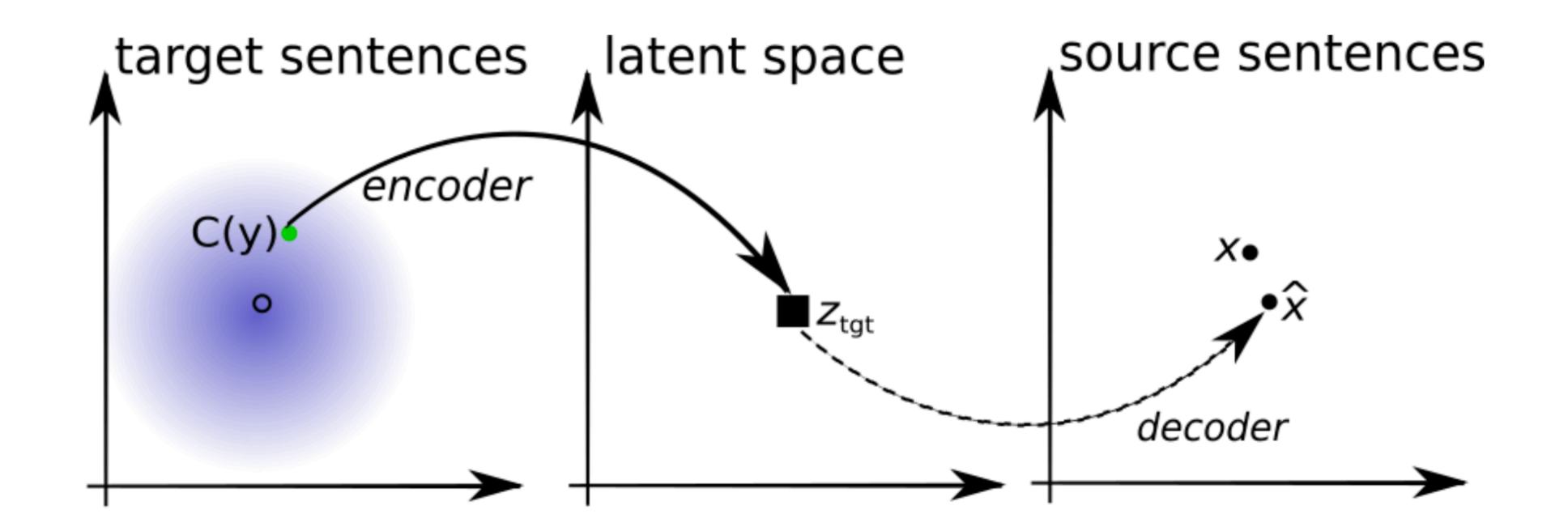
Training Objective 1: Denoising Autoencoder

- Create a noisy version of source sentence, and reconstruct using encoder-decoder
- Using cross-entropy loss on reconstructed sentence



Training Objective 2: Back-translation

 Back-translate: From target to generate pseudo-parallel source sentence

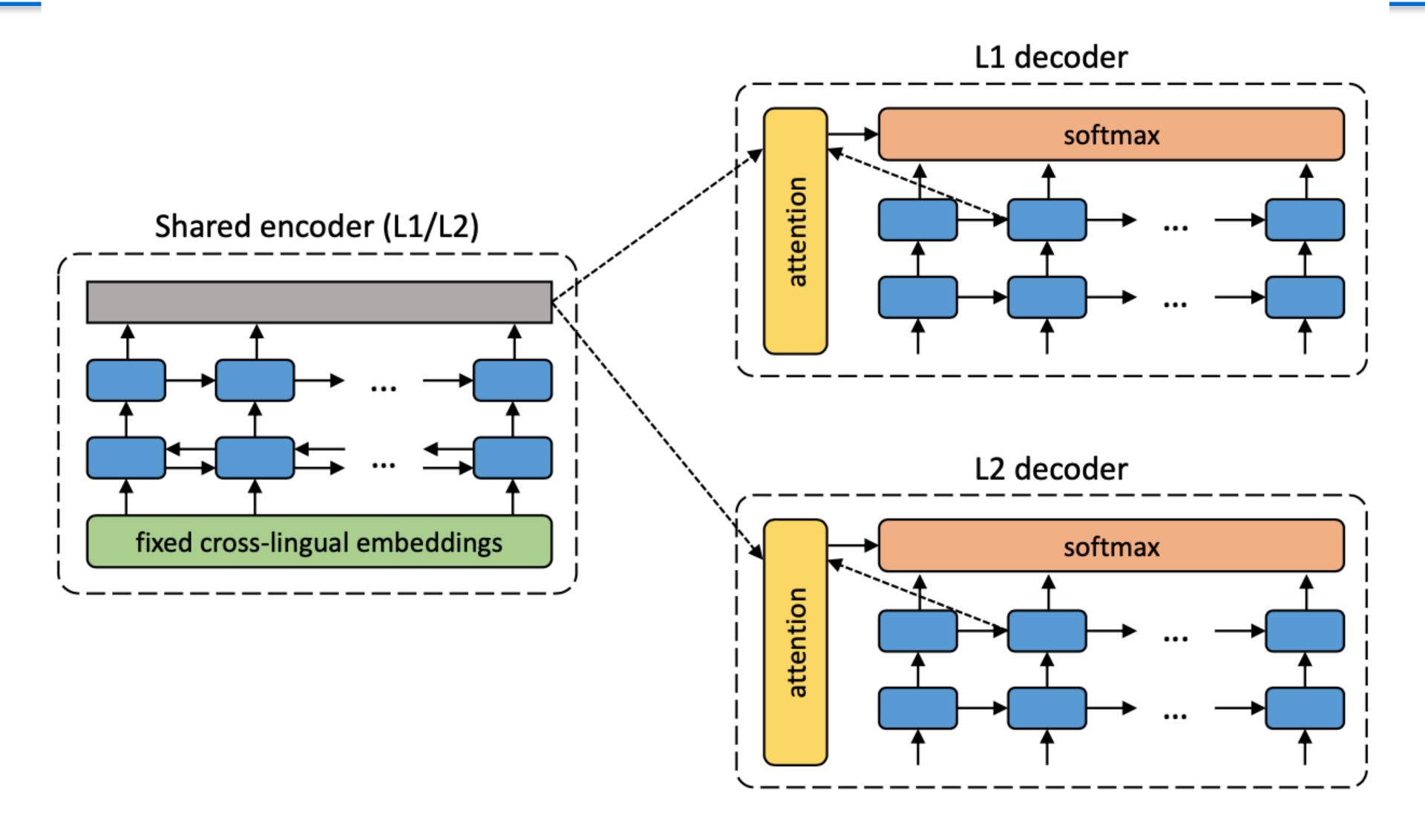


Training Objective 3: Adversarial Loss

 To distinguish between source and target sentence embeddings.

$$\min L_D = -\log P_D(0 \text{ or } 1 | \text{emb(src or tgt)})$$

Unsupervised Neural Machine Translation



Does it work?

	Multi30k-Task1				WMT				
	en-fr	fr-en	de-en	en-de	en-fr	fr-en	de-en	en-de	
Supervised	56.83	50.77	38.38	35.16	27.97	26.13	25.61	21.33	
word-by-word word reordering oracle word reordering	8.54 - 11.62	16.77 - 24.88	15.72 - 18.27	5.39 - 6.79	6.28 6.68 10.12	10.09 11.69 20.64	10.77 10.84 19.42	7.06 6.70 11.57	
Our model: 1st iteration Our model: 2nd iteration Our model: 3rd iteration							11.10 13.25 13.33	8.86 9.75 9.64	

Bidirectional LSTM encoder-decoder

When does Unsupervised NMT work?

- Similar languages with large monolingual data
- Distant languages are still difficult
- Eg. En-Tr 4.5 (unsupervised) vs. 20 (supervised)

Reading

- Sennrich et al. Improving Neural Machine Translation Models with Monolingual Data. ACL 2016.
- Cheng et al. Semi-Supervised Learning for Neural Machine Translation. ACL 2016.
- Artetxe et al. Unsupervised Neural Machine Translation. 2018
- Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018
- He et al. Dual Learning for Machine Translation. 2016.
- Gulcehre et al. On Using Monolingual Corpora in Neural Machine Translation. 2015
- Edunov et al. Understanding Back-translation at Scale. 2018.

Code Walk

- There will be no graded discussion, but we'll have a code walk through The Annotated Transformer https://nlp.seas.harvard.edu/2018/04/03/attention.html
- Organize into group to discuss some of the design decisions, their motivation, etc.